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ON GENERALIZATIONS OF SYLOW TOWER GROUPS

ABIABDOLLAH FATTAHI

In this paper two different generalizations of Sylow tower
groups are studied. In Chapter I the notion of a fc-tower
group is introduced and a bound on the nilpotence length
(Fitting height) of an arbitrary finite solvable group is found.
In the same chapter a different proof to a theorem of Baer
is given; and the list of all minimal-not-Sylow tower groups
is obtained.

Further results are obtained on a different generalization
of Sylow tower groups, called Generalized Sylow Tower Groups
(GSTG) by J. Derr. It is shown that the class of all GSTG's
of a fixed complexion form a saturated formation, and a
structure theorem for all such groups is given.

NOTATIONS

The following notations will be used throughont this paper:

N<]G
ΛΓCharG
ΛΓ OG
M< G
M<- G
Z{G)

Φ(G)

[H]K
F(G)

C(H) = CG(H)
N(H) = NG(H)
PeSy\p(G)
P is a Sy-subgroup of G
Core(H) = GoreG(H)

KG)
h(G)
d(G)
c(P)

OP(G)

N is a normal subgroup of G
N is a characteristic subgroup of G
N is a minimal normal subgroup of G
M is a proper subgroup of G
M is a maximal subgroup of G
the center of G
#>-part of the order of G, p a prime
set of all prime divisors of \G\
the Frattini subgroup of G — the intersec-

tion of all maximal subgroups of G
semi-direct product of H by K
the Fitting subgroup of G — the maximal

normal nilpotent subgroup of G
the centralizer of H in G
the normalizer of H in G
P is a Sylow ^-subgroup of G
PeSγlp(G)
the largest normal subgroup of G contained

in H= ΓioeoH*
the nilpotence length (Fitting height) of G
p-length of G
minimal number of generators of G
nilpotence class of the p-group P
some nonnegative power of prime p
largest normal p-subgroup of G
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0P/(G) largest normal subgroup of G of order rela-
tively prime to p

OP.P{G) the inverse image in G of OP(G/OP,(G))
Z~{G) the hypercenter of G = the last term in the

upper central series of G
G ~ H the wreath product of G by H
G ~r H the regular wreath product of G by H
STG Sylow tower group
GSTG generalized Sylow tower group
U><] G U is an abnormal subgroup of G
Σn symmetric group on n letters
An alternating group on n letters

All the groups we consider are assumed to be finite.

CHAPTER I

ά-Tower and Sylow Tower Groups

1* fctower groups* The concept of a &-tower group provides
an alternative way of looking at finite solvable groups and enables
us to obtain some results about such groups by generalizing some of
the properties of Sylow tower groups. We start with the definition
of a A -tower group:

DEFINITION. Let G be a finite group with \G\ = ΠLiP? and k
be a positive integer. We say that G has a k-tower if there are sub-
groups Hi <3 G, i — 0, 1, 2, , kn such that

1 - Ho < fli < H2 < < Hkn = G ,

where each \Hi+1/Hi\ — pp', 83 ^ 0 (j> = 1, 2, , n) and the number of
nontrivial p^-factors is at most k for all j and is precisely k for at
least one j.

Observations. The followings are immediate consequences of this
definition:

(a) G has a 1-tower <=> G has a Sylow tower.
This is just the definition of a Sylow tower group.

(b) G has a k-tower => every subgroup and every homomorphίe
image of G has a k'-tower for some kf ^ k.
If H ^ G, the tower obtained from the Λ-tower of G by intersecting
each entry with H is a &'-tower for H and since some of these inter-
sections may be the identity, so kf ^ fc. The fe'-tower for the homo-
morphic image is obtained by taking the homomorphic image of each
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entry in the £>tower of G.
(c) G has a k-tower for some k=> G is solvable.

This can be seen by induction on \G\. Let Hbe the first nonidentity
entry in the A:-tower of G. Then G/H has a kf-tower and since | G/H\ <
IGI so G/H is solvable by induction. But H is a p-group so G is
solvable.

(d) G is solvable ==> G Aαs α k-tower for some k.
Any chief series of G can be thought of as a &-tower for G.

(e) 7/ Gx has a k-tower and G2 has a k2-tower, then Gγ x G2 has
a k-tower for some k ^ kt + k2.
If 1 = Ho <3 ifi <3 <] ίZjk̂ i = Gx and 1 = A:o <] &t <3 <3 / ^ ^ = G2

are the krtoweτ of G: and &2-tower of G2 respectively, then

X — JΠLQ ̂ -J JJL1 ^ J <-J JoLfc n — {JΓI <^J Lτι X JΛ-I z^Λ \ J {JΓI X (JΓ2

is a fc-tower for G1 x G2.
(f) // we further assume that in part (e), π(GL) Π rc(G2) — φ, then

G1 x G2 has a k-tower for some k ^ Max {klf k2}.
This is clear.

DEFINITION. Suppose G has a /b-tower 1 = ίZo ̂  Hx <j ^ jff/cw =
G. We define the type of G to be the ordered kn-tuple

( P i , P 2 , •••, P i , β , p k n ) ,

consisting of the primes that appear in the factors of this tower.
Note that some of these factors may be trivial in which case we can
put any prime in its corresponding place in the A w-tuple.

If G has a £>tower of a given type, then any subgroup and any
homomorphic image of G has a ά'-tower of the same type for some
kr ^ k (note that in the &V~tuple we can always insert enough l ' s
in the right places to make it into a kn-tuple). Since the direct
product of two &-tower groups of the same type is clearly again a
λ -tower of that type, we get:

COROLLARY 1.1. The class of all groups having a kr-tower of a
given type for some kf ^ k is a formation.

The next result shows that this formation is saturated:

THEOREM 1.2. If G/φ(G) has a k-tower of a given type, then so
does G. Moreover, if for some prime p0, the number of nontrivial
pQ-factors in the k-tower of G/φ(G) is equal to kf < k, the same holds
for G.

Proof. We will prove the whole statement of the theorem by
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induction on \G\. Let K/φ(G) be the first nonidentity entry in the
A:-tower of G/φ(G). Then K <\G and K/φ(G) is a p-group, for some
p. Let PeSγ\p(K). By Frattini argument, G = KNG{P). Since
Pφ{G)lΦ(G) is a Sp-subgroup of K/φ(G) and K/φ(G) is a p-group, so
we get Pφ(G) = iΓ. Hence,

G = ΛΓiSΓβ(P) - JV^(P)ίΓ = NG(P)Pφ(G) = NG{P)φ{G) .

Therefore, G = NG(P), and we get P<\G.
Now since φ(G/P) ^ 0(G)P/P - £/P, we have that G/P/ψ(G/P) is

a homomorphic image of G/P/K/P a* G/K. But G/J8Γ has a A:-tower
and the number of ^-factors in that tower is ^ k — 1. So G/P/φ(G/P)
has a A^-tower for some kλ ^ k and the number of nonidentity p-factors
is <£&! — 1 ^ & — 1. So by induction G/P has a A^-tower and number
of ^-factors in that tower is ^ kx — 1. Since P is p-group and P 0
G, we get that G has a &rtower, kx ^ A:. On the other hand, G/φ(G)
is a homomorphic image of G, so k ^ fele Therefore, ^ = /c, i.e., G
has a ά-tower. If for some prime p0 Φ p, the number of ^-factors
of G/φ(G) is equal to kr < k, the same holds for G/K and, consequently,
the same thing will have to hold for G.

If G is a Sylow tower group, then p-length of G is ^ 1 for all
primes p. This result generalizes to fc-tower groups as follows:

THEOREM 1.3. // G has a k-tower, then lp(G) ^ k, for all p.

Proof. The Λ-tower of G is a normal series each of whose factors
is either a p-group or a p'-group, the number of ^-factors not exceeding
k. This being true for each prime p, we conclude that lP(G) ̂  k,
for all p.

COROLLARY 1.4. Suppose G ^ H = HXH2 Hm, where H{ <j H
and each Hi has a k-tower. Then G is solvable and lv{G) ^ k, for
all p.

Proof. Each Hi is solvable, and lp(Hi) ^ k, for all p and all
i — 1, 2, , m by Theorem 1.3. So G is solvable and since

lp(H) = Max {

so ip(G) ^ lp(H) ^ AJ.

Our next goal is to prove the converse of 1.4, i.e.;

THEOREM 1.5. Suppose G is a solvable group with lp(G) ^ k for
all p. Then G < H = HXH2 Hmi where each Hi has a k-tower, and
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furthermore, if 1PQ(G) ^ kr < k for some p0, then the number of non-
trivial pQ-factors in the k-tower of each H{ is <Ξ k!.

Note. This generalizes a theorem of J. L. Alperin about Sylow
tower groups [1] to k-tower groups.

Proof of 1.5. We proceed by induction on | G | . We can assume
that G has a unique minimal normal subgroup. Because if Nx and
N2 are two distinct minimal normal subgroups of G, then NtΠ N2 =
1. But GIN, n iV2 < GjN, x G/N2 and G/Ni9 i = 1, 2 satisfies the
hypothesis of the theorem, so by induction, G/N{, i — 1, 2 has the
desired form and therefore so does G.

Let N be the unique minimal normal subgroup of G. Since G is
solvable, | N\ = 2?r, for some prime #> and some positive integer r. So
if - OP{G) > 1 and O^(G) = 1. Consequently, OP,P(G) = OP(G) = 2<Γ, and

ί,(G7ϋΓ) = lP(GIOp,p(G)) = ίp(G) - 1 ^ & - 1 .

Clearly, lq(G/K) ^ i,(G) ^ k, for all primes 9 Φ p. Since |G/ίΓ| < | G | ,
by induction we get that

G/K<L = LλL2 Lm ,

where L* <] L, each I,; has a fc-tower, and since lp(G/K) ^ k — 1, by
second part of the theorem the number of nonidentity p-factors in
the Axtower of each L{ is ^k — 1.

By [7, pp. 98, 99] we have:

But the wreath product k ~rL can be expressed as a semi-direct
product, namely H = K ~rL ?& K*L*, where l f * = : j K Γ x i f x ••• x ί Γ
( |L | times) and L* ^ L. So IT* is a p-group and K* <\ H. Further-
more, H= K*L - K*(LJJ2 L J = flifζ, Hm, where iJ, ^ if*L, < ίί,
i = 1, 2, , m.

So we have shown that G ^ H = H^ Hm, and it remains to
show:

(i) each Hi has a &-tower;
(ii) if lPQ(G) <ί k' < k for some po> then the number of nonidentity

po-ίactors in the k-tower of each Hi is ^k\
(i) : If 1 = L°i < Lί < . ^ Lfw = L, is a fc-tower for L,, then

1 < ΛΓ* < ίΓ*LJ < < iΓ^L, & Hi is a k-toweτ for J5,. Note since
the number of nonidentity p-factors in the /b-tower of L^ is ^ k — 1
and since K* is a p-group, so the number of nonidentity p-factors in
the tower of H{ is still ^ k.

(ii): If lPQ(G) ^ k' < k for some p0, then lPo(G/K) ^ &' (and if
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p0 = p, then lPo(G/K) £ k' — 1) and hence by induction each Li has
^ kf nonidentity p0~factors in its fc-tower (<£ k' — 1, if p0 = p) Thus,
the same holds for Hi w K*Li.

REMARK. It is clear from the proof that H can be choosen so
that π(H) = π(G).

As a consequence of Theorem 1.5 we get a bound for the nilpotence
length of a finite solvable group in terms of the minimal number of
generators or the nilpotence class of its Sylow subgroups. We need
the following lemma first:

LEMMA 1.6. Suppose H and K are two normal subgroups of G
with l(H) £ k, and l(K) £ k2. Let k = Max {kl9 k2}. Then l(HK) £ k.
(Here l(H) denotes the nilpotence length (Fitting height) of H.)

Proof. By induction on k. If k = 1, then H and K are nilpotent
normal subgroups of G and Fitting's theorem yields that HK is also
nilpotent. Therefore, we may assume k JΞ> 2. Since F(H) char H and
H <\ G so F(H) 0 G. Similarly, F(K) < G. Therefore, F(H)F(K) <\
G. We write:

HKjF(H)F(K) = HF(H)KF(K)jF(H)F(K)

= (HF(K)IF(H)F(K))(KF(H)IF(H)F(K)) .

Since F(H) £ F(H)F(K), HF(K)/F(H)F(K) is a homomorphic image of
HF(K)/F(H). But HF(K)jF(H) = (H/F(H))(F(K)F(H)/F(H)). Here,
l(H/F(H)) = l(H) - 1 ̂  fc - 1, and l(F(H)F(K)/F(H)) = 1, as F(K)
is nilpotent. So by induction l(HF(K)/F(H)) g k - 1. Similarly,
l(KF(H)jF(H)F{K)) £ k - 1.

Now, (*) and induction yield that l(HK/F(H)F(K)) £ k - 1. But
F(H)F(K) £ F(HK), so l(HK/F(HK)) £k-l and, therefore, l(HK) £

If G is a group, we denote by Gp a Sylow p-subgroup of G. Let
d(Gp) and c(Gp) denote the minimal number of generators and the
nilpotence class of Gp respectively.

THEOREM 1.7. Let G be any finite solvable group. Set kp =
mm {d(Gp)9c(Gp)}, for each prime p dividing \G\. If k = ^v\\G\kp,
then l(G) £ k.

Proof. By Hall-Higman's result lp(G) £ kp for each p. So if we
set kλ = Maxpiid {kp}, then lp(G) £ kx for all p. So by Theorem 1.5,
G < HλH2 Hm, where each Hi has a &rtower and π(Hi) = π(G). By
the second part of Theorem 1.5 there are at most kv nonidentity p-
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factors in the k^tower of each Hiy for all p. This means that
ΣPMGI kp — h Now a repeated use of Lemma 1.6 yields that 1{H) fj
k. This in turn gives us l(G) ^ k.

REMARK. If kr = maXpMG, {kp}, and n = the number of distinct
prime divisors of \G\, then it is clear from Theorem 1.7 that l(G) ^
k'n. In particular, if G is an A-group (i.e., has Abelian Sylow
subgroups), then l(G) ^ number of distinct prime divisors of \G\.

2* Sylow tower groups* In this section we give an alternative
proof for Theorem 2.1 below. Two different proofs are already given
to this theorem by J. Thompson [9] and R. Bear [2]. A third proof,
using a result of Gaschϋtz, was suggested to me by Professor J.
Alperin and the work is presented in this section. Later I found
out that a graph-theoretical proof of this theorem was given by T. 0.
Hawkes [6].

THEOREM 2.1. // every 2-generator subgroup of a finite group G
has a Sylow tower, then so does G.

It will be sufficient to prove the following

THEOREM 2.2. // every proper subgroup and every proper homo-
morphic image of a finite solvable group G has a Sylow tower but G
does not, then d(G) = 2.

DEFINITION. A group satisfying the hypothesis of Theorem 2.2
will be called a critical (STG-Critical) group.

We now show that Theorem 2.1 follows from Theorem 2.2.

Suppose Theorem 2.1 is false. Choose G minimal with the property
that every 2-generator subgroup of G has a Sylow tower but G does
not. Then every proper subgroup of G has a Sylow tower by mini-
mality of G. If we set G* = G/ψ(G), then clearly every proper sub-
group of G* has a Sylow tower. Also if 1 < N* <] G*, then since
φ(G*) = 1, N* S Φ(G*) so there is M* < . G* such that N* S M*.
Then

G*/N* = M*N*/N* ^ M*/M* Π N* .

So G*/N* being isomorphic to a homomorphic image of a proper sub-
group of G*, has a Sylow tower. This shows that every proper
homomorphic image of G* also has a Sylow tower, i.e., G* is a criti-
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cal group. If G* is not solvable, then it must be simple. Indeed it
must be minimal simple, as all its proper subgroups being Sylow
tower groups are solvable. But by Thompson's classification of all
minimal simple groups we know that all such groups are generated
by two elements. So in this case we get d(G*) = 2. If G* is solvable,
then by Theorem 2.2 we know that d(G*) = 2. So in any case we
get that

d(G) = d(G*) = 2 .

But this means that G has a Sylow tower since every 2-generator
subgroup of G does by hypothesis. This contradicts the choice of G
and proves our claim.

We therefore begin to prove Theorem 2.2. For the remainder of
this section G will denote a solvable critical group. G has the fol-
lowing additional properties:

( 1 ) G does not have any normal Hall subgroup.
If H were a nontrivial normal Hall subgroup of G, then H and G/H
would have Sylow towers and this implies that G has a Sylow tower.

( 2 ) φ(G) = l.
Otherwise G/ψ(G) has a Sylow tower and then by Theorem 1.2 so
does G.

( 3 ) Z(G) = 1.
If Z{G) > 1, let P ^ Z(G), \P\ = p. Since φ(G) = 1, P has a comple-
ment S in G and since P is central, G = S x P. But S has a Sylow
tower, therefore, so does G.

( 4 ) F(G) = A, x A2 x . . . x Ak9 where A, <\ G and | A, | = pp.
This follows from the fact that in any finite group G, F(G)/φ(G) is
the direct product of Abelian minimal normal subgroups of G/φ(G)
[7, p. 279]. Here φ(G) = 1 and G is solvable.

( 5 ) lp(G) S 1, for all p.
If iPo(G) > 1 for some prime pQ, then by Powell's theorem [3] there
exists a 2-generator subgroup H of G such that lPo(H) > 1. But
W-ff) ^ 1 for all p as H has a Sylow tower.

( 6 ) Lemma (Bear [2]). For each p\\G:G'\ there is a normal
subgroup N of G with |G: JV| = p. Furthermore, N has a unique
Sp-subgroup M which is at the same time a minimal normal subgroup
of G.

Proof (Baer [2]). Since G/Gr is Abelian there is N/G' < G/G'
with I G/G': iV/G' \ = p. So | G: JV| = p. Since iV is a proper subgroup
of G, it must have a Sylow tower and, therefore, possesses a normal
S^-subgroup for some prime q. If q Φ p, then G also has a normal
Sg-subgroup violating (1). So p — q and N has a (unique) normal Sp-
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subgroup M. Clearly M <\ G.
Choose Mo <] G such that Mo £ M. We want to show Mo = M.
Since φ(G) = 1, there is S < G with SMQ = G and S i i M 0 = 1.

By Dedekind identity we get

M - M0(M Π S) .

S has a Sylow tower and so has a normal g-complement T for some
q. If q Φ p, then M0T is a normal g-complement for G, violating (1).
So p = q.

FIGURE 1

Now, M f) S <\S and J l ί f l S i s normalized by Mo as Mo ^ Z{M) (by
minimality of Mo). So M Π S < G. So

(*)

Since T and
have

Π S are normal subgroups of S of coprime order, we

T £ cs(M n s ) ^ C(M n S ) .

So G/C(M Π S) is a p-group But then (*) shows that G induces a
p-group of automorphism in the normal ^-subgroup M p\ S. So it
fixes some element 1 Φ zeM f] S, i.e., zeZ(G). This is a contradic-
tion unless M Π S = 1 in which case we get Mo = M.

This shows that if \G\ = and if Pi\\G: G'|, then G has
Since G has nop?" 1

— p?a minimal normal subgroup A{ with
normal Sylow subgroup this would be the only minimal normal sub-
group of G of order a power of p^ In particular, this shows that
in (4) each At is a S^-subgroup of F(G).

Let {Pl9 P2, , Pn} be a Sylow basis for G and let D be the
So p = forcorresponding system-normalizer. Suppose p\\G:G'\

some i = 1, 2, , n. Let P be the corresponding Sylow subgroup in
the above basis. Set K = OP,(G).

PK/K is a Sp-subgroup of G/K. So by (5), PK/K < G/JBΓ. There-
fore, by Schur-Zassenhaus theorem there is R/K ^ G/K with:

(PK/K){R/K) - G/ϋC and PK f] R = K .



462

So we get

A. FATTAHI

G = PR and PK n R = K .

Let M be the minimal normal subgroup of G obtained in (6). We
have the following diagram:

PK

FIGURE 2

It is clear from this diagram that M ^ MK/K and PK/MK are
the only p-chief factors of G in the chief series obtained by refining
the series 1 < K <\ MK < PK < G.

(7) PK/MK and MK/K are both complemented chief factors.
The complement to PK/MK is N/MK as it can be seen from the
diagram. Since φ{G) — 1 and M <] G, M has a complement if in G,
i.e., there is H < G with

G = HM and 5 n l = 1 .

Now it is clear that if/if is a complement to MK/K (note that since
H is a complement to M, it must contain a Hall p'-subgroup of G
and so H ^ if).

(8) PK/MK is a central and MK/K is an eccentric chief factor
of G.
PK/MK and N/MK are normal subgroups of G/MK of coprime orders,
so they centralize each other. But PK/MK has order p so PK/MK ^
Z(G/MK). This shows that PK/MK is central.

If AfK/jBΓ ^ Z(G/K), then [Mi, G] ^ if. So [M, G] ^ K. But
then [M, G] ^ iΓΠ ikf = 1, i.e., M^ Z(G) = 1, a contradiction. So
MK/K is eccentric.

(9) F(G) n ΰ = l.
Since F(G) — A1 x A2 x x Aft and ^ are all eccentric chief factors
of G, D avoids each Ai and so it avoids every factor in:

1 < A, < ΛA2 < < A,A2 A = F(G) .

It follows that D avoids F(G), i.e., F{G) n i ) = l.
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(10)
Let p\\F(G)\ and let A be a minimal normal subgroup of G of p-
power order. Then G/A has a Sylow tower and so it has normal
^-complement for some prime q. If q Φ p, then G also has a normal
g-complement violating (1). So q = p and if L/A is the normal p-com-
plement of G/A, then \G: L\ = p, i.e., G' ^ L. So p | | G : G'|.

(11) π(F(G))^π(D).
This is clear from the diagram (*) as G/N is a central chief factor
and so D covers it, i.e., p\\D\.

Our final goal is to find all chief factors of G and determine
whether they are complemented, central, or eccentric. We have this
information about those chief factors whose orders are divisible by
prime divisors of \G: G'\. We will show that π(G/G') = π(G). To
establish this we use some of the ideas from Thompson's proof of
Theorem 2.2.

We choose notation so that π(F(G)) = {ply p2, , pk}, k <£ n. For
each Pi,i— 1, 2, , k choose x^Ό with \xt\ = Pi- This can be done
by (11). Let X = (xl9 x2, , xk). Since X <£ D, X is nilpotent. Since
F(G)X ^ G we have:

p?= \G\n^\F(G)X\Pi.

So

\F^)WX\i = \F{G)\9i\X\9i =
\F(G)f]X\ _

Since Pi\\X\, we get that \X\P. = piy i = 1, 2, , k. So X is cyclic
of order pλp2 pk.

(12) x G C(A ) i — 1 2 yfc.
Let p = Pi. Note that since MK/K has a complement in G/K, it
has a complement S/iΓ in Pif/if. But MK/K^ Z(PK/K), as Jlffi/ί <\
G/K and Pif/if is a normal ^-subgroup of G/iL So PK/K has a
central subgroup with a cyclic quotient and is therefore Abelian. It
is actually elementary Abelian. Since PK/K & P, this means that
all S^-subgroups of G are elementary Abelian for i = 1, 2, •••,&.
Since ^ is a p relement so ^ e P< for some S^^subgroup P4 of G. But
Aitί Pi- So P^ = A,- x <#{>, as Xi ί Ai and P< and A< are elementary
Abelian. This proves (12).

(13) G = F(G)X.
Let £Γ = F(G)X. Clearly ^(.EΓ) ^ ^(G). If actually F(H) > F(G),
then F(H) must contain some xim Since i^(iϊ) is nilpotent and
F(G) ^ F( i ί ) so Xi centralizes all p -elements of F(G). But by (12)
Xi also centralizes all ^-elements of F{G). So x,e C(FG)) ^ F{G).
But this cannot happen as F(G) f] D = 1. So ^(G) = F(H). If ^
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is a normal p rsubgroup of H containing xi9 then K ^ F(H) = F(G)
which is not possible, as # { g -FXG). So if has no normal S^-subgroup.
Thus, H has no Sylow tower. So we must have H — G.

Now it is clear from (13) that π(G) = π(F(G)) and this combined
with (10) and (11) gives:

(14) π(G) = π(F(G)) = π(D) = τr(G/G')
This means that the diagram (*) exists for all prime divisors of \G\
and so we know all the chief factors of G. By using the following
formula of Gaschϋtz [5] we can compute the number of different 2-
generator systems of G:

x (i gf*is - 1sr*|e*| l̂) (I sr*lβ - I g ^ l ^ h " 1 ) .

Here, g^, g*2, •••, g*A are the representatives of G-isomorphism
classes of simple G-groups. In each isomorphism class if* there are
at complemented and βi noncomplemented members. ξt is defined by

(0 if G acts trivially on members of &{

(1 otherwise ,

and Ei = endomorphism ring of g v Finally φG(s) is the number of
different s-generator system for G. If we can show that φG(2) > 0,
we are done.

Let g\, g^, , g"w be the eccentric chief factors of order p^"1

and ^ + i , Wn+2, •••, ^2% be the central ones of order p { . We have:

s = 2, h = 2n

OLi = 1, i = 1, 2, , 2n

# = 0 f i = 1,2, . . . , 2 Λ

1 *̂1 = Pί*"1, ί = 1,2, ••-,%; | g ^ | = p 4 , i = n + 1, -- ,2n

fi = 1, i = 1, , n; ξ{ = 0, i = n + 1, , 2^ .

Substituting these in the above formula we get:

ΦG(2) - (pϊ(r i"υ - p r o i p i ^ " " - PΪ 2" 1) (PΪ1"*-" - P " 1)

>Λv\ - I)(PΪ - l) (P2. - l)
r x - i ) (P - 1 -1)

Since r4 ^ 2, this shows that φG(2) > 0 and so G can be generated by
two elements.

3* Minimal-not-Sylow tower groups* In this section we will
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study groups G with the property that every proper subgroup of G
is a Sylow tower group (STG) but G is not. We call such groups
minimal-not-STG. Minimal-not-nilpotent groups are known to be
solvable (Schmidt) and their structure is completely known. If G is
a minimal-not-nilpotent group, then |G| = paq\ p Φ q; P<\G where
P is a Sylow ^-subgroup of G; ^-subgroups of G are cyclic. A group
G is called p-nilpotent if it has a normal p-complement. Itδ showed
that if G is a minimal-not-p-nilpotent group, then every proper sub-
group of G is actually nilpotent and so G has the above structure.

THEOREM 3.1. Let < be a total ordering on the set of all primes.
Suppose that every proper subgroup of G is a STG of type < but
G is not.
Then: (1) G is solvable.

( 2) Indeed, G is a minimal-not-nilpotent group.
(This theorem has already been proved by John S. Rose in "Finite
Groups with Prescribed Sylow Groups79: London Math, Soc, 3) 16
(1966), 588.)

Proof. Let \G\ = Π U Vl1 where pι<p2< <Pn', n€ ^ 1. Since
every proper subgroup of G is a STG of this type so every proper
subgroup of G is pn-nilpotent. If G is also pw-nilpotent, then there
is a K<] G with pnJf\K\ and \G/K\ = pt. Since K < G, so K is a
STG of type < and, therefore, so is G. Hence G is not p^-nilpotent,
i.e., G is a minimal-not-^vnilpotent group and, therefore, by Itδ's
theorem it is a minimal-not-nilpotent group.

We consider now a more general situation. Suppose every proper
subgroup of G is a STG of some type (not necessarily all of the
same type), but G is not. Then what can we say about G? It turns
out that in this case G even does not have to be solvable. For
example, the alternating group A5 has this property.

In the proof of Theorem 2.2 we obtained some properties of criti-
cal groups. Our main goal in proving that theorem was to show
that critical groups are generated by two elements. One can actually
determine all such groups from the information obtained about them
in the proof of Theorem 2.2 and some more work. This was done by
Thompson and more recently by Hawkes, and the result is that if G is
a solvable critical group, then G is one of the following groups:

(1) \G\ = paqb, G has a unique minimal normal subgroup F(G)
and G/F(G) is a minimal-not-nilpotent group.

(2 ) G=U1x U2x x Un, where U{ - <&i>A4+1, i = 1, 2, , n
with A, <j G, \Ai\ = prrγ and \x,\ = pi and \G\ = Π?=i Pί*.

THEOREM 3.2. Let G be a minimal-not-STG. If G* = G/ψ(G),
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then G* is one of the following groups:
(a) groups (1) or (2) above.
(b) PSL(2, p), p > 3, p2 - 1 & 0 (5) and p2 - 1 Ξ£ 0 (16).
(c) PSL(2, 2q), q a prime.
(d) PSL(2, 3g), q odd prime.
(e) &(#), q = 2P, p odd prime.

Proof. Case 1. G is solvable.
In this case G* is solvable and since Φ(G*) = 1 so every proper

homomorphic image of G* is a STG. So G* is a solvable critical
group and, therefore, is one of the groups (1) or (2).

Case 2. G is not solvable.
In this case G* must be simple and since all proper subgroups

of G* are solvable, so G* is a minimal simple group and is, therefore,
one of the following groups:

( i ) PSL(2, p), p > 3, p2 - 1 m 0(5).
(ii) PSL(2, 2q), q any prime.
(iii) PSL(2, 3*), q odd prime.
(iv) PSL(3, 3).
(v) Sz(q), q = 2P, p odd prime.

However, not all of these are minimal-not-STG's, e.g., PSL(2, 7)
has a subgroup isomorphic to the symmetric group Σ4 on four letters
and so it has a proper subgroup which has no Sylow tower. In order
to determine which of these groups are actually minimal-not-STG's
we need the following theorem of Dickson (cf. [7], p. 213):

THEOREM (Dickson). The group PSL(2, pf) has only the following
subgroups:

(a) elementary Abelian.
(b) cyclic groups of order z, where z\((pf±l)/k), k = (pf — 1, 2).
(c) dihedral groups of order 2z, z as above.
(d) A4 for p > 2 or p = 2 and even f.
(e) semi-direct product of an elementary Abelian p-group of

order pm by a cyclic group of order t, where t\pm — 1.
(f) Σ4 if and only if p2f - 1 = 0(16).
(g) A5 if and only if p — 5 or p2f — 1 = 0(5).
(h) groups PSL(2, pm) for m\f and PGL(2, pm) for 2m\f.

Among these only (f), (g), and (h) do not have Sylow towers. So
we check the list (i)-(iii) of minimal simple groups for these conditions.
None of them can have subgroups of type (g) and (h) as they are
minimal simple. So we only have to check the condition (f). We
get: PSL(2, p), p > 3, p2 - 1 φ 0(5) is a minimal-not-STG if and only
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if p2 - 1 Ξ£ 0(16).
PSL(2, 2q), q any prime is a minimal-not-STG, since 2Q-1^0(16).
Let G = PSL(2, 3*), Q odd prime. Then

p2* - 1 = 32* - 1 = 9* - 1 = (9 - l)(9g-1 + 9*-2 + . . . + 9 + 1)

- 8 ( 9 ^ + 9*~2 + + 9 + 1) .

The number of terms in the second factor on the right-hand side is
q and, therefore, is odd. Since each summand in that factor is also
odd, we get that p2f - 1 =£ 0(16) and so PSL(2, 3?) is a minimal-not-STG.

Claim: PSL(3, 3) has a subgroup isomorphic to Σt.
Since the only third root of 1 in GF(3) is 1, so

PSL(3, 3) w SL(3, 3) .

Let V be a 3-dimensional vector space over K = GP(3) with basis
{aϊy a2ί a3}. We set:

H - {J, diag (2, 2, 1), diag (2, 1, 2), diag (1, 2, 2)} .

Clearly, H is an Abelian subgroup of order 4 of SL(3, 3) and is a four
group. Define N by:

2, if σe Σ3 — A3

It can easily be seen that iVis actually a subgroup of SL(3, 3), isomor-
phic to Σz. It consists of the following matrices:

So we have H, N ^ PSL(3, 3) = G. If geN, then atg = eaσ{i). Let
ΛG H, SO /t = diag (bL, b2, 63), 6̂  ^ 0. We have

a W ) ^ = ttoti){g~lhg) = ε-'a^hg) = £-%{(*&) = 6fα:σ(<), i = 1, 2, 3 .

So ^ is diagonal with determinant 1 (= the determinant of h), i.e.,
hδ e H. So N ^ NG(H). Hence, L = NH is a subgroup of G isomor-
phic to ^ and the claim is established. This shows that PSL(3, 3) is
not a minimal-not-STG.

Finally, we consider the Suzuki groups Sz(q), q = 2P, p odd prime.
These are simple groups of order q2(q — l)(<f + 1) and Suzuki has
shown that they can only have the following subgroups [8]:
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(a) Frobenius groups H of order q\q - 1), H = QK, Q<\H,Qe
Sylff(ff), # cylic of order q - 1.

(b) dihedral groups of order g(g — 1).
(c) cyclic groups Aif i = 1, 2 of orders g ± r + 1, where r2 = 2q.
(d) 5, = iSΓ(Λ), i = 1, 2 of orders 4(? ± r + 1).
(e) JSS(S), where q is a power of s.
But (e) cannot happen since we are considering minimal simple

groups. The groups of type (a), (b), and (c) are clearly STG's. Since

= q\q - l)(q2 + 1) = q\q - W + 1 + 2q - 2q)

= Q\<1 ~ 1)[(? + I)2 ~ 2g]
= q\q - l)(q + 1 + r)(q + 1 - r) ,

and since q and r are powers of 2, so Ai are Hall subgroups of G.
So they are Hall subgroups of Bi. This means each B{ is a STG
being the extension of a cyclic group by an Abelian group. So all
subgroups of Sz(q) are STG's and we get that Sz(q), q = 2P, p odd
prime is a minimal-not-STG. This completes the proof of Theorem
3.2.

CHAPTER II

On Generalized Sylow Tower Groups of Derr

1* Saturation of the formation of all generalized Sylow
tower groups of a given complexion. Generalized Sylow Tower
Groups (GSTG) were introduced by J. Derr in [4]. If G is a Sylow
tower Group (STG), say of type Pi < p2 < < 3>Λ, then there
is a set {GPί, GH, *- ,GpJ of Sylow subgroups of G such that if
i > j , then Gp. ^ N(GPj). Derr generalizes this property of STG's
to get:

DEFINITION. A group G is a GSTG if there is a complete set
{Gp\p\\G\} of Sylow subgroups of G satisfying:

(N): for p Φ q, either Gp ^ N(Gq) or Gq ^ N(GP).
Now, if G is a GSTG and p and q are two distinct primes such

that, say, Gp ^ N(Gq), we write pRq. This defines a relation R on
the set of all primes and we say that G is a GSTG of complexion
i2. It can be seen that subgroups and homomorphic images of GSTG's
are also GSTG's and, in fact, that the class of all GSTG's of a given
complexion J? is a formation [4]. We will prove, in this section,
that this formation is actually saturated (Theorem 1.2).

THEOREM 1.1. If G is a GSTG, then lp(G) ^ 1, for all primes p.
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Proof. Let G be a minimal counter-example. So G is a GSTG
and there is a prime g such that lq{G) > 1. Furthermore, if H is a
GSTG and \H\ <\G\, then lp(H) ^ 1, for all p. G has the following
properties:

( 1 ) G has a unique minimal normal subgroup N.
If Nt and iV2 are two distinct minimal normal subgroups of G, then
N1ΠN2 = 1. Since G/ΛΓ,, i = 1, 2 are GSTG's of smaller orders than
| G | , so ^(G/JV.) ^ 1, i = 1, 2. Hence,

Z,(G) - UG/N, n iSΓ2) = Max {WG/NJ, ^(G/iV2)} ^ 1 ,

a contradiction. This proves (1).
( 2 ) φ(G) = l.

This follows from the minimality of G and the fact that lq(G) —
lq(G/φ(G)) (cf. [7], p. 689).

( 3 ) O,,(G) = 1, N is a g-group and JV = C(iV).
If Oq.(G) > 1, then 1 < lg(G) = lq{GIOq,{G)) rg 1, a contradiction. So
O^(G) = l Since G is solvable, |ΛΓ| is power of some prime, so N
must be a g-group. It follows from (2) that there is a maximal sub-
group M of G such that N ^ M, and so ikί is a complement for AT
in G. So

G - MN , M Π 2V - 1 .

Since iV is Abelian, N ^ C(iV). So C(N) = (C(N) Π M)N, by
Dedekind identity. Since C(N) Π Λf is normal in M and is centralized
by N, C(N) Π Λf < G. Thus, if C(iV) Π M > 1 , then by (1), JV g
C(ΛΓ) Π l . So ΛΓ ̂  M, a contradiction. Hence, C(iNT) Π Λf = 1 and,
therefore, C(ΛΓ) = AT.

( 4 ) Contradiction.
Let {Gp\p\\G\} be a complete set of Sylow subgroups of G satisfying
the property (AT). If for all primes p, p Φ q we have Gp ^ N(Gq), then
Gq<\G and so lq(G) = 1, a contradiction. So there is a prime p, p Φ
q such that Gp S N{Gq). But then by (N) we have Gβ S N(GP). Now,
N ^ Gq ^ N(GP). So JV and Gp are two normal subgroups of N(GP)
of coprime orders. So Gp ^ C(N) — iV. But this cannot happen as N
is a g-group and p Φ q.

THEOREM 1.2. 1/ G/Φ(G) is a GSTG of a given complexion R,
then so is G.

Proof. Let G be a minimal counter example. We get:
(1) G has a unique minimal normal subgroup N,\N\ = r*, r a

prime.
If JVί, i = 1, 2 are two distinct minimal normal subgroups of G, then
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N, n iV2 - 1. Since ΦiG)^/^ ^ φ(G/Nt), we get:
G/NJφiG/Ni) is a homomorphic image of GINijφ{G)NiINi P* G/Φ(G)Ni9

and this in turn is a homomorphic image of G/Φ(G) which is a GSTG
of complexion R. So G/NS(G/Ni), i = l,2, are GSTG's of complexion
R. So by minimality of G we get that G/Ni9 i = 1, 2 are GSTG's of
complexion JS But then so is G ̂  G/iVΊ Π JV2, a contradition. This
proves (1). Let \N\ = r* for some prime r. We have N ^ ^((?), since
φ(G) > 1 and JV is the unique minimal normal subgroup of G.

( 2 ) G has a normal Sylow r-subgroup.
It follows from (1) that Or,{G) = 1, so Or,r(G) = Or{G). On the other
hand, since G/Φ(G) is a GSTG, Theorem 1.1 gives lr(G/φ(G)) = 1. So
lr(G) — 1. This shows that Or(G) is the normal Sr-subgroup of G.

( 3 ) Contradiction.
By Schur-Zassenhaus, G — RK, R n K = 1, where i2 is the Sr-subgroup
of (?. Since K & GjR, by minimality of G, i£ is a GSTG of complexion
JB Let {ΛΓPIPI |G|} be a complete set of Sylow subgroups of satisfying
(N). Then

{R,KP\P\\K\}

is a complete set of Sylow subgroups of G and clearly G is a GSTG.
To prove it has complexion R, we only need to show that if in G/φ(G),
in addition to pRr (which must hold), it is also true that rRp for
some p Φ r then a similar relation holds in G. The assumption on
G/φ(G) implies that in addition to

KPφ(G)/φ(G) rg NGlφ{G){Rlφ{G)) ,

we also have

R/Φ(G) £ NGlφ(G)(Kpφ(G)/φ(G)) .

But then R/Φ(G) and Kpφ(G)/φ(G) centralize each other, i.e., [R,
Kpφ(G)\ g φ(G), and so [R, Kp] £ φ(G). We show ψ(G) = φ{R):

Note that φ(R) = Φ(F(G)) ^ Φ(G). Since K acts on the elementary
abelian r-group R/Φ(R) and (|ϋΓ|, r) = 1, by Maschke's theorem R/Φ(R)
is a completely reducible if-module; and since φ(G)/φ(R) is a proper
X-submodule of R/φ(R) we get that φ(G) — φ{R). This yields
[R, Kp] g ^(JB). Since Kp acts on i2 and (\KP\, \R\) = 1, we get i2 =
[JB, £ΓJCΛ(JΓ,) - *(Λ)CΛ(lίΓ,).

So i2 = CR{KP) and, therefore, [i2, iΓJ = 1. From this it is obvious
that R ^ Nβ(Kp), i.e., rRp holds in (?.

We have shown that G is GSTG of complexion R, contradicting
our assumption.

2* Structure of GSTG's* In this section we find a way of con-
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structing GSTG's of a given complexion and study the groups which
are GSTG's but not STG's. In particular, we find all such groups
whose orders are divisible by precisely three distinct primes.

Let R be a fixed relation on the set of all primes. We denote
by 5^* the class of all GSTG's of complexion R. Let Sf be the
smallest class of groups containing all prime-power groups such that:

(1) £f is closed under subdirect products (i.e., subgroups of
direct products).

(2) If He S? is a p-group and KeS^ is a p'-group and qRp
for all qeπ(K), then the semi-direct product group [H]Ke.&

THEOREM 2.1. Sf = £S*.

Proof. £f* contains all prime-power groups and satisfies the con-
ditions (1) and (2); and since Sf is the smallest class with these
properties, we get that Sf S ^ * .

To prove the converse, suppose by way of contradiction that
^ * g £f. Choose G minimal with the property that G e y * , but
Gt&

If JVΊ and N2 are two distinct minimal normal subgroups of G, then
N.f] N2 = 1. GjNi, i = 1, 2 are GSTG's and so by minimality of G,
G/Ni e £f i = 1, 2. So G e St> by (1). Hence, G has a unique minimal
normal subgroup N with \N\ = p* and so OP,{G) = 1. Since lp(G) ^
1 by Theorem 1.1, so G has a normal S^-subgroup P But then by
Schur-Zassenhaus,

G = PK , P n K = l , P<]G .

Now KeS^*, so by minimality of G,KeS^ and since Pe,9*
and qRp for all qeπ(K), so by (2), G = [P]Ke£^ a contradiction.
So ^ * s SI and the proof of Theorem 2.1 is complete.

One may ask if there are GSTG's which are not STG's; and if so,
is it possible to obtain all such GSTG's from STG's with certain
operations. Clearly, if the order of a GSTG is divisible by only two
distinct primes, then it is also a STG. In Theorem 2.3 we will find
all GSTG's whose orders are divisible by precisely 3 distinct primes
and are not STG's.

DEFINITION. A group X is called a G-group if it is a GSTG but
not a STG. We say X is a (?w-group if X is a G-group and its order
is divisible by exactly n distinct primes.

LEMMA 2.2. Suppose the group G is of the form [[R]Q]P, where
P, Q, and R are Sp, Sg, and Sr-subgroups of G respectively. Suppose,
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in addition, that R ^ N(P). Then G is contained in the direct product
of groups of the form [QJPx and [RX\Q2 where P;, Qif and R{ are p,
q, and r-groups respectively.

Proof. Let G be a minimal counter-example. If M, N <| G and
MΦ N, then M Π N = 1. Since G/M and G/N satisfy the hypothesis,
we get

G/M ^H,x Kx and G/N ^ H2 x K2

where Hi are of the form [Qά]P5 and Kt are of the form [Rk]Qk. But
then since G g G/ikf x G/N, we get that G also has the same form,
a contradiction. So G has a unique minimal normal subgroup N. N
must be an r-group as G has a normal Sr-subgroup. Since R and P
normalize each other, they must centralize each other and so we have
[R, P] = 1. Also, since [R, Q, P] ^ [Λ, P] = 1 and [P, i2, Q] = 1, by
3-subgroup lemma, we get that [Q, P, 22] = 1, i.e., [Q, P] centralizes
R. Hence, [Q, P] is normalized by P, Q, and J? and so [Q, P] <\ G. But
[Q, P] is a g-group and Oq(G) = 1. So [Q, P] = 1. Thus, P is centralized
by R and Q and we have

G = PxRQ = Px [R]Q .

This contradicts the assumption that G was a counter-example.

THEOREM 2.3. If G is a G3-group9 then G is isomorphic to a
subgroup of H = [Qi]P2 x [iϋi]Q2 x [Pi]iϋ25 where P{, Qi9 and Rt are p,
q, and r-groups respectively.

Proof. G cannot have a normal Sylow subgroup. Because if it
did, the quotient being a GSTG with order divisible by exactly two
distinct primes would have to be a STG and this forces G to be a
STG. So if p, q, and r are the three distinct prime divisors of G,
then G must have complexion R, where

pRq , qRr , and rRp .

By Theorem 2.1 G is obtained from prime-power groups by
applying the following operations:

(1) taking subgroups of direct products;
(2) extension of a p-group by a GSTG H of complexion R,

where p g π(H).
So in order to construct our group G we start with prime-power

groups P^ Qi, and R{ and apply (1) first. We get a nilpotent group
H. If I fl" I is divisible by p, q, and r, then we cannot apply (2) to
it any more and we must get a nilpotent group which is not the case.
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So we may assume that | H\ is divisible by 2 primes, i.e., H is one of
the following groups

(a) P, x Q2 (b) Q, x R2 (c) R, x P 2 .

Applying (2) to these, we get:

(a) [R^P, x Q2) (b) [PJίQ, x i?2) (c) [Q8](Bi x P«)

None of these could be our group G, as they each have a normal
Sylow subgroup. If these were to be constituents of G, they must
be GSTG's of complexion R and so we have additional properties:

So the group in (a) satisfies the hypothesis of Lemma 2.2. The
groups in (b) and (c) satisfy similar hypothesis; and since we can
now only apply (1) to (a), (b), and (c), Lemma 2.2 shows that G must
be of the required form.

We could start with the prime-power group Pi9 Qit and Ri and
apply (2) first. We get the following groups:

Applying (1) to these yields a group of the required form. If
we apply (2) once more to (*), we get:

As before, each of these groups has a normal Sylow subgroup
and, hence, could not be our group G. If they were constituents of
G, we must have

Therefore, these groups satisfy Lemma 2.2, and so G must have
the required form.

We have considered all the possibilities and since | G | is divisible
by only three distinct primes, this process terminates here and the
theorem is proved.

3* Minimal-not-GSTG's and critical groups* In section three
of Chapter I we saw that if every proper subgroup of a group G is
a STG of the same type, but G is not, then G must be solvable and,
indeed, it has to be a minimal-not-nilpotent group. The similar state-
ment is not true for GSTG's, i.e., if every proper subgroup of a
group G is a GSTG of the same complexion, but G is not, then G
does not have to be solvable (Proposition 3.1).
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DEFINITION, G is a minimal-not-GSTG if every proper subgroup
of G is a GSTG but G is not. If every proper subgroup of G is a
GSTG of the same complexion R but G is not, we say that G is a
minimal-not-R-GSTG. Here 22 is a fixed relation on the set of primes.

PROPOSITION 3.1. G = PSL(2, 27) is α non-solvable minimal-not-
R-GSTG, where R is the following relation:

2R7, 2R1S, SR2, UR3, and pRq

for p, q primes other than 2, 3, 7, and 13.

Proof. G is a minimal simple group of order

27 x 26 x 28 = 2

2 x 33 x 7 x 13 ,
Δ

and as we saw in section three of Chapter I, it can only have the
following subgroups:

1. elementary Abelian.
2. cyclic groups of order z, where z\(27 ± l)/2 = 13 or 14.
3. dihedral groups of order 2z, z as above.
4. A,.
5. semi-direct product of an elementary Abelian 3-group of order

3m by a cyclic group of order t, where t\(27 — 1).
The proper subgroups of types 1, 2, 3, and 4 are clearly GSTG's

of complexion R.

Claim. G does not have a subgroup which is the semi-direct
product of an elementary Abelian 3-group by an element of order 2.

If it did, it would have a subgroup isomorphic to Σzy i.e., G
would have a subgroup H = (x, y\x2 = yz = 1, y* = y~λ). y is a
3-element so yeP, some Sylow 3-subgroup of G. But then 1 Φ yx —
y-16 P. S o U f e P n P*. But distinct ^-subgroups of PSL(2, pf)
have trivial intersections [7, p. 191]. So P — P% i.e., xeN(P). But
I iV(P) I = 13 x 27, an odd number. This establishes the claim.

The only other possibility for a proper subgroup of G is the semi-
direct product of an elementary Abelian 3-subgroup by an element of
order 13, which is a GSTG of complexion R, as 13iϋ3.

PROPOSITION 3.2. The groups PSL(2, 3g), q odd prime, are mini-
mal-not-R-GSTG's, where the relation R is defined as follows:

2Rp, all primes p with p Φ 3

ri23, all primes r with r | (3g — 1) and r Φ 2
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sRt, all primes s and t other than 2 and 3.

Proof. Again, looking at the list of subgroups of PSL(2, 3g),
the dihedral, cyclic, and elementary Abelian subgroups are GSTG's
of complexion R, and so is A±. For the same reason as before,
PSL(2, Sq) has no subgroups isomorphic to Σ3 and, therefore, the only
other possibility for a subgroup of PSL(2, 39) is the semi-direct product
of an elementary Abelian 3-group by a cyclic group of order t, where
t\Sq — 1 and t is odd. These type of subgroups are clearly GSTG's
of complexion R. This completes the proof of the proposition.

DEFINITION. G is called R-critίcal, R a fixed relation on the set
of all primes, if every proper subgroup and every proper homomor-
phic image of G is a GSTG of complexion R but G is not.

THEOREM 3.3. If G is a non-solvable R-critical group, then G is
isomorphic to PSL(2, 3q), q odd prime and R is the relation defined
in Proposition 3.2.

Proof. Since every proper subgroup and homomorphic image of
G is solvable and G is not, so G must be simple. In fact, G is a
minimal simple group and so is one of the following groups:

1. PSL(2, p), p > 3, p2 - 1 ξέ 0 (mod 5)
2. PSL(2, 2g), q any prime
3. PSL(2, 3q), q odd prime
4. PSL(3, 3)
5. Sz(2p), p odd prime.
We claim:
(a) G cannot be PSL(2, p), p > 3, p2 - 1 & 0 (mod 5).

Because this group has a subgroup isomorphic to A^. It also has
dihedral subgroups of order p — 1 and p + 1. Since p > 3, one of
these numbers is divisible by 3 and thus the corresponding dihedral
group has a subgroup isomorphic to J£3 This means PSL(2, p), p > 3
has subgroups isomorphic to A4 and Σ3 which are GSTG's of opposite
complexion.

(b) G cannot be PSL(2, 2?), g a prime.
The normalizer of a £2-subgroup P of PSL(2, 2q) is the semi-direct
product of P by a cyclic group of order 2q — 1. Let r be a prime
divisor of 2q — 1. Then N(P) has a subgroup which is the semi-
direct product of P by <r>. On the other hand, PSL(2, 2q) has a
dihedral subgroup of order 2(2g — 1). So it has a dihedral subgroup
of order 2r. This shows that PSL(2, 2q) has two subgroups which
are GSTG's of opposite complexion.

(c) G cannot be PSL(3, 3).
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As we saw before, PSL(3, 3) has a subgroup isomorphic to Σ4 which
is not a GSTG.

(d) G cannot be Sz(q), q = 2g, p odd prime.
Sz(q) has a subgroup H of order qz(q — 1) which is a Frobenius group
with normal >$2-subgroup of order q2. Let r be a prime divisor of
q — 1. Then H has a subgroup which is the semi-direct product of
S2-subgroup of H with an element of order r. On the other hand,
Sz(q) has a dihedral subgroup of order 2(q — 1) and thus one of order
2r. So Sz(q) has two subgroups which are GSTG's of opposite com-
plexion.

So the only possibility for G is PSL(2? 3g), q odd prime, which by
Proposition 3.2 is a minimal-not-iϋ-GSTG and since it is simple, also
an i?-critical group.

THEOREM 3.4. If G is an R-critίcal group, then it must be one
of the following groups:

( 1 ) PSL(2, 3g), q odd prime.
( 2 ) \G\ = paqh, indeed, G is a minimal-not-nilpotent group.

Proof. If G is nonsolvable, then by Theorem 3.3, G is isomorphic
to PSL(2, 3g), q odd prime. So we may assume that G is solvable.
Let {Gp.\i = 1, 2, , r} be a Sylow basis for G. If r > 2, then Gp.GPj,
i Φ j is a proper subgroup of G and so is a GSTG of complexion R.
Since this is true for all i and j , it follows that G is a GSTG of
complexion R. So r = 2 and | G | — paqb.

Say the relation R is so that pRq. Since all proper subgroups
of G are GSTG's of complexion R, so they are STG's whose orders
are divisible by p and q only and they all have a normal p-comple-
ment. So by Itδ's theorem either G is p-nilpotent or it is a minimal-
not-nilpotent group. But G cannot be p-nilpotent, otherwise it would
be a GSTG of complexion R. This completes the proof of this theorem.

THEOREM 3.5. If G is a minίmal-not-R-GSTG, then G* - G/φ(G)
is one of the groups (1) or (2) in Theorem 3.4.

Proof. Every proper subgroup of G* being a homomorphic image
of a proper subgroup of G is a GSTG of complexion R. If 1 Φ N* <]
G*, then since JV* S Φ{G*) = 1, so there is AP < G* so that JV* ^
M*. So (?* = N*M*. But then

G*/iV* - M*N*/N* ** M*/M* Π iV* .

Jkf* is a GSTG of complexion R and so G*/N* is also one such.
This shows that every proper homomorphic image of G* is a GSTG
of complexion R. Clearly, G* is not a GSTG, otherwise G would be
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one also. So G* is an iϋ-critical group and the result follows from
Theorem 3.4.

DEFINITION. G is a critical group (more precisely, GSTG-critical)
if every proper subgroup and every proper homomorphic image of G
is a GSTG, but G is not. Notice that here we do not require all the
subgroups and homomorphic images be of the same complexion.

THEOREM 3.6. Let G be a critical group. Then G is one of the
following groups:

(a) \G\ = paq\ G has a unique minimal normal subgroup F(G)
and G/F(G) is a minimal-not-nilpotent group.

(b) G = U1x U2, where U^A^x^ and U2=A2(x1}, \ A1\=pr~1, \A2\~
qs~\ o(xj) = p, o(x2) — q, A{ are minimal normal subgroups of G, and
\G\ = prqs.

(c) PSL(2, p),p>3,p*-l^ 0(5), p2 - 1 =£ 0(16).
(d) PSL(2, 2q), q any prime.
(e) PSL{2, 3*), q odd prime.
(f) Sz(q), q = 2P, p odd prime.

Proof. If G is solvable, as in the proof of Theorem 3.4, we get
that order of G must be divisible by precisely two distinct primes p
and q. Since every proper subgroup of G is a GSTG whose order is
divisible by 2 primes so they are all STG's. Similarly, all proper
homomorphic images of G are STG's. This means that G is a critical
group with respect to STG's. So G is one of groups (a) or (b), by
Theorem 3.2 of Chapter I.

If G is not solvable, then it must be minimal simple, and we
have seen in the analysis of critical groups for STG's that G must
be one of the groups (c)—(f).

Finally, if G is a minimal-not-GSTG, then G* = G/φ(G) is a critical
group and so we get the following:

THEOREM 3.7. If G is a minimal-not-GSTG, G* = G/ψ(G) is one
of the groups (a)—(/) in Theorem 3.6.

Theorem 3.8 gives us a final result about GSTG's.

THEOREM 3.8. If every 2-generator subgroup of G is a GSTG
(not necessarily all of the same complexion), then so is G.

Proof. Let G be a minimal counter-example. If H is a proper
subgroup of G, every 2-generator subgroup of H is a GSTG. So by
minimality of G, H is a GSTG. So G is a minimal-not-GSTG. By
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Theorem 3.7, GJφ(G) is one of the groups (a)—(f) in 3.6. But all these
groups can be generated by 2 elements. So d(G/φ(G)) = 2, and thus
d(G) — 2. But every 2-generator subgroup of G is a GSTG. Contradic-
tion.
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