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CENTRAL 2-SYLOW INTERSECTIONS

MARCEL HERZOG

Let G be a finite group. A subgroup D of G is called a
2-Sylow intersection if there exist distinct Sylow 2-subgroups
S; and S; of G such that D=S;n S;. An involution of G
is called central if it is contained in a center of a Sylow
2-subgroup of G. A 2-Sylow intersection is called central if
it contains a central involution. The aim of this work is to
determine all non-abelian simple groups G which satisfy the
following condition
B: the 2-rank of all central 2-Sylow intersections is not
higher than 1, under the additional assumption that the cen-
tralizer of a central involution of G is solvable.

In 1964, M. Suzuki [5] determined all simple groups with all
2-Sylow intersections being trivial (i.e. of rank 0). Using a recent
fusion theorem by E. Shult [3, p. 62] the author proved [4] that no
additional simple groups are involved if Suzuki’s condition is weakened
to read: all central 2-Sylow intersections are trivial (i.e. no central
involution is contained in a 2-Sylow intersection).

This paper is a step toward the characterization of all simple
groups G which satisfy Condition B (in short Ge B). We will prove
the following

THEOREM. Let G be a mon-abelian simple group. Suppose that
Ge B and the centralizer of a central involution z in G is solvable.
Then G 1is isomorphic to one of the following groups:

(i) PSL2,q), g=2">2;

(ii) Sz(g), qg=2"=8;

(iii) PSU@B, q), ¢ =2"> 2 and

(iv) PSL(2,q), ¢g=3or 5 (mod 8),q > 5.

A finite group G is of 2-rank = if an elementary abelian 2-sub-
group of G of maximal order contains 2" elements. The 2-length of
G is denoted by 1,(G). The maximal power of 2 dividing |G| is
denoted by |G, An involution 2z of G is called isolated if it belongs
to a Sylow 2-subgroup S of G and z° € S implies 2 = z. The maximal
normal subgroup of G of odd order is denoted by 0(G). Finally the
groups Q,, S; and S, are the ordinary quarternion group, the sym-
metric group on 3 letters and the symmetric group on 4 letters,
respectively.

2. Properties of groups satisfying Condition B.
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LEmMMA 1. Let GeB,HS G.

(i) If |H|,= |G|, then He B.
(ii) If H] G and |G/H|, = | G|, then G/He B.

Proof. (i) is obvious. If H is a normal subgroup of G of odd
order, then the S,-subgroups of G = G/H are of the form SH/H =
S =S, where S is an S,subgroup of G. Let S, and S, be S,-sub-
groups of G such that S, N S, is a central 2-Sylow intersection of 2-
rank at least 2. Since H is of odd order, there exists a 2-subgroup
D of G, such that S,NS,= DH/H = D=D. It is clear that there
exist h,, h,e H such that D& S N Sk. If zH is a central involution
of SH/H,ze S, then [2,s]e SNH =1 for all s€S, hence zec Z(S).
Thus D contains a central involution of G and as Ge B and the
2-rank of D is at least 2, it follows that S = S!2, S, =S, and D is
not a 2-Sylow intersection of G. Thus Ge B.

LEMMA 2. Let GeB, H= G and suppose that the following
assumptions hold:

(i) H 1s solvable;

(ii) |H|,=1G|, and

(iii) 0,(H) contains a central imvolution of G.
Then 1,(H) = 1, unless 0,(H)=Q, and H/0,(H)=S,, where H = H/0(H).

Proof. By Lemma 1 H and H satisfy Condition B and 0,(H)
obviously contains a central involution of H. If 0,H) is cyclic or
generalized quaternion (but not ordinary quaternion), then Aut(0,(H))
is a 2-group and therefore H/C(0,(H)) is a 2-group. As H is solvable,
C(0,(H)) < 0,(H) and consequently H is a 2-group, hence 1,(H) = 1.

If 0,(H) is of 2-rank at least 2, then H e B forces H to be 2-closed,
hence 1,(H) = 1.

Suppose, finally, that 0,(H) = Q,. Then H/C(0,(H)) is isomorphic
to a subgroup of S, and if H is not 2-closed then obviously 24 divides
the order of H/C(0,(H)). Thus H/C(0,(H))=S, and H/0,(H)=S..

LEMMA 8. Let Ge B and suppose that S and S, are S,-subgroups
of G. Let ze Z(S) be an involution, g€ G, and suppose that z°€ S,.
Then 2° e Z(S,).

Proof. Suppose that 2¢ is not central in S,. Then S, N Cyz%)
contains 2? and a central involution of S,. Let T be an S,-subgroup
of Cy(2°) containing S, N Cyx(2°); as Cy(z°) 2 87, T is an S,-subgroup of
G. Since the 2-rank of D= S, N T is at least 2 and D contains a
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central involution of G, it follows from our assumptions that S, = T,
hence z? ¢ Z(S,), a contradiction.

LEMMA 4. Let Ge€ B and suppose that | 2,(Z(S))| = 2, where S
is an S,-subgroup of G. Then 2,(Z(S)) & Z*(G), where Z*(G)/0(G) =
Z(G[0(G)).

Proof. Let ze @,(Z(S)); then by Lemma 8 z is an isolated in-
volution in G. It follows then by the Z*-theorem of Glauberman [2]
that 2.(Z(S)) = Z*(G).

LEMMA 5. Let Ge B, S be an S,-subgroup of G and G = 0(G)S.
Suppose that | 2(Z(S))| > 2 and S is not mormal in G. Then the
2-rank of G is at most 2.

Proof. Let G be a counterexample of minimal order. Then S
contains an elementary abelian subgroup A of order 8 such that
|A: Z(S)N A| <2. Let H= 0(G) and C = Cy(H). Then C < S and
consequently C <] SH = G. As G is not 2-closed and G € B, we have
A ¢ C. Consider AH; A is not normal in AH and |AN A"| < 2 for
all he H— N(A), as otherwise G¢ B. Thus AH is a counterexample
and by the minimality of G, G = AH.

Let P be a Sylow p-subgroup of H, such that A & N(P) and
A ¢ C(P); then again by the minimality of G, G = AP. As by a
theorem of Burnside A does not centralize P/@(P), it follows by
Lemma 1 (ii) and the minimality G that @®(P) = 1, P is elementary
abelian. Since A acts on P in a completely reducible way, it follows
again by the minimality of G that A acts irreducibly of P and
A/C (P) acts faithfully and irreducibly on P. Thus A/C,(P) is a cyclic
group and C,(P) is a normal subgroup of G of 2-rank 2. As C,(P)
contains a central involution and G ¢ B, it follows that G is 2-closed,
a contradiction.

3. Proof of the theorem. Let H = Cy(z). If H is 2-closed
then by Lemma 3 z belongs to a unique Sylow 2-subgroup of G.
Therefore by Theorem C of [4] G is isomorphic to one of the groups
in (i)-(iii).

Suppose now that H is not 2-closed. Let H = H/0(H) and sup-
pose that 0,(H)=Q, and H/0,(H)=S.,. Then obviously

(*) 2-rank H = 2-rank G = 2.

Otherwise it follows by Lemma 2 that 1,(H) = 1, hence 0, ,(H) = SL,
where L = 0, (H) and S is an S,-subgroup of G. Since H is not 2-
closed, S is not normal in 0, ,(H). As G is simple, it follows by
Lemma 4 that |2,(Z(S))| > 2 and Lemma 5 then yields (*) again.
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Thus in all cases 2-rank G = 2 and by the classification theorem
of Alperin, Brauer and Gorenstein [1] only three types of 2-groups
could occur as a Sylow subgroup S of a group not mentioned in (i)-(iv):

(a) dihedral of order 8 at least,

(b) quasi-dihedral, or

(¢) wreathed.

In all of these cases Z(S) is cyclic, hence by Lemma 4 G is non-
simple, a contradiction. The proof of the theorem is complete.
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