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SOME RESULTS ON
LACUNARY WALSH SERIES

JOHN COURY

It is known that if a lacunary trigonometric series con-
verges to 0 on a set of positive measure, then the series
vanishes identically. In the present paper, the following
analogue for the Walsh system is proved: a lacunary Walsh
series which converges to 0 almost everywhere is identically
zero.

In particular, let S(x) = ΣΓ ckwnk (x) be a lacunary Walsh series,
with nk+1/nk ^ q > 1 for each k. We prove that if S(x) converges to
0 on a set of positive measure, or on a set of the second category
having the property of Baire, then the series is a finite sum. If S(x)
converges to 0 on a set of sufficiently large measure (the measure
depending only on the degree of lacunarity q), then S(x) is identically
zero. Hence we prove that the only lacunary Walsh series converg-
ing to 0 almost everywhere is the identically zero series. Finally,
sufficient conditions are given for a set to be a set of uniqueness for
lacunary Walsh series.

1. Preliminaries* If xe[0, 1[ has the dyadic development
Σ~=i χk2~k, where xk is 0 or 1, then the (k — l)st Rademacher function
rk_γ evaluated at x has the value ( —1)**. (For dyadic rationale in
[0, 1[, which have two such expansions, we agree to take the finite
development.) If we write a positive integer n as 2%ί + 2n2 + + 2%
where nx > n2 > > nv ^ 0, then the nth Walsh function is given by
wn = rnι r%2 τnυ (following Paley's modification). Define wQ(x) = 1;

then the functions {wn}™=0 form a complete orthonormal set on [0, 1[.

For n 2̂  1, wn is plainly discontinuous.

Fine [2] has shown that the Walsh functions may be identified

with the full character group {wt} of 2ω, where 2W denotes the count-

able product of the two-element group {0, 1}. For x = (xu x2, •••) in

2ω, define wZ(x) = rZ^x) rtv{x)> where n = 2%ι + 2%v and

r?-i(x) = ( — 1)**. To simplify notation, we shall suppose henceforth
that rϊ-^x) = (-l)**-i, where k ^ 2.

oo

Let φ(x) = Σ xk2~k, where x — (xly x2, •) e 2ω. Then φ(x) is a

continuous measure-preserving map of 2ω onto [0, 1[ but is not in-
jective: a dyadic rational in [0, 1[ is the image of two points in 2ω.
If J^ denotes the set of sequences in 2<0 that are eventually 1, then
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Φ(x) is one-to-one on the complement of <^~ and φ(x) maps ^~ onto
the dyadic rationale of [0,1[. This * exceptional' set &* corresponds
to the infinite expansion of dyadic rationale; &~ is plainly countable
and hence has Haar measure O

With a Walsh series Σ cnwn(x) on [0,1[, we may associate the
corresponding 'Walsh' series Σ c»wί(x) on 2ω, where JC is such that
Φ(x) = x. Clearly, if we neglect the points of ^ 7 the former series
converges to a value c when and only when the latter series also
converges to c.

Thus, since J^~ is of the first category and has Haar measure
zero in 2ω, it suffices to prove the theorems stated in the introduction
on the group 2ω, using lacunary series of the form S*(x) = Σ ckWtk{x)
The advantage is that the functions wt are continuous with respect
to the usual (product) topology of 2ω; however, all of the results of
§§2 and 3 are valid for lacunary Walsh series defined on the interval
[0,1[. Henceforth we write S(x) for S*(x) and wn for w*.

2* The main results* A Walsh series S(x) = Σ~=i β*wWJb(Λr) is
called q-lacunary if nk+1/nk Ξ> q > 1 for all k, where q is the supremum
of all such numbers.

LEMMA, Let S(x) be a q-lacunary Walsh series, with q Ξ> 2.
Suppose that S(x) converges to 0 (or is constant) on a set E of Haar
measure exceeding 1/2. Then S(x) vanishes identically.

Proof. Since q ^ 2, each nk contains a power of 2 greater than
each power of 2 in nk_x. Thus the series S(x) is simply a series
Σc*-3ζfe> where the Xk are independent random variables of the Bernoulli
type. This latter series may in turn be viewed as a Rademacher
series R(x) = ΣϊU <Wb(*) Thus, as far as measure is concerned, the
series R(x) and S(x) have the same properties, and so it suffices to
prove the lemma for Rademacher series.

For an arbitrary positive integer N, let uN denote the point in
2ω with entry 1 in the iVth coordinate and 0's elsewhere. Since adding
uN to a point JC e 2ω affects only the JVth coordinate of JC, it follows
that rk{x + uN) = rk{x) for every k Φ N, and rN{x + uN) = —rN(x).

Let μ denote (normalized) Haar measure on 2ω. Since μ{E) > 1/2,
the set E f) (E + uN) has positive measure for every N, where
E + uN = {JC + uN: x 6 E). Thus there exists z e E such that z + uNe E.
If Rn denotes the nth. partial sum of R, we have

Rn(z + uN) - Rn{z) = 0 for n < N ,

Rn{z + uN) - Rn(z) = -2c^r^(z) for n^N .

Passing to the limit as n—>°o, we obtain — 2cNrN(z) = 0, whence
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cN = 0. Since N was arbitrary, we conclude that R(x) vanishes
identically.

It is well-known (see, for example, [1, vol. II, p. 233]) that for
a given q > 1, any lacunary sequence of integers can be written as
the finite union of pairwise disjoint lacunary subsequences each of
whose degree of lacunarity is at least q. The least number of g-lacunary
subseries, with q Ξ> 2, into which a given lacunary series can be
partitioned will be called the index of 2-lacunarity of the series. We
now generalize the result of the lemma to arbitrary lacunary Walsh
series.

THEOREM 1. Let S(x) be a lacunary Walsh series, and let M
denote its index of 2-lacunarity. Suppose that S(x) converges to 0 (or is
constant) on a set E with μ(E) > 1 — 1J2M. Then S(x) is identically zero.

Proof. By induction on M. For M — 1, the result follows from
the lemma. Thus assume the theorem is true for an index M — 1;
write S(x) = Σi=i 5*0*0, where 5*0*0 = ^Σiΐ=iCitkwn.tk(x) and for each
fixed i the sequence (nitk) is g-lacunary with q }> 2.

For a positive integer N, write N = 2Ni + ••• + 2Nv

9 with
N, > N2 > . . . > Nv ^ 0. Then for x e 2 ω , we shall say that the
coordinates of x which "correspond to N" are the iV t̂h entries,

% — ±, Δ, , V.

We may suppose that nM>1 < nlΛ. Since n1Λ has a power of 2 that
nMΛ does not, choose zι for nuι so that in those coordinates of zL

corresponding to nMΛ there are an odd number of l 's, and in the
coordinates corresponding to every nlfk, k >̂ 1, there are an even
number of l ' s . For arbitrary xe2M, we have

S(x + O - S(x) = Σ CiAwnuk(zi) - l]wnitk(x)

+ Σ Σ ci)k[wnitk(x + z) - wn.Jx)]

w^zO - l]wn.)k(x) ,
M oo

2 J 2-ί(

since ^ W l ^s^) = 1 for every k ^ 1. The left-side of the equation is 0
on the set E Π (E + z,); since μ(E Γ\ (E + z,)) > 1 - 1/2*-1, it follows
from the induction hypothesis that cijk[wni9k{z^ — 1] = 0 for each i >̂ 2
and all Λ. In particular, taking i — M and jfc = 1, we have —2cMfl = 0,
since ^ ^ ^ z j = — 1. Thus cMΛ = 0. Similarly, we prove that clfl =

Now suppose that we have shown ciΛ = ci>2 = = cί>p_1 = 0 for
i — 1, 2, , M, and consider cM)P. Let ni}P (i Φ M) be such that
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^M,P < ^i,p Choose zp for nitP so that in the coordinates of zp cor-
responding to nMfP there are an odd number of l's, and an even
number of l's in the coordinates which correspond to each nitj(j ^ p).
Then, as above, we conclude that cMtP = 0. Thus citk = 0 for each
i = 1, 2, , M and every k ^ 1, and hence the given series S(x)
vanishes identically.

COROLLARY. A lacunary Walsh series which converges to 0 (or is
constant) almost everywhere vanishes identically.

This latter result is the Walsh analogue of the following import-
ant theorem for trigonometric series: a lacunary trigonometric series
converging to 0 on a set of positive measure is the identically zero
series ([8, vol. I, p. 206]). The statement in the corollary is the best
possible in that convergence a.e. cannot be replaced by convergence on
a set of measure less than 1. This follows at once from the fact
that in [0, l[(or 2ω), the Walsh-Fourier series of the characteristic
function of a dyadic interval (basic open set) has only finitely many
nonzero coefficients ([7, p. 288]).

The trigonometric result does, however, have the following coun-
terpart in the Walsh system.

THEOREM 2. A lacunary Walsh series which converges to 0 (or is
constant) on a set of positive measure has only finitely many nonzero
terms.

Proof. The function π: x —> μ(E Π (E + ΛΓ)) is continuous ([3, (20.
17)]). Hence if x is 'close' to 0 (that is, if x has sufficiently many
0's initially), then μ(E D (E + JC)) > 0. Let N be the smallest integer
for which E Π (E + x) has positive measure whenever x has its first
N coordinates equal to 0.

Let M be the index of 2-lacunarity of the series S(x); we prove
the theorem by induction on M. If M = 1, let R be the largest
power of 2 appearing in the base 2 development of nu n2, * ,nN.
Define sN+1 as follows: let sN+1 have 0's in every coordinate up to and
including the Rih coordinate; an odd number of Γs in the coordinates
which correspond to nN+1; an even number of l's in the coordinates
corresponding to each %, j > N + 1; and 0's in the coordinates not
otherwise determined. Then we have

S(x + sN+1) - S(x) = -2cN+1wny+1(x)

for every xe2ω. Since each of nl9 •••, nN has a power of 2 greater
than each power of 2 in its predecessor, it follows that R Ξ> N, hence
sN+1 has at least N zeros initially. Thus E Π (E + sN+1) is nonempty.
As in the proof of the lemma, it can then be shown that cN+ι = 0.
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Proceeding by induction, we conclude that cn = 0 for every n > N.
We retain the notation in the proof of Theorem 1 and suppose

the theorem is true for an index M — 1; that is, if the given series
is the sum of M — 1 g-lacunary series (q ^ 2) and converges to 0 on
a set of positive measure, then citj — 0 for each i and all j > N,
where N is as in the first paragraph. Consider now the series
fif(jc) = Si(x) + + SM(x). Let R be the largest power of 2 appear-
ing in the base 2 expansion of nM>19 nM>2, , nMtN. Choose niyJ{i Φ M) so
that nitJ > nMyN+i and nitJ contains a power of 2 greater than each power
of 2 in nMtN+1 (this is always possible unless each subsequence {nifk}
is finite, in which case we are done). Define Sj for nitJ as follows:
let Sj have O's in every coordinate up to and including the Rth; let
Sj have an odd number of l ? s in the coordinates corresponding to
nM,N+ι> tet SJ have an even numer of l ' s in the coordinates which
correspond to each nitJ , for every j ^ J. Assign 0 to those coordinates
not already determined. Then for each xe2ω,

S(x + β,) - S(x) = Σ et,k[^t k(»j) - !]«>•« k(x)

+ Σ [S,(x + 8,) - Sr(x)] ,

since wΛi}k(sj) = 1 for k ^ J . Because s^ has at least iV zeros initially,
E Γ) (E + Sj) has positive measure and so the left-side of this equation
vanishes for x in a set of positive measure. Also, since the first
sum on the right-side is finite, it is necessarily constant on sets of
positive measure. Thus,

is constant in a set of positive measure and so by the induction hypo-
thesis, crtm[wnrtm{sj) — 1] = 0 for r = 1, 2, , M, r Φ i, and all m > N.
In particular, for r = M and m = N + 1, we have w%M)NΛί(sj) = — 1
and therefore cM>N+1 = 0. Proceeding by induction, we show that
CM,J — 0 for every j > N. Thus, SM(x) is a finite sum.

Write Sχ(x) + ••• + SM^(x) = ~SM(x); since SM(x) is finite, it
assumes constant values on sets of positive measure. The induction
hypothesis then implies that each of Sλ(x), •••, SJ¥__I(JC) is also a finite
sum, and so therefore is S(x).

The previous proof uses the hypothesis that E has positive measure
only to ensure that the set E n (E + x) is nonempty for sufficiently
'small' x. However, even for E of measure zero, this will still be
true if E is of the second category and has the property of Baire
(see [5, p. 21]). (A set is said to have the property of Baire if it can
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be expressed as the symmetric difference of an open set and a set of
the first category.) If a set has the property of Baire, so does its
complement ([5, p. 19]); it follows that any residual set (i.e., the
complement of a first category set) has the property of Baire. With
a slight modification to the proof of Theorem 2, we have the follow-
ing result.

THEOREM 3. Suppose that E is of the second category and has the
property of Baire. Then a lacunary Walsh series which converges
to 0 (or is constant) on E is necessarily a finite sum. In particular,
if E is residual, then the series is identically constant.

Proof. Let Sj be defined as in the previous proof. Then E Π (E + Sj)
is of the second category ([5, p. 21]); since the class of all sets having
the property of Baire is a σ-algebra, E Π (E + Sj) also has the property
of Baire. The first sum on the right-side of the equation in the
previous proof is constant on dyadic intervals; since E Π (E + Sj) must
meet some one of these intervals in a set of the second category, the
series Xf=])).^ [Sr(x + Sj) — Sr(x)] is constant on a second category
set having the property of Baire. The proof of Theorem 2 may now
be applied, with the obvious modification to the induction hypothesis,
to show that the given series is a finite sum.

Finally, if E is residual, then E is dense. Because the series is
finite and hence continuous, it can assume only one value.

3* Sets of uniqueness* A set C is called a set of uniqueness for
lacunary Walsh series, or a Walsh UL~set, if the only lacunary series
converging to 0 on the complement of C is the identically zero series.

THEOREM 4. Suppose that C satisfies one of the following:
( i ) C is a null set;
(ii) C is of the first category;
(iii) the complement of C is a dense second category set having

the property of Baire.
Then C is a Walsh UL-set.

Proof. If C satisfies (i), the result follows from the corollary
to Theorem 1. Suppose now that (ii) or (iii) holds; in view of Theorem
3, a lacunary Walsh series converging to 0 on the complement of C
is a finite sum and so continuous. Because the complement of C is
dense, the series must vanish identically.

None of the conditions in the theorem are necessary. That (i) and
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(ii) are not necessary follows from the fact that a null set may be of
either category and that there exist sets of the first category of any
given measure. To show that (iii) is not necessary, we take C to be
a residual set of measure zero; then C is a UL-set in view of the
corollary to Theorem 1.

Lastly, we note that a Walsh UL-set must have empty interior
and so, in particular, cannot be open: for otherwise the Walsh-Fourier
series of the characteristic function of a dyadic subinterval, a finite
series, would converge to 0 on the complement of the set but not
vanish identically.
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