ZOLOTAREV'S THEOREM ON THE LEGENDRE SYMBOL

J. L. Brenner

Dedicated to Professor D. H. Lehmer

Matrix-theoretic proof that $(\alpha / p)=$ sign of the permutation $i(\bmod p) \rightarrow i a(\bmod p)$ of the residue classes $\bmod p$.

In [5], Zolotarev proved the quadratic reciprocity law on the basis of the above-stated result. Here is a short proof of that result; it uses matrix theory, together with a well-known result in number theory.

Definition 1. An a-circulant is an $n \times n$ matrix such that each row (except the first) is obtained from the preceding by shifting each element a positions to the right.

Definition 2. $P=\left(p_{i j}\right)$ denotes the $n \times n$ permutation matrix that corresponds to the permutation $i \rightarrow i+1(\bmod n)$, i.e., $p_{12}=$ $p_{23}=\cdots=p_{n-1, n}=p_{n 1}=1 ; p_{i j}=0$ otherwise.

Note that P^{a}, the a th power of P, is an a-circulant.
Definition 3. $A(a)$ denotes the a-circulant, the first row of which has 1 in the a th column and zeros elsewhere.

Note that $P A(a)=A(a) P^{a}$.
Theorem 4. Det $A(a)=\operatorname{sign}$ of the permutation $i(\bmod n) \rightarrow$ $i a(\bmod n)$.

This follows from one of the usual definitions of the determinant function.

Lemma 5. If the first row of $A\left(a_{1}\right)$ is multiplied by the matrix $A\left(a_{2}\right)$, the product is: the row that has all zeros except for 1 in the position $a_{1} \alpha_{2}(\bmod n)$. [Obvious.]

Theorem 6. The product of an a_{1}-circulant by an a_{2}-circulant is an $a_{1} a_{2}$-circulant.

Proof. $\quad P A\left(a_{1}\right) A\left(a_{2}\right)=A\left(a_{1}\right) A\left(a_{2}\right) P^{e}, \quad e=a_{1} a_{2}$.
Corollary 7. $\quad A\left(a_{1}\right) A\left(a_{2}\right)=A\left(a_{1} a_{2}\right)$;

$$
\operatorname{det} A\left(a_{1}\right) \operatorname{det} A\left(a_{2}\right)=\operatorname{det} A\left(a_{1} a_{2}\right) .
$$

Corollary 8. For $(a, n)=1$, the determinant of the set $\{A(a)\}$ is a character $\bmod n$.

Lemma 9. If $a=g$ is a primitive root of the odd prime number $p=n$, then $\operatorname{det} A(g)=-1$.

Proof. The corresponding permutation is an ($n-1$)-cycle; its sign is -1 .

Theorem 10. If n is an odd prime p, then $\operatorname{det} A(a)=(a / p)$, the Legendre symbol.

Proof. The Legendre symbol is the only real character modulo a prime that actually assumes the value -1 .

Corollary 11. [Zolotarev]. $(a / p)=\operatorname{sign}$ of the permutation

$$
i(\bmod p) \longrightarrow i a(\bmod p), \text { where } p \text { is a prime. }
$$

Remark. The result $\operatorname{det} A(\alpha)=(a / n)$ does hold in general [4]. When n is an odd prime power, this is obvious since n has a primitive root. For other odd n, it seems less obvious. See [2, 3] for proof.

Concluding remark. As Zolotarev showed, the argument of this article furnishes yet another proof, and the first matrix-theoretic one, of the quadratic reciprocity law.

Acknowledgment. I thank Professor D. H. Lehmer for asking whether the methods developed in [1] could be used to prove that $\operatorname{det} A(a)=(a / p)$.

References

1. C. M. Ablow and J. L. Brenner, Roots and canonical forms of circulant matrices, Trans. Amer. Math. Soc., 107 (1963), 360-376.
2. J. L. Brenner, A new property of the Jacobi symbol, Duke Math. J., 29 (1962), 29-32.
3. D. H. Lehmer, Mahler's matrices, Notices of the Amer. Math. Soc., 1, 365. abstract 569-50; Australian J. Math., I (1959/60), 385-395.
4. M. Riesz, Sur le lemme de Zolotareff et sur la loi de réciprocité des restes quadratiques, Math. Scand., 1 (1953), 159-169.
5. G. Zolotareff, Nouvelle démonstration de la loi de réciprocité de Legendre, Nouvelles Annales de Math. (ser. 2) 11 (1872), 354-362.

Received February 2, 1972. Supported by NSF Grant GP-32527.
University of Victoria, Canada
AND
College of Notre Dame, Belmont, California

