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ON SOME MEAN VALUES ASSOCIATED WITH A RAN-
DOMLY SELECTED SIMPLEX IN A CONVEX SET

H. GROEMER

For any convex body K in euclidean 7n-space denote by
m(K) the mean value of the volume of a simplex with vertices
at n + 1 randomly selected points from K. It is shown that
among all convex bodies of given volume the mean value m(K)
is minimal if and only if K is an ellipsoid. Actually, a more
general result is obtained which shows that the higher order
moments of the volume of a randomly selected simplex in a con-
vex set have similar minimal properties.

Throughout this paper R" denotes euclidean n-space, where = is
a given fixed positive integer. A compact convex subset of R” which
has interior points will be called a convex body. The volume of a
convex body X will be denoted by v»(X). If p, 0, +++, Dnsy are n + 1
points of R" we write C(p, Do, +++, Pnr) to denote the convex hull
of the points p,, D; =+*, Pusri. Including various forms of degener-
acy, C(p, D, **+, Por) Will Dbe called a simplex with vertices at
D1y Doy v %y Dpsae

Let K be a given convex body. If =, «++, 2, are n+1
points from K the volume of the simplex with vertices at x,, %,, +-+, .4,
is given by v(C(x,, %, *++, ©,,) and, assuming that the points
Xy, %, + -+, &, are variable, the mean value of this volume is defined by

(1) mE) = QpE)| U@+, Bar)) det -+ it

26K gxnﬂe}{
Since v(C(x,, #,, +++, %,:,) is a continuous function in the space R™"+!
and since the set defined by the n+1 conditions z;,€e K (1 =1,2, ---,n+1)
is a compact convex set in R""*" it is obvious that m(K) exists for
every convex body K.

Blaschke [1], [2] has proved that for convex bodies in R* of given
volume (i.e., area) the mean value m(K) is minimal if and only if K
is an ellipse. See also Klee [11] for the history of this problem.
Kingman [10] has conjectured that for any dimension 7 and fixed
volume v(K) the minimum of m(K) is reached if K is a (solid) sphere
in R*. In addition, he pointed out that the higher order moments of
the expected volume, i.e., the expressions

(2)  m(K)= QoK) W(C (@, *+s Buss))d, -+ Ay

z1€ K Sx%+lelf
are of interest. The definitions (1) and (2) show that m,(K) = m(K).
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Just as before, it is seen that m,(K) exists for every convex body K
and every r=0. It is also clear that m,(K) is invariant under
volume preserving affine transformation.

The main purpose of this paper is to provide a proof of Kingman’s
conjecture and of a similar but more general statement for the higher
order moments. The following theorem contains the precise formula-
tion of our result.

THEOREM. For any convex body K in R™ and any real number
r with r = 1 the moments m.(K) satisfy the inequality

m.(S) = m.(K)

where S 1s a solid sphere in R™ which has the same volume as K.
Equality holds if and only if K is an ellipsoid.

Because of m,(K) = m(K) this theorem has the following corollary
as an obvious consequence.

COROLLARY 1. Among all convex bodies of given volume the mean
value m(K) of the volume of a simplex with vertices at n + 1 randomly
selected points from the convex body K is minimal if and only if K
1s an ellipsoid.

Kingman [10] has been able to find an explicit formula for m(K)
in the case when K is an ellipsoid of R”*, namely

n+1 \"/ (n+ 1)\
S AR

Corollary 1 is related to a problem which, in two dimensional
space, is frequently referred to as Sylvester’s problem (cf. Kendall
and Moran [9]). If n + 2 points of R are selected at random from
a convex body K the problem consists of finding the probability, say
P(K), that none of these n + 2 points is in the interior of their convex
hull. A simple calculation shows that (see Kingman [10])

pK) =1+ 2mE)
v(K)

It follows that Corollary 1 is equivalent with the following statement.

COROLLARY 2. For any convex body K of R" the probability P(K)
that the convex hull of n + 2 randomly selected points from K con-
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tains none of these points in its interior is maximal if and only if
K is an ellipsoid.

Similarly as the proof given by Blaschke for » =2, =1 our
proof of the above theorem depends on a property of the Steiner
symmetrization of a convex body and on a certain characterization of
ellipsoids. Since this characterization, which is of independent interest,
appears to have been investigated only in the cases n =2and n =38
(see Bonnesen and Fenchel [4], p. 143) we supply a new proof which
imposes no restriction on the dimension or regularity of the convex
body (Lemma 2).

First, we prove a lemma which shows that there exist convex
bodies which have the desired minimal property with respect to m.(K).

LEMMA 1. If r is a given positive number there exists a convew
body K, in R™ such that v(K;) =1 and

(3) m.(Ko) = m,(K)

for every convex body K with v(K) = 1.

Proof. For every convex body K there exist, according to a
theorem of John [8], two ellipsoids E, E’ such that E"c KC E and
v(E) < n"v(E’'). Because of »(E’') < v(K) this implies »(E) < n"v(K).
It follows that to any K with v(K) = 1 there is a volume preserving
affine transformation ¢ such that ¢K c B, where B is a sphere of
volume %" and center at the origin of the coordinate system. Because
of this fact and because of the invariance of m, under volume preserv-
ing affine transformations it is evident that it suffices to prove (3)
under the additional assumptions that »(K) =1 and K< B. Let us
denote by .9 the class of all convex bodies for which these two con-
ditions are satisfied. If a number p is defined by

¢ = inf m,(K) (Ke )
then ¢ has obviously the property that for every Ke %~
(4) ¢ = m(K)

and that there exists a sequence K,, K,, --- of convex bodies in .97~
such that

(5) lim m,(K) = ft .

Because of K;C B the selection theorem of Blaschke can be applied
to the class of convex bodies K;. This justifies the assumption that
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the sequence K, K,, --- converges (in the Hausdorff-Blaschke metric)
to some convex set K,. Note that K;ec.%  implies K,c 5.

The functional m, is obviously translation invariant, monotone
and homogeneous in the sense that m,(sK) = s""m,(K) for any s = 0.
It is known that such a functional is also continuous (cf. Hadwiger
[7], p. 204 and the proof of the continuity of the volume in Blaschke
[3]; p. 61 or Eggleston [6], p. 72). Therefore, the convergence of K;
to K, implies

(6) lim m(K;) = m.(K,) «

Since (3) is an immediate consequence of (4), (5), and (6) the proof of
the Lemma is finished.

K, will be referred to as a minimum body for m,. Actually, K,
does not depend on 7 if » = 1; but this cannot be concluded from our
proof of Lemma 1.

For the formulation of our next lemma it is convenient to call
a subset of R flat if it is contained in some plane. It should be
noted that in this paper a plane is always understood to be a hyper-
plane. As a further notational simplification the following concept
will be used. If K is a convex body and if G is a line in R" we
denote by (K, G) the set of midpoints of all line segments of the
form X N K where X ranges over all lines that are parallel to G and
meet K. 2 (K, G) will be called a midpoint set of K.

LEMMA 2. A convex body K is an ellipsoid if and only if the
midpoint set F(K, G) is flat for every line G of R".

Proof. If K is a sphere the midpoint set .Z2(K, G) is obviously
flat for every line G. Applying an affine transformation the same
result is seen to be true for ellipsoids.

Assume now that for a given convex body K the midpoint set
(K, G) is flat for every line G. Let H be any plane, and choose
a coordinate system in R™ which has the property that H is given by
H={(@',2* -++,2") | a" = 0}. Then, if G is a line that is orthogonal
to H, the equation of the plane which contains (K, G) can be

written in the form
"=y + ax + -0 + a,_ 2",

The symmetrization of K with respect to the plane H is achieved by
mapping each point (p', p% «--, »*) of K onto the point

(o' P% <=, D" D" — (@ + AP+ coe 4 @ D"TY)) .

This mapping is obviously an affine transformation. Hence, one can
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conclude that every symmetrization is a volume preserving affine
transformation, provided that the midpoint set (K, G) is flat for
every line G of R".

The convex body obtained from K by symmetrization with respect
to a plane H will be denoted by K(H).

It is known (see Danzer, Laugwitz, and Lenz [5]) that there is an
ellipsoid, say L, which contains K and has smallest possible volume.
It is also known (see Hadwiger [7], p. 170) that there is a sequence
of planes, say H,, H,, --+,in R" such that the sequence of convex
bodies which is defined by K, = K, K;., = K,(H)) (i =1, 2, «+-) contains
a subsequence that converges to a sphere S. It follows that there
are volume preserving affine transformations o,, g,, +++ such that the
sequence 0.K, 0.K, -+ converges to S. If K = L the proof of the
lemma is obviously finished. Let us assume that K+ L. In this
case we have

(7) wWK) = v(S) < v(L) .

Since the sequence 0.K, 0,K, -+ converges to S there exists for any
positive ¢ an index % such that

(8) g, Kc 8.

Here, S° denotes the parallel domain of S, which, in this case is
a sphere of radius r + ¢ if S has radius r. Because of (7) ¢ can be
taken so small that

(9) (S < (L) .

(8) implies that the ellipsoid 0;'S® contains K, and (9) shows that
v(07,'S°) < v(L). However, according to the definition of L it is im-
possible that an ellipsoid which contains K has smaller volume than
L. It follows that the trivial case K = L is the only possiblility.

LemMMA 3. Let G, Gy, +++, Guyy be m + 1 distinct lines in R™ which
are of the form G, = {(c, ¢, «+-, i, 2) | —c0 < 2, < o0},  Assume
that to each G, there corresponds an interval I, of the form
I, ={(i, e, -, i 20 | |2 — 0| £ 1.} where 1, >0. Write z=

(zl’ %oty zn—H), b= (ply Day =0, pn+1)) €= (1’ 1. *y 1)’ ¢ = (C{, ng ct CZL'F])
and

D(z) = L et (e, ¢, +vv,c",2)
n
Finally, if r is a given real number with r = 1 write

(10) M(p) = § | D(z) | dz -

lzp—pEisly
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Then, if the numbers ci and the interval lengths 1, are fixed, M(p)
attains its absolute minimum value exactly for those wectors p for
which all the midpoints (ci,ci, =-+, ¢k, Pr) of the intervals I, (k =
1,2, --+, n + 1) are contained in some plane of R".

Proof. Since D(z) is a linear function of z (10) can be written in
the form

(1) Mw) = | 1D + D) du

where w = (U, Uy, **+, U,y;) and w = 2 — p. If p varies over the total
R**' the linear function D(p) takes on any value between — c and co.
Therefore, a comparison of (11) with the function

12) F(y) = Smk(g,, | D(u) + yl" du

shows that M(p) and F(y) have the same greatest lower bound. If
all y-values for which F(y) is (absolutely) minimal are known, the
set of all vectors p for which M(p) is minimal are found by solving
the linear equation

13) y = D(p)

for each such known y-value.
Now, to investigate the minimum value of F(y) we note that
D(u) = —D(—w) implies

S[uklgzk | D) + y["du = S | D(u) — y|"du .

luglsly

This, together with the definition (12), shows that

F(y) — F(0)
14)
O =L 4D+ y + D@ — uf — 21D .
Since for a fixed value of » (r = 1) the function |{|" is convex it
follows that the integrand in (14), say T(u, y), has the property that
for all values of u and ¥

(15) T(u,y) 2 0.

(The convexity of the function |{|", i.e., the relation | ({, + &)/2" =
(& + 1&17)/2, is a special case of Holder’s inequality |aa + gb| <
(al” +1B81)""(al* + |b[)", namely the casea = g =1/2,a =, b =
&, p=7r/r—1,qg=7r). In addition to (15) it is clear that for y = 0
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(16) TO,y) =2|y[">0.

Because of the continuity of T(u, y) as a function in % (16) implies
that for a given value of y with y = 0 the inequality

amn T(u, y) >0

holds not only for w = 0 but for a whole interval with center at
u = 0. From (14), (15), and (17) it follows that for any y = 0

F(y) > F(0) .

Hence, F(y) attains an absolute minimum value at y = 0 and nowhere
else. This result in conjunction with (13) shows that M(p) is minimal
if and only if D(p) = 0. Since D(p) is the volume of a simplex with
vertices at the points (¢}, ¢, -+, ¢, p,) we find finally that these
points are contained in a plane if and only if M(p) is minimal.

Proof of the Theorem. Since it has already been pointed out that
m,(K) is a homogeneous function of K it suffices to prove the
Theorem under the assumption v(K) = 1.

As before, let H be the plane {(z', «* ---, ") | 2" = 0}. Assume
that Gy, G, -+, G,., are n + 1 given lines which are orthogonal to H
and have the property that each G, intersects K in a line segment
I, of positive length [,. The midpoint of I, will again be denoted
by (¢, &, -+, ¢, pr). Under these assumptions the number M(p)
can be defined by (11). However, since in this case the vector p is
completely determined if K and Gy, G,, ---, G,,, are given we write
now M(K; G, Gy, +++, G,.,) instead of M(p). Let K = K(H) be the
convex body which is obtained from K by symmetrization with respect
to the plane H. Since all the segments K N G, have midpoints that
are contained in a plane, namely H, Lemma (3) shows that

(18) M(K, Gly Gz, °t Gn+1) = M(K, G1, Gz, tt Gn-H)

where equality holds if and only if the midpoints of the segments
KN G, are already contained in some plane. Assume now that K is
a minimum body for m, and that K is not an ellipsoid. Then Lemma
2 shows that there is a line G such that the midpoint set (K, G)
is not flat. This implies obviously that .27 (K, G) contains # + 1 points
which are not contained in a plane of R". A simple continuity argu-
ment shows further that one may assume that the line segments
corresponding to these n + 1 midpoints have positive lengths. A
suitable selection of the coordinate system permits us to assume that
the plane H = {(x', 2%, ---, 2") | 2 = 0} is orthogonal to G. Hence, if
G, Gy +++, G,., is any system of n + 1 lines that are parallel to G
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and meet K in intervals of positive lengths one obtains (18) and the
additional information that strict inequality holds for at least one
such system of = + 1 lines.

Denote now by K, the projection of K onto the plane H.
Further, if w, is a point of K, denote by G(w,) the line which is
orthogonal to H and contains w,. Using the definitions (2) and (10)
an obvious rearrangement of the order of integration shows that

m.(K)

19)
M(K; G(wl)’ G(w2)y T G(wn+1))dw1° ¢ ’dwn+1 .

S“’IGKH g“’n+leKH
(Since the integrand has been defined only if the intervals K N G(w,)
have positive lengths and if the points w, are distinct, a set of measure
0 has been neglected.) Because of (18) with strict inequality for at
least one system w,, w,, +++, w,,, and because of the continuity of the
integrand in (19) (considered as a function of w,, w,, -+, w,.,) the
equation (19) implies that

m(K(H)) < m,(K) .

This contradicts the assumption that K be a minimum body for m,.
Therefore, only ellipsoids can be minimal bodies. Because of Lemma
1 and since m, is invariant under volume preserving affine transforma-
tions it follows that any sphere S of unit volume is a minimal body,
that

m.(S) < m.(K)
if K is not an ellipsoid, and that
m.(S) = m,(K)

if K is an ellipsoid. Hence, the Theorem is proved.

It might be worth noting that essentially the same method of
proof can be used to establish a similar theorem with the higher
order moments replaced by more general types of functions.
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