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VISIBILITY MANIFOLDS

P. EBERLEIN AND B. O ' N E I L L

Several of the basic features of automorphic function
theory—notably the notion of limit set—can be extended to
apply to the study of Riemannian manifolds M of nonpositive
curvature. Under somewhat stronger curvature conditions
(e.g. K ^ c < 0) M is called a Visibility manifold. For such
manifolds there results a classification into three types: para-
bolic, axial, and fuchsian. This trichotomy is closely related
to many of the most basic topological and geometric properties
of M, and such relationships will be examined in some detail.
For example, the trichotomy may be expressed in terms of
the number (suitably counted) of closed geodesies in M,
namely: 0, 1, or oo. As to methodology: the conventional
analytic machinery of C°° Riemannian geometry is used, at
least initially; however, at many crucial points it will be
the qualitative behavior of geodesies (έla Busemann) that is
important.

In the late nineteenth century Poincare discovered an important
link between geometry and automorphic function theory, namely that
the open disk P in the complex plane admits a Riemannian metric
such that (1) P has constant negative curvature and gives a model
for the noneuclidean geometry of Bolyai and Lobachevsky; and (2)
the orientation preserving isometries of P are exactly the linear
fractional transformations that preserve P.

Automorphic function theory makes essential use of an extrinsic
feature of the disk: its boundary circle S1 in the plane. For example,
a linear fractional transformation φ as in (2) that has no fixed points
in P must have either one or two fixed points in S1. Also, if D is
a properly discontinuous group of such transformations then the accu-
mulation points of any orbit D(p), peP, form a closed D-invariant
subset L{D) of S1 called the limit set of D. Analysis of the limit
set L(D) and of the fixed points of the elements of D gives extensive
information about the Riemann surface M = P/D. When the Poincare
metric was introduced on P this approach also yielded properties
of the geodesic flow on surfaces M of constant negative curvature.
But since the method was tied to complex analysis it was not clear
how to extend it to manifolds of higher dimension and variable cur-
vature.

Our object in this paper is to study Riemannian manifolds of
sectional curvature K ^ 0 by generalizing, or rather geometrizing,
some of these basic features of automorphic function theory. Thus

45



46 P. EBERLEIN AND B. O'NEILL

the role of the disk P is taken by an arbitrary complete simply-
connected w-manifold H with K ^ 0. We begin by defining points
at infinity for H (§1). With a suitable topology, the cone topology
(§2), these constitute a boundary sphere H(°o) such that H — H{jH(co)
is a closed %-cell. An isometry φ of H extends naturally to a homeo-
morphism of H; thus if D is a properly discontinuous group of iso-
metries on H, we obtain as before a closed D-invariant limit set L(D)
in £Γ(oo). It is natural then to consider what influence the limit set
and the action of D on H(o°) have on the quotient manifold M — H/D.
For this influence to be decisive it is at present necessary to impose
geometrical restrictions on M = H/D beyond merely K <Ξ 0. While
the standard condition K < c < 0 would suffice, we prefer to express
the restrictions in terms of one and occasionally two axioms on the
geodesies of H (§4). These hold under curvature conditions (§5)
distinctly weaker than K <£ c < 0. We use them, however, not merely
for the sake of generalization, but because they result in much simpler
proofs, with qualitative (synthetic) arguments replacing quantitative
(analytic) ones. At this and other points we have been influenced by
the ideas of Buseπiann [4].

If H satisfies Axiom 1, then its isometries share many of the
properties of linear fractional transformations (§§6, 7), notably that
if φ has no fixed points in H then it has exactly one or two in the
boundary sphere H{oo).

Another useful topology on H = H U H(^) derives from the classi-
cal notion of horocycle (§3). There is a corresponding limit set
Lh{D) g iϊ(co) which is, for example, closely related to the length-
minimizing properties of geodesies in M = H/D.

When H satisfies Axiom 1 we call M = H/D a Visibility mani-
fold; this class includes all complete manifolds of curvature K ^ c <
0. Both the cone and horocycle topologies are used to define points at
infinity for an arbitrary Visibility manifold M and topologize M —
M U M(oo) in a natural way (§10) that generalizes the construction
of H.

By investigating limit sets we divide all Visibility manifolds into
three types: parabolic, axial, or fuchsian. The concepts outlined above
are, as we have said, closely related to many fundamental topological
and geometric properties of M; for example, closed geodesies (§8),
fundamental group (§9), ends (§10) and convex functions (§11). In
particular the following picture emerges of the three types mentioned
above:

A parabolic manifold M is a topological product N x R1 with
each {n} x Rι a minimizing geodesic. M has no closed geodesies,
and L(D) is a single point. Despite its simple geometric structure
M can have a remarkably wide variety of fundamental groups. Para-
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bolic manifolds are characterized by the fact that they admit a convex
function without minimum.

An axial manifold M is a smooth vector bundle over a circle,
hence is diffeomorphic to either S1 x Rn~ι or B x Rn~2, where B is
the Mobius band. M has a unique equivalence class A of closed
geodesies. All members of A are simply closed, (though possibly of
different periods), and A reduces to a single closed geodesic when
Axiom 2 holds. The fundamental group of M is infinite cyclic, and
L{D) is two points.

A Visibility manifold M is fuchsian if L(D) has more than two
points, for example if M is compact or has more than two ends. A
fuchsian manifold M has infinitely many equivalence classes of closed
geodesies. Although M may have many different topological struc-
tures its fundamental group must satisfy severe algebraic conditions.
We phrase these abstractly in terms of the notion of monic group, a
class of groups including solvable groups, nontrivial product groups, etc.

Our axiomatic approach has applications to geodesic flows [7].
The present paper developed from joint work by one of us with R. L.
Bishop, and we are grateful to him for many valuable insights.

1Φ Points at infinity. For any Riemannian manifold M we
denote the Riemannian structure by <,), the Riemannian metric by
d. If p e M let S(p) be the unit sphere in the tangent space Mp; let
SM be the unit tangent bundle with projection μ: SM-^ M. If v, w e
S(p), the angle θ = <^(v, w) is the unique number 0 ^ θ ^ π such that
<t;, w) — cos θ. If M is complete and veSM let 7υ: R—+M be the
geodesic such that 7̂ (0) = v. Throughout this paper all geodesies
have unit speed and unless otherwise indicated are defined on the
entire real line. A geodesic segment is a geodesic defined on a com-
pact interval.

A Hadamard manifold H is a complete, simply connected
Riemannian manifold of dimension n ^ 2 having sectional curvature
K S 0. H will always denote a Hadamard manifold. We shall assume
the basic information about such manifolds [2, 13]. If p Φ q in H
let Ύpq be the unique (unit speed) geodesic such that ΎPQ(0) = p and
Ύpqit) — Q where t = d(p, q). The angle <̂ G(m, n) subtended by points
m, n of H at a distinct point p is defined to be <>C(τJ,m(O), 7^(0)).
Any three non-collinear points of H determine a geodesic triangle
and we have:

(1) Law of Cosines: c2 ^ a2 + b2 — 2ab cos θ where α, 6, c are
the sides and θ is the angle opposite c.

(2) Angle sum: the sum of the interior angles of a triangle
is at most π.

(3) Double law of cosines (obtained from applying the law of



48 P. EBERLEIN AND B. O'NEILL

cosines twice): A geodesic triangle with sides α, 6, c and angles a,
β and 7 opposite the corresponding sides satisfies c ̂  b cos a + a cos β.

We make use of the following consequence of the law of cosines:
if {Pn}> {Qn} and {rn} are sequences in H such that d(pn, qn) —> oo but
d(qn, rn) ^ A as n -> oo, then <,„(?», rn) ->0.

We summarize briefly the basic facts about asymptotes. The
logical order differs slightly from [3] and [4] since we replace the
classical definition by:

DEFINITION l l. Geodesies a and β in a Hadamard manifold H
are asymptotic provided there exists a number c > 0 such that
d(at, βt) S c for all t :> 0.

The following consequences are immediate:
(1) If a and β are asymptotic, then so are orientation-preserving

unit speed reparametrizations of a and β.
(2) The asymptote relation is an equivalence relation on the set

of all geodesies in H; the equivalence classes are called asymptote
classes.

(3) If asymptotic geodesies in H have a point in common, then
they are the same but for parametrization (by the law of cosines).

It follows from (2) and (3) that there is at most one geodesic
starting at a given point and asymptotic to a given geodesic. Pro-
position 1.2 below will yield:

(4) Given a geodesic a and a point p e H there exists a unique
geodesic β such that β(0) = p and β is asymptotic to a.

We assume the facts about convex functions contained in [3].
Convex functions are presumed to be only continuous unless differentia-
bility is explicitly mentioned. The following results will be used
often:

(a) If a, β are geodesies of H, then the function t —> d(at, βt)
is C°° convex (/" ^ 0). If a and β are asymptotic, then d(at, βt) is
monotone decreasing in t.

(b) The functions t —> d(at, β) and t —> d(βt, a) are continuous
convex functions, and in fact if a and β are asymptotic then

lim d(at, β) = lim d(βt, a) = d{a, β) = d(aR, βR)
ί->oo t-*oo

= inf {d{as, βt): s,teR) .

PROPOSITION 1.2. Let a be a geodesic in H and let {pn} —*p in
H, {tn} —> oo in R. If βn is the geodesic from pn to a(tn) then β'n(0)
converges to a vector veS(p), and β — Ύυ is asymptotic to a.

Proof. Let c > 0 be a number such that d(pn, aO) <; c for all n.
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Let sn be the number such that βn{sn) = a(tn). By the triangle in-
equality \sn — tn\ ^ d(pn, aO) ̂  c. In particular {sn} —• oo. Now fix
8 ^ 0, and let w be so large that s ^ sn.

Since the function £ —• d(βnt, at) is convex we have d(βns, as) ^
max {d(/9Λ0, αO), d(£Λsw, αsΛ)} But d(βnsn, asn) = eZ(αίΛ, αsn) = | * Λ - sJ ^
c and d(/3Λ0, αθ) ^ c, since pn = /3«(0). Thus (*) <Z(/3ws, as) g c for all
s >̂ 0. Some subsequence of {/Ŝ O)} converges to a vector veS(p).
By continuity of the exponential map, (*) implies that d(yvs, as) ^ c
for all s^O, that is, yv is asymptotic to α. By (5) above this asymptote
is unique and every convergent subsequence of {β'n(0)} has the limit v.

The complete manifolds M of dimension n ^ 2 and sectional
curvature if ^ 0 are precisely the quotient manifolds H/D where H
is a Hadamard manifold and D is a properly discontinuous group of
isometries of H. We shall study H/D through the action of D on
H and the geometric properties of H at infinity. The main tool used
is the notion of a point at infinity of H which we define to be
simply an asymptote class of geodesies of H. Let H(oo) be the set
of points of infinity of H, and let H = H (J i?(°°). If if is ^-dimen-
sional hyperbolic space, the open unit ball in Rn with the Poincare
metric, then H(oo) is the bounding sphere Sn~\ This example in
fact exhibits and is the motivation for the geometric properties that
we shall consider.

If a: (— co? oo) —• H is a geodesic, let a(oo) be the asymptote class
of a and let a(— oo) be the asymptote class of the reverse curve ί —•
α(—ί). The resulting function α: [— oo, oo] —> H is the asymptotic
extension of a. Note that a{— oo) ^ α(oo), since α realizes the dis-
tance between any two of its points. If xeH(^) we write either
a(oo) = x or a ex depending upon the context. In this notation the
remark (4) preceding Proposition 1.2 says that given p in H and x
in iί(oo) there exists a unique geodesic 7PX such that 7pa;(0) = p and
Ύpxi^) = &• Roughly speaking, there is a unique geodesic joining
any finite point to any infinite point.

Similarly if ψ is an isometry of H and x a point in if(oo) we
set φ(x) = (φ°o:)(oo)} where a is any geodesic representing x. Since
asymptotes are preserved under isometries we obtain a well-defined
function φ: H—>3 which is bijective and carries iJ(oo) into itself.

In the nonsimply connected case M = H/D, geodesies a and β
are asymptotic if they have lifts into H that are asymptotic in the
sense of Definition 1.1. This is equivalent to the existence of a
homotopy from a to β whose transverse curves from a(t) to β(t)
have bounded length for t Ξ> 0. Clearly it is also an equivalence
relation. Let A(M) be the set of all asymptote classes of geodesies
of M. If xeH(oo) let πa(x) be the element of A(M) represented by
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τroα, where x is represented by the geodesic a. Then πa: H(°o) —+
A(M) is well-defined and surjective, and for any y in A(M) the
counterimage π~ι{y) is an orbit of D in iϊ(co). Briefly: A(M) =

There is more than one topology of interest on H. We shall say
that topology τ on H is admissible if it satisfies the following four
conditions:

(1) Closure property: the topology on H induced by τ is the
original topology of H, and H is a dense open set of H.

( 2 ) Geodesic extension property: if a is any geodesic of H
then its asymptotic extension is continuous.

( 3 ) Isometric extension property: if φ is any isometry of H
then its asymptotic extension is continuous (and hence a homeomor-
phism by a functorial argument).

(4) Intensive property: if xeH{°o), V is a neighborhood of x,
and r > 0 is any positive number then there exists a neighborhood
U of x such that Nr(U) = {qeH: d(q, U) < r) g V. Here we have
extended the metric trivially so that d(a, b) = oo if a Φ b and either
point lies in iϊ(oo). In fact this is the only continuous extension of
the metric, assuming the geodesic extension property.

The inherited Euclidean topology on the closed unit ball in Rn

satisfies all four properties for the Poincare model of ^-dimensional
hyperbolic space.

The following easily checked fact will be useful.

LEMMA 1.3. For each xeH(co) let ^V(x) be a collection of sub-
sets of H such that (a) if Ve^ί^(x) then xeV and V(~)H is non-
empty and open in H and (b) if Ve^/Γ(x), We<yΓ(y) and zeV Π
W ΓΊ H(oo) there exists Ue^f^(z) such that *7g F ί Ί W. Then there
is a unique topology τ on H such that τ has the closure property
and ,sK(x) is a local basis for τ at each xeH(oo).

We now construct the limit set of a group D of isometries of H
relative to a suitable topology. Generally we will assume D to be
properly discontinuous, so for p e H the orbit D(p) = {<p(p): ψ e D} will
have no accumulation points in H. Depending on the topology used
there will usually be accumulation points in H{oo).

PROPOSITION 1.4. Let τ be a topology on H with the isometric
extension and the intensive properties. Let D be a group of isometries
of H. Then

(1) The set of accumulation points of an orbit D(p) in H(oo) is
independent of the choice of peH and is called the limit set Lτ(D) of D.
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(2) Lτ{D) is closed in H(oo) and is invariant under v for each
veN(D), the normalizer of D in the isometry group I{H) of H.

(3) If T is a Tί topology, then D is not properly discontinuous
at any point of Lτ(D).

Proof. (1) Let x e D(p) Π H(oo) and let qeH. If U is any
neighborhood of x then there exists a neighborhood V of x such that
Nε(V) ϋ U where ε = d(p, q). By assumption there exists φe D such
that φ{p) e V. Hence φ{q) e U and it follows that x e D(q) Π 2Γ(°°).

(2) Since Lτ(D) = D(p) Π H(oo) it is clear that Lτ{D) is closed
in H(oo). To prove invariance it suffices to prove that if xeD(p) Π
H(oo) then v(x) e D{vp) n iϊ(co). If U is any neighborhood of v(x) then
by the isometric extension property v~ι(U) is a neighborhood of x.
Hence there exists φeD such that φ(p) ev~\U), so vφ{p) e U. Since
v e N(D), there exists ψe D such that vφ = α/rv. Hence fv{p) e U and

^ ϊ ^ (Ί H(oo).

(3) Let U be a neighborhood of x e Lτ(D). For any p 6 i ί there
is a φ e ΰ such that 9(p) e ί7. Since {φp} is closed in H there is a
f e ΰ such that ψ{p) e U — {φp}. Since ψ(p) — ψφ~\φp) we have
ψφ^CU) Π ί7^= Π Hence J9 is not properly dicontinuous at x.

If 5" has the cone topology of the following section and if H
satisfies Axiom 1 (§4) then Lτ(D) is precisely the set of points of
H(oo) at which D fails to act properly discontinuously (Proposition 8.5).
This should be compared with the analogous result in automorphic
function theory.

Points of L-(D) are called limit points of Zλ Points of the com-
plement Oτ{D) = Jϊ(oo) — LZ(D) are called ordinary points. Clearly
OT(D) is also invariant under N(D) as in (2).

In the next two sections we define nontrivial admissible topologies
on H. In § 10 we take advantage of the fact that the preceding dis-
cussion of topologies on H remains valid for any set X between H
and H, provided of course that we consider only geodesies ending in
X and isometries that preserve X.

2. The cone topology• We define a natural topology on H =
H U H(oo) which makes H homeomorphic to the closed unit ball in
Rn and H(oo) homeomorphic to the sphere Sn~\ The notion of angle
gives a natural way to measure the proximity of two points at in-
finity. We shall see that angle measurements also provide a notion
of proximity of distant finite points to infinite points.

Let p be a point of H distinct from points a, be 3. The angle
subtended by α, b at p is <̂ G(α, b) = <̂ C(7pα(0), 7^(0)). If one vertex is
at infinity the angle sum inequality takes the following form: let
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x e H(oo), p φ qeH, then <>G(g, χ) + *>G(P> χ) = π> This follows from
the usual angle sum formula and the following remark.

REMARK 2.1. If peH and if a: [0, oo)—># is a geodesic, then
the function: [0, oo]—+ S(p) given by ί—>75,,αί(0) is continuous. This
is standard for ί < oo, and since 7pα(oo) is the unique geodesic from p
asymptotic to a, the continuity at infinity follows from Proposition 1.2.

DEFINITION 2.2. Let v e S(p) S Hp and let ε be a number, 0 <
ε < π. Then the set C(v, ε) = {δeίZ: <P(7v(°o), δ) < ε} is called the
cone of vertex p = μ(V), axis v and angle ε.

Thus C(v, ε) consists of all points, finite or infinite, whose angular
difference from v is less than ε. Note that for any t > 0 we have
< P ( 7 Λ b) = <p(7.(oo), p) = < ( V , 7;,(0)).

PROPOSITION 2.3. // ίZ" is a Hadamard manifold, there is a
unique topology k on 3 such that

(1) k has the closure property.
(2) For each xeH(o°) the set of cones containing x is a local

basis for k at x.
We call k the cone topology on S.

Proof. By Lemma 1.3 it suffices to prove that if V and W are
cones containing xeH(oo), then there exists a cone C such that x e
C S V D TΓ. First we establish some properties of cones.

LEMMA 2.4. Lei a be a geodesic of H. Ifs^t and δ ̂  ε, then
C(a'(t),δ)SC(a'(8),e).

Proof. We may suppose that s < t. If b e C(a'(t), δ) then
<«ί(ί>> tf(°°)) < <5 and <£αί(^s, 6) > TΓ — δ. By the angle sum property
<as(b, at) < δ ^ ε. Hence 6 e C(α'(s), ε).

LEMMA 2.5. Lei F δe α ccwe ^ i ώ vertex q, let pe H and let
β = j p x where xe V Γ) H(oo)m Then there exist numbers T> 0 and
δ > 0 sraΛ, iΛαί C(β'(t), δ)^V for t ^ Γ.

Proof. Let α = 7ga; and choose ε > 0 so that C(α'(0), ε) s V". Since
α and ̂  are asymptotic <^Cg(αί, /Si) —> 0 as ί —> ̂ o by the law of cosines.
Similarly ^βt(p9 g) —>0 as t-^ oo. Let δ = ε/3 and choose T so large
that t ^ T implies (1) < g (x, /3i) < δ and (2) < ^ ( p , q) < δ. We show
that for t ^ ϊ7, C(β'(t), δ) S C(α'(0), ε) S F. Let 6 6 C(β'(t), δ) so that
(3) </Jί(α, δ) < δ. Then (4) <^(g, α?) > TΓ - δ follows from (2). From
(3) and (4) we obtain (5) <£βt(q, δ) > π - 2δ since <^(g, δ) ̂  <^(g, a?) -
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, b). By the angle sum relation $lq{βt, b) + iCβt(q, b) £ π. From
(5) we obtain (6) <ff09ί, b)<2δ. Finally <,(&, 6)^<g(tf, /9ί) + <g(/3ί, b)<
3δ = ε. Therefore b e C(a'(0), ε) £ V.

Suppose now that V and W are cones that contain a point a? e
H(°°). Let /S = Ύpx, where p is the vertex of V. Choose ε > 0 so
that C(/3'(0), ε) £ F. By Lemma 2.5 we can find t > 0 and δ < ε such
that CG8'(ί), δ) £ 17. By Lemma 2.4, C(£'(i), δ) C C(β'(0), e). Therefore
C(β'(t), δ) £ F n TF and this completes the proof of Proposition 2.3.

Unless another topology is explicitly mentioned we shall always
assume that H is equipped with the cone topology k.

Since different cones may have different vertices, it is convenient
to define for each point p in H a collection of sets, the truncated
cones at p, which form a basis for the cone topology. If C(v, ε) is a
cone with vertex p = μ(v), then for any number r > 0 we call

T(v, ε, r) = C(v, e) - {q e H: d(p, q) ^ r}

the truncated cone of vertex p, axis v, angle ε and radius r.

PROPOSITION 2.6. Fix a point p in H. The set of truncated
cones of vertex p that contain xeH(<^>) are a local basis for the cone
topology at x.

To prove this some preparatory lemmas are in order.

LEMMA 2.7. // V is a (possibly truncated) cone whose finite part
V Π HQC(v, ε), then V^C(v, ε') for any ε' > ε.

Proof. Let a = ΊVX, where p is the vertex of V and xe V Π iϊ(°o).
For sufficiently large t > 0, a(t) e C(v, ε) so that <£P{M, Ίv{^>)) < ε. By
Remark 2.1 «>G(α(<χ>), 7*(°°)) ^ ε, and therefore xeC(v, ε') for ε' > ε.

LEMMA 2.8. Let a be a geodesic of H. Given a > 0 and ε > 0
there exists r > 0 cmcZ δ > 0 such that T(a'(0), δ, r) £ C(α'(α), ε).

Proof. By the law of cosines we may choose r > 0 so large that
(1) d(q, aθ) ^ r implies <^q(a0, ad) < ε/3, and (2) d(q, ar) < 1 implies
^aa(q, av) < ε/3, where g is a point of H. By the continuity of the
exponential map there exists a number δ > 0 such that if v is any
unit vector at α(0) satisfying (3) <ζ(/y, ̂ '(0)) < δ, then d(exp (rv), ar) <
1. We assert that r and δ are the desired numbers. Let m be a
finite point of T(α'(0), S, r). Let /S be the geodesic from a(0) to m
and note that /3(r) precedes m. By (1) ^^(αO, ad) < ε/3, and hence
<i£βr(aa, m) > π - ε/3. By the angle sum property, <*α(/3r, m) < ε/3.
Since d(βr, ar) < 1 by (3), we find that <αα(/5r, ar) < ε/3 by (2). We
conclude that <βα(m, αr) g <αα(m, /Sr) + <«o(/5r, αr) < 2ε/3. Thus
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m e C{a'{a), 2e/3), and by Lemma 2.7 T(α'(0), δ, r) S C(a'(a), ε).
To prove Proposition 2.6 fix a point p in i ϊ and let V be a cone

neighborhood of xeH(oo). Let /3 = Ύpx. By Lemma 2.5 we can find
t > 0 and δ > 0 such that C(β'(t), δ) S F. By Lemma 2.8 we can find
r > 0 and δ' > 0 such that T(/9'(0), S', r) s C(£'(ί), δ) S F.

PROPOSITION 2.9. T^e cowe topology k for H is admissible.

Proof. The closure property is contained in the statement of
Proposition 2.3. The geodesic extension property follows immediately
for Remark 2.1. If φ is an isometry of H and C(v, ε) is any cone
then φC(v, ε) — C(φ*v, ε), so φ is a homeomorphism of H and k
satisfies the isometric extension property. To prove the intensive
property, let V be a neighborhood of x in ίf(co) and let a > 0 be
given. We may assume that V — C{v, ε) by the Proposition 2.3, where
v = 7pβ(0). By the law of cosines we may choose r > 0 so large that
if d(p, m) > r, c£(p, n) > r — a and d(m, w) < α, then <̂ CP(m, ̂ ) < ε/2.
If Γ = Γ(ι;, ε/2, r), then Γ is a neighborhood of x such that ΛΓα(T) S
C(v, ε); for if neNa(T) then there exists meT such that d(m, ^) <
α. By the conditions imposed, <^G(ra, n) < ε/2 and hence ^p(n, x) ^
<p(w, m) + < p (m, a?) < ε.

The following theorem establishes an analogy with the Poincare
ball model of the ^-dimensional hyperbolic space.

THEOREM 2.10. If pe H let B(p) be the closed unit ball in Hp

with boundary sphere S(p). Let f: [0, l]-+[0, oo] be a homeomorphism.
Then the function φ: B(p) —> H such that φ(v) = exp (f\\v \\ v) is a
homeomorphism carrying S(p) onto H(oo).

Proof. It is well known that φ restricted to B(p) — S(p) is a
one-to-one continuous map onto H. H is Hausdorff, since any two
distinct points in H(^>) may be separated by cones with the same
vertex. Since B(p) is compact if suffices to show that φ is continuous
at v e S(p). For a truncated cone neighborhood T = T(v, ε, r) of φ(v),
we have φ~\T) = T(v, ε, f~\r)) S B{p), and this is clearly a neighbor-
hood of v in B(p).

REMARK 2.11. For pe H the function φp: S(p) —• H(°°) such that
<pp(v) = 7v(co) is a homeomorphism. In fact this is simply the restric-
tion of the map φ above to S(p). Since S(p) is metrized by the angle
function <£C it follows that a sequence {xn} £ H(oo) converges to .τ
in H(εo) if and only if <Z£P(xn, x) —>0 as π—• M .

COROLLARY 2.12. If V is a cone in 3, then V is a topological
n-cell.
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Proof. Let p be the vertex of V. Then φ~\ V) is a closed cone
in B(p) with vertex at the origin and hence is a topological ^-cell.

We now prove the continuity of some useful functions. Let SH^
TH be the unit and full tangent bundles of H, both with projection
μ. The map μ x exp: TH—*H x H is a diffeomorphism and induces
a metric δ on SH such that δ(v, w) = d(μv, μw) + d(exp v, exp w).

PROPOSITION 2.13. The function ψ: SH x [-co, oo] —> H given by
ψ(v, t) = yv(t) is continuous.

Proof. If t is finite, continuity at (v, t) is a standard result. It
suffices to show that if vn —• v in SH and tn —+ + oo as w —• oo, then
7Vn(ίw) ^ ^ ( ° ° ) as π—>oo. By replacing vn and v by their negatives,
we also prove continuity at - c o . Let p — μ(v), pn = μ(vn). Let wn

be the unique unit vector at p such that ΎWn(sn) = ΎVn(tn). Then sn-^
+ 00 as n —> 00. For large n, sn ^ 1, tn ^ 1, and rf(exp i;%, exp wn) ^
d(p%, p) by convexity. Therefore δ(vn, wn) S 2d(pn, p), and since pn —*
p, we get wn-+v as n—> 00. The truncated cones at p which contain
x form a local basis at x, and it follows that ΎVn(tn) = 7w%(sn) —>7v(co)
a s ^ —> 00.

PROPOSITION 2.14. Lei D = [p, b) e H x H\ p Φ 6}. Tfce function
V: D-+SH given by V(p, b) = Ypb(0) is continuous.

Proof. Let (pn, bn) -> (p, 6) in D. Let vn = V(pn, bn) and wn =
F(p, δ%), which are both defined for sufficiently large n. If beH,
then V(pn, bn)-+V(p, b) by standard facts. Suppose that beH(c<>),
and let T be a truncated cone with vertex p which contains b. Then
bne T for sufficiently large n, and therefore ww = V(p, bn) —> F(ί>, b)
as n —• 00. However δ(vn, wn) ̂  2d(pn, p) as in the previous argument.
Since pn-*p as w-^oo, we get lim^^ F(ί?n, 6Λ) = limΛ^βo F(p, δΛ)= F(ί?, 6).

Let ψ: SH-+ H(°o) also denote the restriction of the function in
2.13, so that ψ(v) — 7«(°°). Then the functions μ x ψ: SH—>H x fί(cχ>)
and F | i ? x H(oo) are inverse homeomorphisms.

It is also easy to show that the angle function <̂ G(&, b) is con-
tinuous on {(p,a,b) e H x H x H: p Φ α, p Φ b). In fact we have the
relation cos « p (α, 6)) = <F(p, α), V(p, δ)>.

3* The horocycle topology* Analogous to the notion of sphere
centered at a finite point p of a Hadamard manifold is the notion of
limit sphere at an infinite point xeH(oo). Two points of H lie on
the same limit sphere at x if they are " equidistant" from x in a
suitable sense. In the hyperbolic plane, the limit spheres are horo-
cycles: Euclidean circles internally tangent to the unit circle.

Limit spheres have proved useful in studying the geodesies of a
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negatively curved manifold. For example, Hedlund, E. Hopf and
others used them to obtain mixing and ergodic theorems for the
geodesic flow on a surface of (nearly) constant negative curvature
[10], [11]. The technique of Hedlund can be extended to higher
dimensions [7]. Anosov has used limit spheres to prove the ergodicity
of the geodesic flow on a compact manifold of negative curvature [1].

In the next section we link limit spheres to the length-minimizing
properties of geodesies; in this section we show that they give rise
to a natural topology on H, the horocycle topology, fundamental to
later work. Our basic definitions derive from Busemann [4].

If p e H and 7 is any geodesic of H, then the function t-^d(p, yt) — t
is bounded below and monotone decreasing. In fact the function is
strictly decreasing if p does not lie on 7, for then if s < t we have
d(p, yt) < d(p, ys) + t — s. Thus the formula

fr(p) = lim d(p, yt) - t

defines a real-valued function on H. Then [4], [7]:
(1) fr is uniformly continuous and convex. In fact, \fr(p) —

(2) If β is asymptotic to 7 then fr(βs) — fr{βt) = t - s. In
particular, fr has no minimum.

The following crucial uniformity condition is proved in [7]. The
same conclusion is obtained by Busemann [4] under somewhat different
hypotheses including d(β, 7) = 0.

PROPOSITION 3.1. If β and 7 are asymptotic geodesies in H then
fβ — fr is constant.

If x e H(oz) and j ex we call fr a Busemann function at x. These
functions are analogues of the radius function q —> d(p, q) at a finite
point pe H. If / is a Busemann function at x and peH, then the
limit sphere at x through p is the set L(p, x) = {qeH:f(q) — f{p)}
The limit ball at x determined by p is the set N(p, x) = {qe H: f(q) <
f(p)}. Because of Proposition 3.1 these definitions are independent of
the choice of / at x.

It is easy to verify that L(p, x) is the topological boundary of N(p, x)
and that N(p, x) is the convex open set \Jt>^t{at), where a is the
geodesic such that α(0) = p and α(oo) = x. (Here Nt(at) is the open
ball with center a(t) and radius t.) The Euclidean and hyperbolic
spaces represent the two extremes with respect to geometric properties
of their limit spheres. In Euclidean space a limit sphere L(p, x) is
a hyperplane through p orthogonal to the direction x, and the corres-
ponding limit ball is the open halfspace composed of all geodesic rays
from p making angle <τr/2 with ypx. In hyperbolic space P (Poincare
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model) a limit sphere at x is a Euclidean sphere in P that is "tangent"
to P(oo) at x; the only geodesic from p contained in the limit ball
is the geodesic ypx.

If L is a limit sphere at x, then each geodesic 7 ex meets L at
precisely one point; also L = f~ι(a) for some aeR and fr(Ύt) = — ί.
Let ηL: H-+ L be the function that sends a point p e if to the unique
point at which 7PX meets L. We call ηL the projection on L.

PROPOSITION 3.2 If peH and L is a limit sphere at x then rjL(p)

is the unique point of L nearest p.

REMARK, A closed set A gΞ if will be called a Motzkin set if for
every point pe H — A there is a unique point η(p) in A nearest p.
Thus limit spheres are Motzkin sets. In Euclidean space a theorem
due to Motzkin states that the Motzkin sets are precisely the closed
convex sets. In [3] it is shown that any closed convex subset of a
Hadamard manifold H is a Motzkin set. The preceding proposition
shows that the converse is false for arbitrary H. Indeed, if every
Motzkin set in if is convex, then H is isometric to Euclidean space [4].

Proof of 3.2. Let / be a Busemann function such that L = /"^O).
Let us suppose first that p is inside L, that is f(p) < 0. Let a be
the geodesic joining p to x, parametrized so that ct(0) — Ύ](p) where
η = ηL. Then p = a(a) where a = d(p, r]{p)). If q Φ η{p) is any other
point of L then the function t —* d{q, at) — t decreases strictly to zero.
In particular d(q, p) — d(r)(p), p) = d(q, a(a)) — a > 0.

Suppose now that p is outside L, that is, f(p) > 0. Again let a
be the geodesic joining p to x parametrized so that a(0) — r/(p) e L.
Let q Φ Ύ]{p) e L. Then the law of cosines implies that ^CVP(q, at) ^
π/2 for any t > 0. Hence ^VP(p9 q) 2̂  ττ/2 and by the law of cosines
d(p, VP) < d(P, Q)> since q Φ η{p).

It follows that any two limit spheres at the same point xeH(oo)
are "parallel."

COROLLARY 3.3. Let L and U be limit spheres at xeH(co) and
let f be a Busemann function at x. Then for any points p e L, p' e U

d(L, U) = d(p, U) = d(p', L) = \fL- fL'\

= \f(p)-f(p')\.

Proof. Let Ύ] be the projection on U. Since η(p) lies on the
geodesic ΎPX it follows from (2) and 3.2 that

d(p, L) = d(p, ηp) = \fp - fηp\ = \fp - fp'\ .

Reversing the roles of p and p' we obtain the desired result.
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Limit spheres induce a natural product decomposition of H.

PROPOSITION 3.4. Let f be a Busemann function at xeH(°o),
and let L be a limit sphere at x. Then the function τ)L x / : H—+ L x
R1 is a homeomorphism.

Proof. We may suppose that L = /"^(O). If peH let a — Ύpx

so that α'(0) = V(p, x), where V is the vector field of 2.14. Now a(t) e
L if and only iff (at) = 0; hence by (2) f(p) = f(aθ) = t. Hence ηL{p) =
exp (f(p) V(p, x)) which shows that rjL and ηL x / are continuous. The
function ξ: L x R1 —* H given by ξ(q, t) = exp (—tV(q, a?)) is a conti-
nuous inverse of rjL x / . If p e H then for a as above we have
a'{f{p))- V(vL(p), X). Hence ξ(ηL(p), f{p)) = exp {-f{p)a'(f{p)) = α(0) =
p. On the other hand, if q e L and te R then clearly ηL{ξ{q, t)) = g
for all ί. If /3 is the geodesic from q to α?, then ξ(p, t) — β(—t) and
by (2) f(β(-t)) = ί.

Heretofore Busemann functions were known only to be continuous;
we now show they are C1. Although in special cases they are C°%
in general we do not know if they are C2.

PROPOSITION 3.5. Let H be a Hadamard manifold, x e H(^), and
f a Busemann function at x. Then f is C1, and grad / = — X where
X(p) = V(p,x).

LEMMA 3.6. Let xeH(oo) and for each integer n ^ 1 let pn and
qn be distinct points on a limit sphere Ln at x such that d(pn, qn) —+ 0
as n —> cχ3. // the sequence {pn} lies in a compact set then ^Vn{x, qn) —*
π/2 as n —> ̂ .

Proof. If Ln — f~\O) for a suitable Busemann function fn at x,
let Pn and Qn be the projections of pn and qn on / ^ ( l ) . Consider
the angles Θn = <£Pn(x, qn), φn = <„„(?*, Qn) and ωn = < P Λ ( Q Λ , P W ) .

Hence TΓ ̂  9>Λ + ^w + ω%. We will show (a) ωn —> 0 as w —• ©o, and
(b) cp% ^ π/2. It follows that lim inf θn ^ 7r/2. But by the reasoning
of Proposition 3.2 θn <̂  π/2 for every, %, so the result follows.

Let X(p) = F(p, a?). Then by definition Pn = exp (-X(pn)) and Qn =
exp (— X(qn)). Since {̂ %} and {g%} lie in a compact set and d(pn, qn) —> 0
it follows that d(Pn, Qn) —* 0, by the continuity of exp and X. Since
d(pn, Pn) = 1 it follows that ωn —* 0 as n —> ̂ . To prove (b) we also
use the law of cosines; since qn is the point of Ln nearest Qn it
follows that d(qn, Qn) ^ d(pn, Qn) and hence φn S

Proof of 3.5. Let V be a unit vector at P in H. We will show
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Since X is continuous, / has continuous directional derivatives and
is therefore a C1 function.

Since any two Busemann functions differ by a constant we may

FIGURE 1

suppose that f(p) = 0. Let θ = « > , -X(p)). It suffices to prove
(*) for θ <J 7r/2, for if θ > π/2 we may replace v by — v. For ε > 0
let pε be the projection of yv(ε) on L(p, x). Let Δ(ε) = <Z(pe, τ,(ε)) =
f(Ύv(e)) - f(p). Since cos # = - < ^ , X(p)> it suffices to prove that

(**) cos θ as ε —> 0

If z/(ε) = 0 for some ε > 0 then θ = π/2 by the law of cosines.
To prove (**) in this case it suffices to prove that f(Ύvt) = 0 for 0 <;
t ^ ε. If α = 7^ and 0 < t < ε, then cZ(7wί, as) - s > 0 for all s > 0
by the law of cosines. Hence /(7^) ^ 0. However by the convexity
of f,f(7υt) ^ max {f(p),f(Ύve)} = 0. Thus /(τ,ί) = 0 for 0 ^ t ^ ε.

We now assume that J(ε) > 0 for all ε > 0. We also assume that
θ Φ 0, otherwise the result is trivial. Hence δ(ε) = d(p, pε) > 0 for
all ε > 0. Consider the angles ψε = <p(i>e, 7vε), ωε = < P ε (p, τvε) and
θε = <(7Uε), -X(7,ε)). We show that (a) ωε-*π/2 as ε->0 (b) θε ->
^ as ε —• 0 and (c) ψε —> 7r/2 — 0 as ε —• 0. Now (a) follows immediately
from Lemma 3.6. Since cos θε = — <τ'(ε), X(Ύve)}, cos θε —> cos θ as ε —*
0, and hence flε —>0. Let rjε = <?£P(pε, -X(p)). Again by Lemma 3.6
it follows that rjε —• π/2 as ε —> 0. Since ψε + ωε + θε ^ TΓ it follows
that 3?e - 0 ^ ψε ^ TΓ - (ωε + θs). By (a) and (b) and the remark
above (c) follows.

By the double law of cosines A(ε) ^ δ(ε) cos ωε + ε cos θε. Since
δ(ε) ^ ε + Δ(ε) ^ 2ε we obtain

(A) 0 Δ{e)
2 cos ωε + cos θε

If θ = π/2 it follows from (a) and (b) that zί(ε)/ε — 0 as ε ^ 0, and
henceforth we assume that θ < π/2. Using the double law of cosines
again, we obtain
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ε <̂  <5(ε) cos ψε + A(ε) cos θε

<Ξ; COS ψε{A(ε) cos ωε + ε cos ψe) + A(ε) cos #ε ,

hence ε sin2 ψε ^ z/(ε)(cos ωε cos ̂  + cos θε). Since # < 7r/2 the term
in parentheses on the right hand side is Φ 0 for small values of ε,
and we obtain

(B) sin2 ψ ε < Δ{ε)
cos ωε cos ψε + cos #ε ~ ε

Combining (A), (B), (a), (b) and (c) we find that A(ε)/ε —> cos θ as ε —* 0.
We define the horocycle topology mentioned earlier. If N is a limit

ball at xeH(oo), we call Nx = N\J{x} an augmented limit ball at x.
Such sets appear as neighborhoods of x in automorphic function theory.

PROPOSITION 3.7. For a Hadamard manifold H there exists a
unique topology h on 3 such that

(1) h has the closure property.
(2) For each xeH(oo) the set of augmented limit balls at x is

a local basis for h at x.

Proof. Apply Lemma 1.3: Nx Π H = N is nonempty and open in
H. Nx Π Ny Π H(oo) is nonempty if and only if x — y. Since limit
balls are linearly ordered by inclusion, the intersection is either Nx

or Ny.
Note that h is always a T± topology; however it need not be

Hausdorff, for example when H = Rn.

PROPOSITION 3.8. The horocycle topology h is admissible.

Proof. We must prove the isometric extension, geodesic exten-
sion and intensive properties. The isometric extension property is
immediate since φN(p, x) = φ(\Jt>o Nt{at)) = \Jt>oNt{φat) = N(φp, φx),
where OL = j p x . To prove the geodesic extension property we must
show that if N is any limit ball at x and if 7 ex, then τ(ί) e N for
sufficiently large t. But N = {qe H: fr(q) < a} for some aeR. Since
fr(7t) = — t we have y(t)eN for t > \a\. To prove the intensive
property, let N= \Jt<o Nt(at) and ε > 0 be given. Then N' =
Uί>o Nt(cc(t + ε)) is also a limit ball at x = a(oo) and Nε(N') —
Uί>o Nt+e(a(t + ε)) = N, since Nt(at) is monotone increasing in t.

It follows from Proposition 1.4 that for any properly discontinuous
group D of isometries of H there exists a horocyclic limit set Lh(D)
whose properties and relationship to the cone limit set L(D) will be
examined in §4 and §7.

4. Axioms. The crucial property of a Hadamard manifold is
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its convexity (or straightness according to Busemann): given points
p φ q of H there is a unique geodesic ypq from p to q. It is natural
that we try to extend this property to H=H{jH(oo). If peH
and xe H(oo) then we have seen that there is always a unique geodesic
7PX from p to x. In the case of hyperbolic space the same is true
for two infinite points; however this last property may fail badly.
In Euclidean space, for example, the asymptote relation is parallelism,
and a(oo) = β(oo) if and only if a(— oo) = β(— oo). Hence x = α(oo) can
be geodesically joined only to — x = a(— oo). Furthermore the entire
space is filled by geodesies joining x to — x. Thus from our view-
point Euclidean geometry is distinctly pathological.

DEFINITION 4.1. A Hadamard manifold H satisfies

Axiom 1. if for any points x Φ y in £Γ(oo) there exists at least
one geodesic joining x and y;

Axiom 2. if for any points x Φ y in H(<^) there exists at most
one geodesic joining x to y.

Axiom 1 holds if the sectional curvature of H satisfies K ^ c < 0
(see Lemma 9.10 of [3]). In fact Axiom 1 is a natural replacement
for the condition K ^ c < 0. Many if not most of the known con-
sequences of the curvature condition can be derived from the axiom,
and as we show in the next section the axiom follows from consider-
ably weaker curvature conditions.

Axiom 2 holds if K < 0 and under considerably weaker condi-
tions. For us it is distinctly subordinate to Axiom 1 and its effect
is in general to sharpen results that can be derived from Axiom 1
alone. We call geodesies a and β of H equivalent if they have the
same endpoints at infinity without regard to orientation, that is, if
{̂ (oo), a(— co)}%= {/5(co), β{— oo)}. Thus Axiom 2 says that equivalent
geodesies are the same except for parameterization.

The following property is equivalent to Axiom 1 but is often more
convenient.

DEFINITION 4.2. H satisfies the Visibility Axiom if given p e H
and ε > 0 there exists a number r = r(p, ε) with this property: if
σ: [a, b]—+H is a geodesic segment such that d(p, σ) ^ r, then
<P(σα, σb) ^ ε.

If a geodesic segment σ is sufficiently far from p, then no
matter how long σ is, any two of its points subtend an arbitrarily
small angle at p. Roughly speaking, distant geodesies look small.

REMARK 4.3. (1) The Visibility Axiom stated for geodesic seg-
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ments holds also for geodesic rays or maximal geodesies. In fact
the same r = r(p, ε) works, by the continuity of angles.

(2) If the Visibility Axiom holds for one point p of H, then
by Proposition 4.4 it holds at every point of H.

A sequence {jn} of geodesies of H, maximal or not, converges to
a geodesic 7, written {yn} —>7, if for suitable parametrizations the
tangent vectors {7̂ (0)} converge in SH to 7'(0) and the domains of
{yn} converge to the domain of 7. We make frequent use of the
following fact: if each element of a sequence of geodesies meets a
compact set of H, then there exists a convergent subsequence.

PROPOSITION 4.4. The following are equivalent:
(1) H satisfies the Visibility Axiom.
(2) Let 7*: [an, bn] —• H be a sequence of geodesies in H, — co <:

an < bn ^ °°. / / 7»(αn) —> a? ami 7Λ(δΛ) —> ?/ as % —> co, w/^ere a? am? 7/ are

distinct points of H(o°), then every Ίn meets some compact set K of H.
Hence some subsequence of {yn} converges to a geodesic joining x to y.

Proof. Suppose Visibility holds at a point p e H. Then with the
notation of (2) the sequence {^p(Ύnan, Ύ%bn)} converges to ^Jx, y) by
the continuity of angles. Since x Φ y, ^CP(x, y) > 0; and Remark 4.3
(1) implies that there exists a number r > 0 such that d(p, 7») ^ r
for every integer n. Hence Br(p) meets every jn. Choosing a sub-
sequence if necessary and parametrizing suitably, we find that {7̂ (0)}
converges to a vector veS(q). Hence yn—+7V. By Proposition 2.14
the sequence {7»(0)} = {V(Ύn0, Ίnbn)} converges to V(q,y) and the
sequence { — 7ή(0)} = {Vjn0, Ύnan)} converges to V(q, x). Hence 7V joins
x to y.

To prove the converse, suppose that Visibility fails. Then for
some point pe H and some ε > 0 there exists a sequence {yn} of
geodesies of H such that d{p, yn) —> oo as n —> ̂  and <£p(lnan, 7nbn) ^
ε for every n. Choosing a subsequence if necessary, {yn(an)} —>xe
H(oo), {7.(6.)} -> 2/ G J3"(oo), and <p(α, ») ^ ε > 0. Therefore a? ^ τ/ But
by (2) every 7n meets some compact set which contradicts our hy-
pothesis that d(p, 7.) —> co as w —• co.

It follows that the Visibility Axiom implies Axiom 1. The con-
verse is proved in [13], thus we use the terms Axiom 1 and Visibility
interchangeably. If M = H/D is a complete manifold with curvature
K <£ 0 such that H satisfies Axiom 1, we call M a Visibility manifold.

COROLLARY 4.5. // H satisfies Axiom 1 then for any two points
x Φ y of H(oo) there exists a compact set K of H such that every
geodesic joining x to y meets K.
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The Visibility property is uniform on compact subsets:

COROLLARY 4.6. Let H satisfy the Visibility Axiom. Let K, a
compact subset of H, and ε > 0 be given. Then there exists a number
r — r(K, ε) such that if σ: [α, b] —> H is a geodesic segment satisfying
the condition d(σ, K) ;> r then <Z£P(σa, σb) <Ξ ε for every point pe K.

Proof. Assume the proposition is false. Then there exists a
sequence {pn}ξ^K and a sequence {σn} of geodesic segments, σn: [an, &„]—>
H, such that d(σn, K) —• oo as n —• oo but <^,Pn{onany σnbn) :> ε > 0 f or
some ε > 0 and every integer n. Choosing subsequences if necessary,
{Pn} -+peK, {σnan} -^xeH(oo) and {σnbn} -> y e iϊ(oo). By continuity,
*3CP(%9 V) ^ ε > 0 and hence x Φ y. By Proposition 4.4 every σn meets
some compact subset of H, contradicting the hypothesis that d(σn, K)-~+
oo a s % —• oo.

We derive further consequences of Axiom 1. lί p$A^ H the
angle ^CP(A) subtended by A at p is supf4G(α, 6): α, be A}.

PROPOSITION 4.7. Let H satisfy Axiom 1. Let {pn} be a sequence
in H that converges to xeH(co). Let W be any neighborhood of x
in H. Then < ^ ( i ? - W) -»0 as n — co.

Proof. We may suppose that W is a cone C{a'(G), e) where a =
7Pxo We must show that for any sequences {an} and {bn} C H — W
the angle ^Pn(an, bn) —>0 as n—> oo. It suffices to show that for any
sequence {bn} ̂  H — W we have <^Pn{p, bn) —• 0 as % —> co. For suffi-
ciently large n, ^P(pn, bn) ^ e/2 since pw —>α; and δ% g C(α'(0), ε). Let
<7Λ be the geodesic from pw to 6Λ. By Visibility, eZ(p, σn) ^ r for every
n and some r > 0. Let qn be a point on σn such that d(p, qn) ^ r.
By the law of cosines, ^Pn(p9 qn) —> 0 as ^ ~+ co. But for large n, pn Φ
qn and hence ^Pn{p, bn) = ^Pn(p, qn). The result follows.

In Euclidean space a limit ball is a half space, so the horocycle
topology is rather small and bears little relation to the cone topology.
The situation is much different if H satisfies Axiom 1.

PROPOSITION 4.8. Let H satisfy Axiom 1. Let W be a cone con-
taining a point xeH(°o)m Then W contains some limit ball N(p,x).
Thus the horocycle topology is larger than the cone topology.

Proof. Let W be a cone C(#'(0), ε), where <x — Ίpx. By Lemma
2.5 it suffices to prove the result for W of this form. Let r = r(p, e/2)
be the number in Definition 4.2. Then the limit ball N(ac(r), x) is
contained in W. If qeN(a(r),x) then there exists t > 0 such that
q € Nt(a(r + t)). The geodesic segment σ from a(r + t) to q lies in
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Nt(a(r + t)), hence d(p, σ) ^ r. Therefore <p(aj, q) = <£p(a(r + t), q)^
e/2 < e. Hence q e W.

The following result is immediate.

COROLLARY 4.9. Le£ D be a properly discontinuous group of iso-
metries of H. Let Lh(D) and L(D) be the horocycle and cone limit
sets respectively. Then Lh(D) g L(D) if H satisfies Axiom 1.

The corollary fails seriously in Euclidean space. For example,
let D be the cyclic group of isometries of R2 generated by the transla-
tion T: T(u, v) = (u + 1, v). Then L(D) consists of two points, the
endpoints of the geodesic represented by the #-axis. Lh(D), however,
contains every point of R2(°o) except the endpoints of the τ/-axis.

If H satisfies both Axiom 1 and Axiom 2 then there is a unique
geodesic yab joining any two distinct points a, b e H. Furthermore H
is continuously convex: if {an} —>α, {bn} —> b and Ίn — Ίa%hn^ then the
sequence {yn} converges to yab. This follows from Proposition 4.4.

In the remainder of this section we discuss some geometric
properties of H(oo) related to Axioms 1 and 2. These "boundedness"
conditions on ίZ"(oo) strongly influence the behavior of the asymptote
classes in any quotient manifold H/D.

A point xeH{oo) is special if for any 7ex there exists a compact
set KQ H such that for arbitrarily large positive values of ί, y
meets I(H)K = {φ(k): ke K, φ an isometry of H}. By definition of
the asymptote relation it suffices to verify this property for a single
geodesic y e x. If H is homogeneous or has a compact quotient H/D,
then every point of H(oo) is special.

If a, b are distinct points of iϊ(oo) let a A b be the set of all
geodesies joining a to b. The pair (a, b) is bounded if there exists a
compact set K — K(a, b) such that any geodesic in a A b meets K.
(If a A b is empty, the pair (α, b) will also be called bounded.) H is
geodesically bounded if every pair (α, b) with a Φ b in H(°°) x H(°o)
is bounded. If H satisfies either Axiom 1 or Axiom 2, then H is
geodesically bounded.

A point xeH(oo) is bounded if there exists C > 0 such that
d(y, σ) <L C for any two geodesies y, σ ex. The convexity of the func-
tion t—+d(yt, σ) implies that if every point of H(oo) is bounded, then
H is geodesically bounded. We now prove a partial converse.

PROPOSITION 4.10. Let H be geodesically bounded and let xeH(c°)
be special. Then x is bounded.

LEMMA 4.11. Let a and β be geodesies of H such that α(oo) =
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β(co) = x. If {pn} is any sequence in H converging to x then

<.Pn(
a(-^),β(-°°))^^ as n->oo.

Proof. Let q and g* be points in H that lie on a and β respec-
tively. By the angle sum property, < ^ t o * , /3(-°°)) ^ 3Cff*(p», ^) —̂  0
as n —•oo. The same argument shows that ^GΛ(<7, #(—°°)) —*0 as
n —• co. Since ^C.Pn(Q9 #*) —• 0 as n —» co, the law of cosines implies that

<*M- °°), /5(- - ) ) ̂  <*>(«(- ~ ) , ?) + <*»(?, ?*) + <,.(«*, /?(- ° ° ) )-
0 as ̂  —> oo.

Proof of 4.10. Let a; G H(oo) be special and let a ex. Then there
exists a bounded sequence {pn} g ίZ", a sequence {tn} £ i2 and a sequence
{?>*} £ /(Jϊ) such that φn(pn) = α(ί»), where ίw -> + co as n —> cχ>. By
choosing subsequences if necessary, {pn} converges to a point p and
{(<Pήlo°LY(t»)} converges to a unit vector v at p. By continuity φ~ι(x) —•
α = τv(co) and ζP~1α:(— co) —> b = τv(— <*>) as ^—>co. Let /Sea? be
arbitrary. We show that some subsequence of {ψnι°β} converges to
a geodesic β* in a A b. Since d(p, ΨήlΌβ) — d(φnp, β) is bounded,
some subsequence {Ψn^β} converges to a geodesic β*. By Lemma
4.11, < P ( 9 > ^ ( - oo), ̂ α ( - oo)) = < ^ P ( / 3 ( - oo), « ( - oo)) ~>0 as k-+ co.

Therefore Ψnlβ{— °°) —* 6, Φnlβi00) —>a, as fe —> co, and /3* lies in α Λ 6.

If /9, 7 are any two geodesies in x, let {φnjc} be a subsequence
such that {<PZl°β} and {<Pnl°Ύ} converge to geodesies β* and 7* in
a A b. Then d(y, β) - d ( ^ 7 , <Pήι

kβ) ^ d(7*, /S*) by continuity. If R
is any bound for the distance between any two geodesies in a A b,
then d(y, β) rg R for 7, β ex. Hence a; is bounded.

We say that #eiJ(co) is a ^ ero powί if d(y, σ) — 0 for any two
geodesies 7, σex. H satisfies the Zero Axiom if every xeH(oo) is
a zero point.

REMARK 4.12. The Zero Axiom implies Axiom 2 in a Hadamard
manifold H.

Proof. Suppose that geodesies 7 and σ have the same endpoints
in ϋΓ(co). Since t—>d(7t,σ) is bounded and convex it is constant.
But since d{yt, σ) —><Z(τ, <J) = 0 as t —> co, it follows that y = σ.

The following result is contained in the last paragraph of the
proof of 4.10.

PROPOSITION 4.13. // xeH(oo) is special and H satisfies Axiom
2 then x is a zero point.

COROLLARY 4.14. // every point of H(°o) is special, then Axiom
2 and the Zero Axiom are equivalent.



66 P. EBERLEIN AND B. O'NEILL

5* Curvature conditions* We find conditions on the sectional
curvature K of a Hadamard manifold H that imply that H satisfies,
separately, Axiom 1 and Axiom 2. We also show that these axioms
are independent.

By a flat strip in H we mean a totally geodesic isometric
imbedding JC: R x [α, 6] —• H. (Here it is understood that JC is C°°
extendable to a neighborhood of R x [a, b] in the Euclidean plane,
although of course the required properties need hold only on R x
[α, 6]). In paraticular, each longitudinal curve au(t) = x(t, u) of JC is
a geodesic of H and the flat strip is uniquely determined by its
boundary curves aa and ab. Note that all longitudinal geodesies of
x are equivalent, that is, they have the same endpoints in H(°°).
Conversely:

PROPOSITION 5.1. If distinct geodesies a and β of H are equiva-
lent then they are the boundary curves of a flat strip in H.

Proof. The equivalence of a and β means that, reversing orienta-
tion if necessary, a and β are asymptotic and so are the reverse
curves or and β~. Hence for some C > 0, d(ctt, βt) 5g C for all t e R.
Furthermore we may suppose that β is parametrized so that /3(0) is
the foot of α(0) on β. If c = d(a, β), let x: R x [0, c]-+H be the
function x(t, u) = σt{u) where σt: [0, c] —* H is the constant-speed geo-
desic segment from at to βt. We show that x is a flat strip where
each σt has unit speed.

The functions f(t) = d(at, βt) and g{t) = d(at, β) are bounded and
convex on R, hence constant. Thus f(t) =/(0) = #(0) = d(α, /9); that
is d(at, βt) = Iy( ί̂) = c for all £. It follows that each transversal σt

is orthogonal to both a and β, and each σt has unit speed.
Consider the vector fields xt = x*(d/df) and xu = x*(d/du) on the

mapping x. On α or /9 these are orthogonal unit vectors, and, since
xt is a Jacobi field along each transversal, (xty xu} — 0. Since u —>
\\xt(u)\\2 is a convex function it follows that 11 jct 11 ̂  1. Now fix a < b
and let h(u) — d(σau, σbu). By orthogonality h'{ϋ) ̂  0. Since h is
convex and h(ϋ) = h(c) = 6 — α we see that ft is constant. Thus for
arbitrary u e [0, c] the curve segment [α, 6] —* i ί given by t —> jc(ί, u)
has speed 11 jct 11 ^ 1, but joins points at distance b — a. Consequently
these curves are unit speed geodesies of H. Since xu xu is ortho-
normal, JC is an isometric immersion. Because H has sectional curva-
ture K ^ 0 and the parameter curves of x are geodesies it follows
from the Gauss equation that x is totally geodesic. Since H is
Hadamard, Λ: is necessarily an imbedding.

On any plane tangent to a flat strip the sectional curvature of
H is zero; hence
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COROLLARY 5.2. If K <0 then H satisfies Axiom 2.

In many classical arguments K < 0 can be replaced by Axiom 2.
On the other hand at least in dimension two it is not hard to con-
struct "nearly flat" Hadamard manifolds that satisfy Axiom 2. It
suffices to arrange for every geodesic eventually to pass through a
point of negative curvature.

We now consider a more quantitative way to measure globally
the curvature of a Hadamard manifold. Axiom 1 (like all the other
axioms in the preceding section) holds for K ^ c < 0 but not for
K = 0. Thus it is natural to look for ways to weaken the stringent
condition K^c<0 while still maintaining Axiom 1. Roughly speaking,
our scheme is to allow K to approach zero on tangent planes going
to infinity in H and to measure the rate of approach.

Let peH. For v e S(p) and t ^ 0 let kυ(t) be the minimum of
\K{π)\ for all planes π containing Yv(t). We say that H has curva-
ture order at most a e R at p provided that I kv{t)ta~ιdt — ^ for all

veS(p).
If a smallest such number exists it is called the curvature order

ω of H at p. Intuitively the larger ω is the flatter H is. For
example, if K ^ c < 0 then H has curvature order ^ 0 at every point.
Evidently Euclidean space must be given curvature order + oo, since
kv = 0 for all v. We will consider only ω <Ξ 2 (however see Proposi-
tion 5.11).

EXAMPLE 5.3. A Hadamard manifold of curvature order 2.

Let H be the plane R2 with Riemannian structure given classically
by E = 1, F = 0 G(u, v) = (1 + u2)\ Then H has curvature K =
— 2/(1 + u2). We assert that H has curvature order 2 at the origin
(and in fact at any point).

Let a be a unit speed geodesic from the origin and let k(t) — ka,i0)(t) =
2/(1 + u(at)2). By a well known result of Clairaut the function
g{a) sin φ is constant, where g{u) = 1 + u2 and ψ is the usual slope
angle of a. In the special case where a parametrizes the v-axis we

S OD

k(t)tdt = co; otherwise φ(t) —>0 as t—>co. Since E = 1 it

follows t h a t u(at)/t—+l as t—>co, and hence for any number a the

S oo Γoo

k{t)ta~ιdt and 2ία~V(l + *2) either both converge or both
1 J l

S co ί oo

Jc(t)tdt diverges and \ k(t)ta~ι converges for α < 2 .
This shows that H has curvature order 2 at the origin. In a similar
way one can construct examples of any curvature order.

A simple sufficient condition for curvature order is obtained as
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follows. Fix peH and for each t ^ 0 let μ(t) = min {kv{s): veS(p)
and 0 ^ s ^ t}. Thus μ(£) is the minimum of the absolute value of
sectional curvature on radial tangent planes at points of Bt(p).

REMARK 5.4. If a > 0 is a number such that taμ(t) —•> oo as ί->
oo, then ίf has curvature order <: α at p. In fact if veS(p) and
0 ^ s ^ ί then &,(s) ^ μ(ί), and therefore ['k^s^'ds ^ μ(*)(ία - l)/α.

Our aim now is to show that if ίZ" has curvature order ^ 2 at
one point p then Axiom 1 holds. To do so we shall apply the Gauss-
Bonnet theorem to the "surface" consisting of the union of all geo-
desic segments from p to a geodesic segment σ: [0, b] —> H that does
not contain p. Actually there may be no tangent plane at p, but
the Gauss-Bonnet theorem remains valid if the angle ^ ( # 0 , σb) is
replaced by the generally larger number Θ{p, σ) defined below.

We may assume that p does not lie on the geodesic extension
σ: R—>H. For each ue [0, b] let r(u) = d(p, σu) and let pu: [0, r(u)] —•
H be the geodesic from p to σ(u). Let D — {(£, u): 0 ^ t <̂  r(u), 0 ^
u <̂  6}. We call the image of x: D —• H given by (t, u) —> pu(t) the
radial triangle Σ from p to σ. Let πσ: [0, b] —>S(p) be the curve in
the unit sphere S(p) defined by (πσ)(u) — p'u(0). With the usual
Riemannian structure on S(p) we call the length L(πσ) of πσ the
curvilinear angle Θ(p, σ) subtended by σ at p. Since ^p(v, w) is the
Riemannian distance in S(p) from v to w, for any two vectors v and
te; it follows that <̂ G(σO, σ6) ^ Θ(p, σ). Let ω0 = <£σ0(p, cτ6) and α>6 =

PROPOSITION 5.5. A radial triangle Σ in a Hadamard manifold
H is a surface except possibly at p, and if G* denotes its Gaussian
curvature then

[ \ G*dA = Θ{p, σ) + ω0 + ωb - π .
J J Σ

To prove this we need two somewhat technical lemmas. Sub-
scripts t and u on x denote covariant differentiation, relative to the
Riemannian structure of H, along the parameter curves of JC. Note
that by the Gauss Lemma (xu xu} = 0.

LEMMA 5.6. For fixed ue[0, b] let u*eHp be the vector canoni-
cally corresponding to (πσ)'(u). Then

( 1 ) ΛΓttί(O, U) = ^ *

( 2 ) u*Φ0
( 3 ) d/dt\\x%(t,u)\\l\\u*\\ as ί - + 0
( 4 ) \ \ x u ( t , u ) \ \ ^ t \ \ u * || f o r ί ^ O .
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Proof. (1) By the first structural equation xut = xtu. But
*ί«(0, v) is just the Euclidean derivative of the function u —> x*(0, u) =
p'u(0) = (πσ)(u)eHp.

(2) For all ue [0, b] we have σ(u) = x(r(u), v). Hence σ'(μ) =
r'(u)xt(r(u), u) + xu(r(u), v). Since x f(r(^), %) = p'u(r(u)), and /θtt and
σ cross transversally (p is not on σ) we find that xu(r(u), u) Φ 0.
Let Y(t) = xu(t, v). Y is a Jacobi vector field on ρu such that F(0) =
0 and Y is orthogonal to pn. If Y'(0) — xut(0, u) were zero then we
would have Y=0 which contradicts the fact that Y(r(u)) = xu(r(u), u) Φ
0.

(3) From [2] we obtain lim^0+II Γ||'(ί) = \\Y\0)\\ = \\u*\\, by
(1) Since ί ^ O and 7 is a Jacobi field, || Γ||"(ί) ^ 0 for t > 0.
Hence the limit is monotone decreasing.

(4) Let g{t) — \\xu{t,u)\\ — ί|^*||. From the results above it
follows that 0(0) = 0, #'(ί) ^ 0 for ί > 0 and g"{t) ^ 0 for t > 0. Hence
^(0 ^ 0 for ί ^ 0.

The function x: D —> H is a C°° imbedding except possibly at
χ-\p). In fact E = \\xt\\2 = 1, F = <x,, xM> = 0 and G = | |x. | | a > 0
for t > 0. Thus x is an immersion and by Hadamard properties it
is necessarily an imbedding.

LEMMA 5.7. Let Γ(t) he the total geodesic curvature of the pa-
rameter curve τt: [0, b] —> H given by u—>x(t, u). Then \\rί\t^Γ(t) —
θ(p,σ).

Proof. Because E = 1 and F = 0 for x, if the radial suface
Σ = x(D) is oriented by {xu xu) we have

Γ{t) = \ κgds - -\b<x**>x*>(t, u)du

for t > 0. A priori xuu is computed using Riemannian structure of
Σ as a submanifold of H, but we may assume that it derives from
the structure of H itself, since the difference is normal to Σ hence
orthogonal to xt. Now - (xUUJ xt} = - d/du(xu, xt) + <xM, xtu) = <xM, xtu).
Hence

j 0 \\Xu\\

= \ —| |x j | (£, u)du for t > 0 .

By Lemma 5.6 (3) the integrand is monotone decreasing to [||t&*|| =
|i 7Γ6τ'(̂ ) ]|, so the result follows.

Proof of Proposition 5.5. For 0<t<d(p, σ) let Σt = {q e Σ: d(p, q)^



70 P. EBERLEIN AND B. O'NEILL

t). Using the preceding lemmas the result is obtained by taking
limits as ί—>0 in the Gauss-Bonnet formula for Σt.

LEMMA 5.8. Let H have curvature order <^ a at p. Then given
A > 0 there exists r > 0 such that

Vkv{t)ta~ιdt ^ A for all veS(p) .
Ji

Proof. Let k be the real-valued function on SH such that k(v) =
min {\K{π)\: veπ}. A standard argument shows that k is continuous.
Since the function SH x R —> SH: (v, t) —• γv(t) is smooth it follows
that the function SH x R—>R: (v, t) —• k(y[(t)) = kv(t) is continuous.
For fixed r its restriction to S(p) x [0, r] is uniformly continuous,

S r
kv(t)ta~1dt is

continuous. The result follows.
The following is a refinement of Lemma 9.10 of [3].

PROPOSITION 5.9. Let H be a Hadamard manifold. If H has
curvature order <; 2 at a point p, that is, if

S CO

kv{t)tdt — oo for all v e S(p)

then H satisfies Axiom 1.

Proof. Given ε > 0 choose r by the preceding lemma so that

I kv(t)tdt ^ π/e for all veS(p). Let σ be a geodesic segment from m

to n in H such that d(p, σ) ̂  r. We show that <£v{m, n) ̂  ε. Let
Σ be the radial surface from p to σ with parametrization x as defined

earlier. By Proposition 5.5, π ^ I i | G* \dA, where G* is the Gaussian

curvature of Σ. By a lemma of Synge, G* ̂  Ktί 0, where iΓ is evalu-

ated on the tangent plane of Σ. Thus π ^ \ \ \K\dA. Let us write

ku(t) for jfcw(i) where w = ̂ (0). Then \K\ at x(ί, w) is ^ku(t). For
Λ: we have £7 = 1, F = 0 and by Lemma 5.6 (4), l/G(t, u) ̂  t\\πσ'(u) ||.
Hence

π ^ (( |-K"|dA ^ [Ί[rku(t)tdt\\\πσ'(u)\\du

We now give examples showing that Axioms 1 and 2 are inde-
pendent. The first of these will be useful in later developments.



VISIBILITY MANIFOLDS 71

EXAMPLE 5.10. A Hadamard manifold satisfying Axiom 1 but
not Axiom 2.

Let H be the plane R2 with the Riemannian structure E = 1,
F = 0, G = g\u) where g" ^ 0 and

_ Jl for \u\ ^ 1

(cosh u for \u\ ^ 2 .

Then if is a Hadamard manifold for which the vertical strip | u | :g
1 is Euclidean, but K = — 1 for |w| ^ 2. A Clairaut argument as in
Example 5.3 shows that every geodesic starting at the origin, except
parametrizations of the i -axis, eventually leaves the strip \u\ ^ 2.

S oo

kw(t)tdt = cofor all but two unit vectors at the origin.
By modifying the proof of Proposition 5.9 it can be shown that,

in spite of these two exceptions, Axiom 1 holds for H. However
Axiom 2 fails since H contains a flat strip.

If we make the further assumption that g(u) = g(~u) then the
maps (u, v) —+(—u, v + 1) and (u, v) —> (u, v + 1) are isometries of H.
Hence we can induce metrics on the Mobius band and cylinder that
satisfy Axiom 1 but not Axiom 2.

To see that there are Hadamard manifolds satisfying Axiom 2
but not Axiom 1, we note that one can easily construct two-dimensional
manifolds with K < 0 and finite total curvature. However, if H
satisfies Axiom 1 it has infinite total curvature. In fact, for each
n ^ 3 divide H into equiangular sectors Δiy 1 ^ i ^ n, by means of
geodesies from a fixed point p e H to points XieH(oo). By Axiom 1
there is a geodesic joining x{ to xi+1. By the Gauss-Bonnet theorem

\K\dA ^ π - (2π/n), so that

\K\dA ^(n- 2)π .

If there are severe restrictions on H, for example if H covers a
compact manifold in the Riemannian sense, then it is unknown if
Axioms 1 and 2 are independent in H.

PROPOSITION 5.11. // H is a Hadamard manifold such that
kv{t)dt = oo for every v e SH then H satisfies the Zero Axiom.

0

The proof is a tedious computation which we omit since we do
not use the result.

6. Axial isometries. In this section and the next we study
the isometries of a Hadamard manifold H both individually and as
elements of properly discontinuous groups, with emphasis on the fixed
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points at infinity. If φ is an isometry of H the displacement func-
tion gφ(p)\ = d(p, φp) divides the isometry group of ifinto three classes.
φ is said to be elliptic if gφ has minimum zero, axial if gφ has posi-
tive minimum and parabolic if gφ has no minimum. Hence elliptic
isometries are those with fixed points in H. Since our main interest
lies in properly discontinuous groups we shall consider only nonelliptic
isometries. Hence gφ will always be a smooth convex function [3].

It is well known that φ is axial if and only if φ translates a
geodesic 7, that is φ(yt) = Ύ(t + a) for all t e R and some a Φ 0. (The
geodesic 7 is then called an axis of φ.) Furthermore peH is a
minimum point of gφ if and only if φ translates the geodesic yp,φP.
Hence the minimum set of gψ is the union of the images of all geo-
desies translated by φ and each is translated by ± m i n ^ .

Using the same notation for an isometry of H and its asymptotic
extension to H we obtain the following result.

LEMMA 6.1. Every (non-elliptic) isometry φ of H has a fixed
point in H(<^>).

Proof. Since H is a topological %-cell we may apply the Brouwer
fixed point theorem.

The result below gives a useful way to find fixed points in H(°o).

LEMMA 6.2. Let φ be an isometry of H. If peH then any accu-

mulation point in H(oo) of the set {φn(p): ne Z\ is a fixed point of φ.

Proof. Suppose t h a t {φ%k{p)} —• x e H(oo) as k —> oo. By continuity

{φnk+1(p)} -> φ{x) as fc -> oo. But

d(φnk+ί(p), φn*(p)) = d{φp, p) .

Hence by the law of cosines <^P(
(Pnk(p), φnk+1(p)) —>0 as &-+co, and

φ(x) = x.
We note that by the law of cosines the set of infinite accumula-

tion points in the preceding lemma is independent of the choice of
the point p. In general we will not obtain all fixed points of φ in
this manner.

EXAMPLE 6.3. Let H be the Euclidean space Rn, and let φ be
a translation. Then {φn(0): ne Z} has only two accumulation points
in Rn(oo)1 the endpoints of the axis of φ which passes through the
origin. However, φ fixes every point of Rn(oo) since it maps every
geodesic to a parallel geodesic.

In an arbitrary Hadamard manifold the preceding example shows
that the fixed point set of a nonelliptic isometry φ gives only a very
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weak description of the geometrical character of φ. If Axiom 1 is
imposed on H the situation changes dramatically and we obtain the
following fundamental result.

PROPOSITION 6.4. Let H satisfy Axiom 1. // a non-elliptic iso-
metry fixes distinct points x and y of H(o°), then φ translates a geo-
desic joining x to y. Furthermore x and y are the only fixed points
of φ.

We shall see in a moment that ψ may translate many geodesies
joining x and y. The following argument uses some facts about
convex functions drawn from the beginning of §11.

Proof. That φ fixes xeH(^) means that φ°a is asymptotic to
a for all a ex. Hence for each a e x we have gΨ{oct) = d(at, φoct) ^ C
for all t >̂ 0. Thus the convex function gφ is monotone decreasing
on x and similarly on y. It then follows from Proposition 11.3 that
g9 has a minimum, and in fact that there exists a geodesic 7 joining
x and y with 7 S Min (/).

Next we show that ψ translates 7. Since gψ has a minimum at
7(0), φ translates the geodesic β from 7(0) through 97(0). By Corol-
lary 4.5 we may choose C > 0 such that d(af β) <̂  C for any geodesies
a, β joining x to y. Then d(β(na)} 7) = d(φny(0), 7) = d{φnΊ, 7) ^ C
for any positive integer n. Hence β(oo) = 7(00). It follows that β =
7 since both geodesies contain 7(0).

Finally x and y are the only fixed points of φ. If z were a
third, then φ would translate a geodesic from x to z by the argu-
ments above. However we shall prove in Proposition 6.7 (3) that
any two axes of ψ have the same endpoints.

We can restate this result in the following form, reminiscent of
a definition from automorphic function theory.

THEOREM 6.5. Let H satisfy Axiom 1. Then every non-elliptic
isometry of H has at most two fixed points in H(°°): one if parabolic
and two if axial.

In automorphic function theory one classifies the linear fractional
transformations that preserve the disc by the number of their fixed
points on the unit circle. Theorem 6.5 is the key to further genera-
lizations of many classical results of automorphic function theory and
of geodesic flows [7].

If Axiom 1 holds then it follows by Proposition 6.7 and the results
above that for a nonelliptic isometry φ of H the sequences {φn(p}},
n ^ 0 and {Φ~n(p)}, n ^ 0 converge to the fixed points of φ if φ gene-
rates a properly discontinuous group.
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Let ψ be an isometry of H with fixed point xeH(oo). Then φ
carries any limit sphere at x into another limit sphere at x. To each
such ψ we associate the signed displacement Tx(φ) which is positive
if φ expands limit spheres at x, negative if it contracts them and
zero if it preserves them. This gives another tool for the study of
the fixed points of φ.

More explicitly, let xeH(co) be fixed by an isometry φ of H
and let fr be a Busemann function at x. Then fro<p = fφ-ir. In fact
Λ-ir(P) = lim^o. d(p, φ-'Ύt) - t = l i m ^ d(φp, Ύt) - t = fr(<Pp). By Pro-
position 3.1 there exists a well-defined number Tz(φ) which is the
value of the constant function f°φ — f for every Busemann function
/ at x. By Corollary 3.3, | Tx(φ)\ = \fφp - fp\ = d(L(φp, x), L(p, x)),
and hence T{φ) is the signed distance from the limit sphere L(p, x)
to the limit sphere L(φp, x). The following are clearly equivalent:
(1) Tx(φ) = 0, (2) foφ = / for every Busemann function / at x, (3)
φ(L) = L for every limit sphere L at x, (4) φoτjL = Ύ]Loφ, where ηL

is the projection on L.

PROPOSITION 6.6. (1) // xeH(oo) is a fixed point of φ then
I Tx(φ) I ^ inf gφ. Furthermore if x is an endpoint of an axis a of φ
then I Tx(φ) | = min gφ.

(2) Let IX(H) be the group of isometries of H that fix xeH(c^).
Then Tx: IX{H) —> R is a homomorphism into the additive group of
real numbers.

Proof. (1) By Proposition 3.2, for any point peH we have
gψ(p) = d(p, φp) ^ d(p, L{φp, x)) = \f(p) - f(φp) | - | Tx{φ) \. In the
axial case, if φ(aϋ) = a(a) then φ(aθ) is the projection of <x(0) on
L(φaO, x) = L{aa, x ) . H e n c e \a\ = m i n gφ = d(aθ, L) = | Tx{φ) \.

( 2 ) Tx{φof) = foψof -f= [(foφ - f)oψ] + [fof - f]= Tx(φ) +

TM)
In the remainder of this section we consider axial isometries,

leaving parabolic isometries for the next section. If φ is an element
of a properly discontinuous group D, then an axis a of φ in H pro-
jects to a closed geodesic πoa in H/D. Conversely, if 7 is a closed
geodesic in H/D then every lift of 7 to H is an axis of some element
φ 6 D. Example 6.3 shows that an isometry φ may have many dif-
ferent axes. We now collect some elementary axial properties.

PROPOSITION 6.7. // φ is an axial isometry of H then
(1) φ generates a properly discontinuous group.
(2) If a is an axis of ψ then for a suitable orientation of a,

Ψ~n{v) ~>oί(— oo) and φn{p) —*a(oo) for any point peH as n-+co.
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( 3) All axes of ψ are equivalent, that is, they have the same end-
points.

(4) If φ translates a and β, then φ translates every longitudinal
geodesic in the flat strip [cc9 β],

(5) If an isometry ψ commutes with a nontrivial power of φ,
then ψ fixes the two endpoints of the axes of φ.

Proof. (1) Let φ translate a geodesic a by a ^ 0. It pe H
let a(t) be the foot of p on a. Then φn{p) has foot φn{at) = a(t + no)
on a. Since perpendiculars from a geodesic spread apart in H,
d(p, φnp) ^ d(a(t)f a(t + no)) = \na\ ^ |α | for n Φ 0.

(2) Let φ translate a by a Φ 0. Reversing the orientation of a
if necessary, we may assume that a > 0. For every integer n we have
d(φnp, a(na)) = d(p, a(0)), and the result follows by the law of cosines.

(3) follows immediately from (2).
(4) Parametrize a and β so that d(at, βt) = d(a, β) for all t e

R. If pe [a, β] lies on the perpendicular transversal from a(t) to
β(t), then φ(p) lies on the transversal from oc(t + a) to β(t + α).
Therefore [a, β] is invariant under φ. Since d(j), α) = d(φp, a) it fol-
lows that φ(p) lies on the longitudinal geodesic through p, and hence
φ translates the (Sp) longitudinal geodesic ΊV,ΨP with displacement a.

(5) Suppose ψφn — φnψ. We may assume that n > 0. If <p
translates α by α > 0 then φn translates a by na > 0. Since φnψ(at) =
ψφn(at) = ^(α(ί + wα)) it follows that <£>" translates ^oα by wα By
the argument of (2) the result follows.

PROPOSITION 6.8. Let a be an axis of an isometry φ of H with
endpoints x and y. Let ψ he an isometry of H that fixes one of these
endpoints and such that ψ and φ generate a properly discontinuous
group. Then ψ commutes with a power of φ, and hence fixes the
other endpoint of oc.

Proof. Let ψ(y) = y for example. Orient a so that a(oo) = y,
and if necessary replace φ by φ~ι so that φ translates a by a > 0.
Let p = ct(0) and for an integer n > 0 consider d(p, φ~nψφnp) =
d(φnp, ψφnp) = d(a(na), ψa(na)). Since ψ(y)— y, oc and ^oα are asymp-
totes and there exists C > 0 such that d(p, φ~nψφnp) <̂  C for every
n > 0. By proper discontinuity, φ~nψφn — φ~mψφm for integers m Φ
n. Thus ψ commutes with φm~n. By the preceding proposition ψ
fixes x also.

If ψ is known to be axial we can strengthen Proposition 6.8 as
follows.

PROPOSITION 6.9. Let φ and ψ be axial isometries of H that
generate a properly discontinuous group. If φ and ψ have asymptotic
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axes, then there exist integers m, n such that φm — ψ%. Hence the
axes of φ and ψ are equivalent.

Proof. Orient the axes ex and β so that a(oo) = £(oo). Replacing
φ and ψ by their inverses if necessary we assume that φ translates
a by a > 0 and ψ translates β by b > 0. For each integer n ^ 1 let
β(tn) be the foot of a(na) on β. Then there exists an integer m =
m(ri) such that | tn — mb | < b. Now d(aθ, ψ~mφna0) = d(ψma0, φna0) <;
d(ψma0, ψ'mβ0) + d(β(mb), β(tn)) + d(β(tn), a(na)). If C = d(αθ, /30) then
d(α£, β) SC for all ί ^ 0, and hence d(aθ, ψ~mφnaϋ) ^ b + 2C. The
result follows by proper discontinuity.

We now consider the simplest of the three types of manifolds
mentioned in the Introduction.

DEFINITION 6.10. Let ΰ be a properly discontinuous group of
isometries of H. We say that D (and the manifold H/D) are axial
if there are distinct points x, yeH(^) such that every iΦφeD
translates a geodesic from x to y.

Hence D is axial if every 1 Φ φ e D is axial and all axes are
equivalent. In view of Proposition 6.9 it would suffice to require
that all axes be asymptotic.

If Axiom 2 holds for H, then every element of an axial group
G translates the same geodesic and it is well known that G is infinite
cyclic. Our aim now is to prove:

THEOREM 6.11. An axial group D on an arbitrary Hadamard
manifold H is infinite cyclic.

The following argument is a modification of the proof of a more
general result in [9].

LEMMA 6.12. Let φ, ψ be isometries of H that translate a geo-
desic 7. Let CΨ, Cψ be the minimum sets of the displacement functions
gφ, gψ respectively. Then either CΨ a Cψ or C? ΓΊ Cψ is nowhere dense
in Cψ.

Proof. Let β be a geodesic equivalent to 7. We show that
either ψ translates β or the intersection of the flat strips [β, 7] and
[φβ, 7] is 7. Suppose p ί 7 lies in the intersection of both strips, and
let q be the foot of p on 7. Let c = d(β, 7) = d(φβ, 7). Let σ: [0, c] —>
H be the unit speed geodesic segment such that σ(0) = q and σ passes
through p. Then σ is a perpendicular transversal in both strips,
and σ(c) lies in φβ and β. Hence φ translates β.

Suppose that Cψ Π Cψ contains an open set U of Cψ. Let p e U
and let a be the geodesic through p translated by ψ. Since the axes
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of φ and ψ are equivalent, φ translates a. Let β be any axis of ψ.
In the flat strip [β, a] an initial segment of the perpendicular trans-
versal starting at p lies in CΨ. Hence φ translates longitudinal geo-
desies in [β, a] that are close to a. Since the intersection of [β, a]
and [φβ, oc] is larger than a, the preceding remark implies that φ
translates β. Thus Cφ^Cψ.

An element ψ of a group D is a root of φeD if ψk = φ for
some integer fe. If | k\ ̂  2 then f is a proper root; φ is rootless if
it has no proper roots in D.

LEMMA 6.13. Let D be an axial group. Then every element of
D has a rootless root.

Proof. Let IΦφeD. The closed set Cφ is convex, and by [6]
any closed (totally) convex subset of H is a topological manifold of
dimension k ^ dim H. Let 7 be an axis of φ, and let ψ generate
the cyclic subgroup of D that translates 7. Since ψ is a root of φ
it suffices to show that ^ has a rootless root. If ΎJ is a proper root
of ψ, then r] does not translate 7 and by Lemma 6.12 Cη is nowhere
dense in Cφ (Cη S CV, since any axis of η is an axis of ψ). Thus
dim Cv < dim CV. Since dim CV is finite the process of extracting
proper roots must terminate in a rootless root of ψ.

To prove Theorem 6.11 we first note that D is abelian; in fact
if x and y are the endpoints of the axes of D then, by Proposition
606, Tx is a homomorphism of D into R whose kernel is the identity.
By the preceding lemma, D contains a rootless element φ Φ 1. We
assert that ψ generates D. Let ψe D. By Proposition 6.9 we
conclude (*), φm = ψn for some m, w. It is well known that D^π^H/D)
is torsionfree, and we can thus assume that m and n are relatively
prime. Then mp + nq = 1 for some p, g. Hence by (*) we obtain
φ = ψnvφn<t = (ψvφψ. Since φ is rootless, n = ± 1 . Hence by (*) we
conclude that ψ is a power of φ.

We give a sufficient condition for Z) to be axial.

PROPOSITION 6.14. Let H be geodesically bounded (§4) and let D
be a properly discontinuous group of isometries of H with a central
axial element. Then D is axial.

Proof. Let φ be a central axial element, and let a be an axis of
ψ with endpoints x and y. If φ fixed a third point zeH(co), then
gφ would have a minimum on every point of Ίvz where p is a point
of a. Hence the axes of φ would not meet a compact set in H, con-
tradicting the assumption that H is geodesically bounded. Thus x
and y are the only fixed points of φ.
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Since φ is central the displacement function gψ induces a convex
function / on HID such that gφ = foπ, where π: H—+ H/D. The
minimum set of / is always totally convex and is compact since H
is geodesically bounded. By Proposition 10.15 of [3] every element
of D is axial. Let ξ e D and let β be an axis of ξ. Since φ is central,
φ fixes the endpoints of β by Proposition 6.7 (5). Hence β joins x
to y by the remark above, and D is axial.

REMARK. The result fails if the central element is parabolic or
if H is not geodesically bounded. If T is a flat torus R2/D, then
D F& π^T) is an abelian group of axial isometries. However R2 is not
geodesically bounded, and T is not axial. From [3] we see that M =
R x T is a parabolic manifold with K= — 1. Hz is geodesically
bounded, but M is not axial.

PROPOSITION 6.15. If M = H/D is axial, then every closed geo-
desic Ί of M is simply closed. Furthermore, if 7 has minimum
period its image Ί{R) is totally convex.

Proof. If 7 is a closed geodesic of period c in M then 7 has a
lift a that is translated a distance c > 0 by some φ e D. If 7 is not
simply closed there exists f e f l and numbers 0 ̂  a < b <J c such that
ψ((xά) = oίb and b — a < c. By hypothesis, ψ fixes a(oo). Since α
and ψoa are asymptotes with the point ab in common, ψoa is a re-
parametrization of a; hence ψ*(α:ί) = a(t + 6 — α) for all t. Since b — a<c
this contradicts the fact that 7 has period c.

That 7 has minimum period means 7 has a lift # that is trans-
lated by a generator φ of D. Let σ be a geodesic segment in M
with endpoints in jR, say cr(O) = 7(0) and σ(a) — 7(6). Let τ be the
lift of <7 such that τ(0) — tf(O). Since D is cyclic, there is an integer
n such that φnab = rα. It follows that r lies in aR; hence σ lies in

COROLLARY 6.16. If M = H/D is an axial manifold, then M is
a smooth vector bundle over a circle.

Proof. The preceding result shows that if 7 is a closed geodesic
of M having minimum period, then C = Ύ(R) is a totally convex im-
bedded circle. It follows from [3] that the exponential map is a diffeo-
morphism of the normal bundle of C onto M.

If H satisfies Axiom 2, then an axial manifold contains a unique
closed geodesic, the projection of the unique axis of D. If Axiom 2
fails there will in general be infinitely many closed geodesies, even
if Axiom 1 holds. However these geodesies are strongly related as
we now see. Recall that geodesies in H are equivalent if they have
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the same endpoints, regardless of orientation. As with the asymptote
relation we say that geodesies a and β of M — HID are equivalent
if they have lifts to i ϊ that are equivalent. This is indeed an equivalence
relation on the geodesies of M — HID which is trivial when Axiom 2
holds. It follows by Proposition 6.9 that closed geodesies a and β in
M are equivalent if and only if they are asymptotic.

REMARK 6.17. If A is an equivalence class of closed geodesies
in M = HID (not necessarily axial) then any two elements of A are
homotopic by means of a flat, totally geodesic homotopy whose inter-
mediate curves are also elements of A.

Proof. (Compare 3.5 of [3].) Elements α, β of A have equivalent
lifts α*, β* to H. Let φ translate α* and ψ translate β*. By Propo-
sition 6.9 φm = ψn = σ for suitable integers m, n. Since σ translates
α* and β*, by Proposition 6.7 (4) σ translates each longitudinal geo-
desic of the flat, totally geodesic strip Λ: with boundary a*, β*. Thus
πoχ is the desired homotopy.

The elements of an equivalence class of closed geodesies in M =
H/D may have different periods even if H satisfies Axiom 1.

EXAMPLE 6.18. Let H be the Hadamard manifold in Example
5.10, so that H satifies Axiom 1. Let φ be the isometry φ(u, v) —
( — u, v + 1). Then φ translates only the v-axis β, but φ2 translates
each element in the set A* of vertical geodesies in the strip \u\ ^ 1.
If D is the group generated by φ then M = H/D is axial, an open
Mobius band. The equivalence class A of closed geodesies of M is
the projection of A* and the union of all geodesies in A is a flat
Mδbius band with boundary. The central closed geodesic πoβ has
period 1, while all others have period 2.

Even if M is orientable the closed geodesies in an equivalence
class may have different periods. For an integer k let rj be the rota-
tion of E2 through the angle 2π/k. On Rz = R2 x R let <p(p, t) =
(ηp, ί + 1) and let D be the group generated by φ. The geodesies
normal to the xy plane project to an equivalence class of closed
geodesies in M = H/D. The projection of the z-axis has period 1,
while all others have period k.

7* Parabolic isometries* At most points of comparison the
behavior of a parabolic isometry φ of a Hadamard manifold H can be
considerably more complicated than that of an axial isometry; we
have no direct link between φ and the geometry of H comparable
with the notion of axis. For example, in the preceding section we
saw that a group G of axial isometries with common fixed point in
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£Γ(oo) must be infinite cyclic. By contrast if G consists of parabolic
isometries Proposition 9.1 shows that a common fixed point imposes
no algebraic restriction whatsoever on G.

We begin this section by considering the geometrical significance
in H/D of the horocyclic limit set of D. The importance of limit
spheres in the study of parabolic isometries is illustrated by Propo-
sition 7.8 which asserts that a parabolic isometry φ preserves the
limit spheres at some fixed point xeH(oo). This strengthens the
analogy between φ and a rotation of H about a finite point, and
leads to a satisfactory structure theorem (7.10) for parabolic mani-
folds, the second of the three types mentioned in the Introduction.
(Theorem 7.10 shows that the common fixed point condition has strong
geometric—if not algebraic—consequences.) Finally under mild con-
ditions we show that if xeH(oo) is a parabolic fixed point, then the
geodesies of πa(x) are divergent in M. The scheme of the proof is
simple: an isometry φ of H determines a free class of loops in
M: F(φ) = {π°7P,φp\pe H}. If φ is parabolic then F{φ) has no shortest
element (closed geodesic); hence a minimizing sequence in F(φ) must
escape to infinity—along the projection of the fixed point x.

Recall from § 1 that the projection π: H —> M = H/D induces a pro-
jection πa of JEΓ(OO) onto the set A(M) of asymptote classes of M.
Thus for xeH(oo) we can study πa(x) in terms of the relation between
x and D. The following generalizations of the notion of minimizing
geodesic are basic:

DEFINITION 7.1. A (unit speed) geodesic 7 in M is (1) almost
minimizing if there is a number c > 0 such that d(yθ, Ύt) ̂  t — c for
all t, and (2) ultimately minimizing if there exists a number a such
that 7|[α, oo) is minimizing, that is, d(cta, at) — t — a for all t ^ α.

We say that an asymptote class y e A(M) is [almost, ultimately]
minimizing if every geodesic 7 e y is [almost, ultimately] minimizing.
Further, xeH(oo) is [almost, ultimately] D-minimizing if πa(x) is
[almost, ultimately] minimizing.

Obviously, ultimately minimizing implies almost minimizing, but
the example below shows that the converse is false (at least for non-
compact surfaces). Any geodesic asymptotic to an almost minimizing
geodesic is itself almost minimizing. We do not know whether this
asymptote property holds for ultimately minimizing geodesies. Never-
theless asymptote classes of both kinds arise naturally as we shall see.

EXAMPLE 7.2. A geodesic (in a Visibility manifold) that is almost
minimizing but not ultimately minimizing.

Let a, β, 7 be mutually orthogonal geodesies starting at the
origin of the Poincare ball model P 3 of hyperbolic 3-space. Let Paβ
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be the totally geodesic surface containing a and β (so Paβ is a hyper-
bolic plane). For each ε > 0 let Cε be a C°° convex curve in Paβ that
(a) starts at oc(ε), (b) contains the segment oc([ε/2, ε]) and (c) asymp-
totically approaches β. Revolving Cε about β produces a surface Tε

with boundary dTε a hyperbolic circle of radius ε, base an annulus
of radii ε/2, ε in Par, and Gaussian curvature K ^ — 1 (by the Gauss
equation for Tε a P3). Call Tε a contracting tube. (If instead of (c),
C eventually curves away from β, Tε is an expanding tube.) We
can attach Tε to a hyperbolic plane P at a point p by deleting the
ε-neighborhood N of p and fitting Γe in an obvious way around the
boundary of N. The result is a complete K ^ — 1 surface.

To construct the surface used for the example, fix a geodesic a
in the plane P, and for each n ^ 1 let Tn be a tube whose boundary
dTn has radius 1/2*. Let ilf be the (complete, K ^ — 1) surface
obtained by attaching each Tn to P so that dTn is tangent to α: at
a{n) and is above [below] a for n odd [even]. By a limit argument
there is a geodesic /3 in M such that /3(0) = α(0) and /5 passes above
[below] the tube Tn for n odd [even]. (Necessarily β will rise up
each tube somewhat.) For each n, β clearly crosses a at a unique
point β{tn) = a(sn) such that n < sn < n + 1.

By the triangle inequality, the length tn — tn_t of β | [tn_u tn\
satisfies

since a is a minimizing geodesic of M, summing the inequality above
yields c£(/30, βtm) = sm^ tm — 2 for all m; hence β is almost minimizing.
But since tn — tn^ > sn — sn - l j /S is not ultimately minimizing.

We now relate almost minimizing geodesies in M to the horocyclic
limit set Lh(D).

LEMMA 7.3. Let a be a geodesic in H with α(oo) = x. Then
D(at0) Π N(atl9 x) = Π for tQ ^ t, if and only if d(πat0, πat) :> t — tt

for all t.

Proof. The limit ball N{atux) = {Jt^N^at). The following
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assertions are equivalent: D(at0) Π N(cctl9 #) = •>" D(at0) Π Nt_tι{at) = •
for all t ;> t,; d(at, DaQ ^ t - t, for all t ^ t,; d(πat, πaQ ^t - tx

for all t ^ t,.
A straightforward application of this lemma gives

PROPOSITION 7.4. A point xeH(co) is almost D-minimizing if
and only if xeOh(D) = H(oo) — Lh(D), the set of horocyclic ordinary
points.

If H satisfies Axiom 1, then O(D) = H(co) - L(D) S Oh(D) by
Corollary 4.9. For 0{D) we obtain the following stronger result.

PROPOSITION 7.5. Let H satisfy Axiom 1. If xeO(D), the set
of cone ordinary points, then x is ultimately D-minimizing.

Proof. We shall prove in Proposition 8.5 that D is properly
discontinuous on O(D). Hence we can find a set U containing x
which is open in the cone topology and such that φ{ U) Π U = • for
every φeD. Let a ex. By Proposition 4.8 there exists t0 > 0 such
that N(at0, x) S U. Hence Da(t0) f] N(atQ, x) = •• By Lemma 7.3,
d(πat, πat0) ^ t — ί0, so ττα|]ί0, oo) is minimizing.

The converse is false (Theorem 7.10): a limit point can be Z>-
minimizing. Note that to prove that xeH(<^) is D-minimizing it
suffices to show that for every geodesic ray ex such that cx(oo) = χy

the geodesic ray πo<x is minimizing in M — H/D.
In contrast to the axial case (Proposition 6.7) we do not know

if an arbitrary parabolic isometry generates a properly discontinuous
group.

REMARK 7.6. (1) If an isometry ψ of H does not preserve limit
spheres at a fixed point xeH(c°), then ψ generates a properly dis-
continuous group.

(2) Let ^ be a parabolic isometry that generates a properly
discontinuous group. If φ has a unique fixed point xeH(oo), then
for any peH the sequences {<Pn(p)} and {φ~n{p)} converge to x as
n —* oo.

Proof. (1) By hypothesis Tx{φ) Φ 0. But d(p, ψ%p) ^ | T,(φ*) | =
\n\\Tx(φ)\^ Tx{φ).

(2) In view of Lemma 6.2, x is the unique accumulation point
of each sequence.

PROPOSITION 7.7. Let D be a properly discontinuous group of
isometries, and let zeH(oo) be a common fixed point of D. Then
the following are equivalent.
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(1) z e Oh(D), that is, z is almost D-minimizing.
(2) Each element of D preserves limit spheres at z.
(3) z is D-minimizing.

Proof. (1) ==> (2). By hypothesis, given peH there exists a
limit ball N at z such that D(p) D N = •• We must show that
Tz{φ) = 0 for every φeD. Suppose that Tz{φ) = ε Φ 0 for some ψ e
D. By changing to φ~ι if necessary we may assume that ε < 0. If
/ is the Busemann function determined by Ύpz, then f(φnp) — Tz{φn) =
nε for any integer n. Since N = {qe H: f(q) < a} for some number
a, φn{p) G N for a large positive integer w. This is a contradiction.

(2) ==> (3) Let p e H and let a be the geodesic ray such that
a(0) = p and a(oo) = z. Since φL(p, z) — L(φp, z) = L{p, z) for every
φeD, we have J9(j>) £ L(p, z) and D(αO) Π N(aO, z) = Π By Lemma
7.3, 7Γoo: is minimizing.

The proof (3) ==> (1) is obvious.

PROPOSITION 7.8. If φ is a parabolic isometry of H, then φ pre-
serves limit spheres at least one fixed point xeH{oo).

Proof. Let D be the group generated by φ. If D is not properly
discontinuous then by Remark 7.6, D preserves the limit spheres at
all fixed points of φ. Suppose now that D is properly discontinuous.
Since D is abelian the displacement function gφ is D-invariant and
induces a smooth convex function / on M = H/D such that gφ —
foπ. Since φ is parabolic, gφ has no minimum and neither does /.
It follows from [3] that there is a geodesic ray a in H such that
πoa is minimizing and / is monotone decreasing on πoa. Thus gφ

is monotone decreasing on a, and x — a(oo) is a fixed point of φ that
is almost D-minimizing. Since Dx = x the result follows from Proposi-
tion 7.7.

DEFINITION 7.9. A parabolic manifold is a complete K ^ 0 mani-
fold M — HjD such that there is a point zeH(^) that is the unique
fixed point of every 1 Φ φeD.

Hence every element 1 Φ φ e D is parabolic. As we shall see in
§9 there are very many such manifolds. Their geometric structure
however is rather simple.

THEOREM 7.10. Let M = H/D be a parabolic manifold with z e
H(oo) the unique fixed point of D. Then

(1) z is D-minimizing.
(2) The Busemann function at z, unique up to an additive
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constant, induces a continuous convex function f on M which has
no minimum.

(3) M is topologically a product F x Rι whose horizontal and
vertical fibers are respectively the level surfaces of f and the lines
πoa for all aez.

Proof. Since z is the unique fixed point of every 1 ^ φeD,
Proposition 7.8 shows that φ preserves limit spheres at z. By Propo-
sition 7.7, z is D-minimizing, and if / is a Busemann function at z
then / is D-invariant. Fix the limit sphere L = f~~\ϋ) and let η be
the projection on L. By a remark preceding Proposition 6.6, rj com-
mutes with every φ e D. Thus η and / induce maps ξ and / such
that the following diagram is commutative. F is the orbit space
L/D, a topological manifold at least. The function / is convex with-
out minimum on M. By

π\ R

Proposition 3.4 the map η x f: H —> L x R is a homeomorphism hence
ξ x f: M-+F x R is a homeomorphism. For teR the level surface
f"\t) is the projection under π of the limit sphere f~\t). For pe
L, y]~ι{p) — oc(R) where a is the unique geodesic in z that meets L at
p. Hence ξ~\πp) = πoa(R).

The product decomposition of the preceding theorem resembles
that of a negatively curved surface of revolution or, more generally,
a warped product Rx fF with / monotone. The principal asymptotes,
that is, the elements of πa(z), correspond to meridians; the sections
Ft = f~\t) correspond to parallels. Other similarities include the
following:

(1) Each principal asymptote meets each section orthogonally
and exactly once.

(2) The arc length on a principal asymptote of its segment
between Fs and Ft is \s — t\.

(3) Any two sections are "parallel" that is d(p, Ft) = d(Fs, Ft) =
\s - t\ for all peFs.
In this analogy the function / plays the role of distance to the axis
to revolution. If β is a geodesic of M, foβ describes how β traverses
the sections of M. If M is a Visibility manifold, then foβ has a
minimum unless β is a principal asymptote.

A continuous curve a: [0, ©o) —> jkf is divergent if for any compact
set K in M there exists t = tκ such that for s ^ t, a(s) eM — K. If
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a is a geodesic then a is divergent if and only if every asymptote
of a is divergent. Thus we may speak of divergent and nondivergent
asymptote classes. Note that almost minimizing implies divergent.
A point x e H(c^) will be called D-divergent if πa(x) is divergent in
M = H/D.

Our aim now is to show that under mild conditions any para-
bolic fixed point x is Z)-divergent. This extends a result in [3]. To
rigorize the scheme of proof mentioned earlier we define the free
displacement function hψ of an isometry φ of a properly discontinuous
group D. For p e H, hφ(p) = inf {gφ(ψp): ψ e D) where gψ is the usual
displacement function of φ. If σ is the geodesic segment from p to
φ{p) then gΨ{p) is the length of πoσ, while hφ(p) is the minimum of
the lengths of those loops at π(p) that are freely homotopic to πoσ.

LEMMA 7.11. Let D be properly discontinuous and let 1 Φ φ e D.
Then

(1) For any p e H, there exists ψ in D such that hψ{p) = gφ(ψp).
(2) hφ is uniformly continuous on H.
(3) hφ is D-invariant.

Proof. (1) Let r = hφ(p) = inf gφ(fp): ψeD} = inf {d(p, ψ
ψeD). By proper discontinuity there are only finitely many distinct
elements ψ~xφψ such that d{p, ψ^φψp) ^ r + 1. If ψ~λφψ corresponds
to the smallest of these values, then hψ{p) = gΨ(ψp)

(2) It suffices to show that | hψ(p) — hψ(q) | ^ 2d(p, q) for any
points p, q. Let p, q be given and choose ψe D such that hφ(q) =
gφ(ψq). Then hψ{p) ~ hφ{q) ^ gΨ{ψp) - gΨ{fq) = diψp, φfp) - d{fq, φψq) ^
d(ψp, ψq) + d(φfq, φψp) = 2d(p, q). Interchanging p and q we obtain
the result.

( 3) The result is obvious.
In the following we use the terminology of §4.

THEOREM 7.12. Let H be geodesically bounded. Then a fixed
point x of a parabolic isometry φ is D-divergent for any properly
discontinuous group D containing φ.

Proof. If x is not special then clearly any geodesic in πa(x) is
divergent in M = H/D. If x is special then by Proposition 4.10, x is
bounded and there exists C > 0 such that d(y, σ) g C for any geo-
desies y, σ ex.

If K is a compact set in M, let Kc = {q e M: d(q, K) <, 2C}. To
prove that every geodesic of πa(x) ultimately leaves K it suffices to
prove that one geodesic of πa(x) ultimately leaves Kc. Since Kc is
compact and hψ is continuous and ^-invariant, hψ has a minimum
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value b on π~~\Kc). By the previous lemma gψ assumes the value b
at some point, hence there exists peH such that gφ(p) < b since gψ

has no minimum. Consider the geodesic ray 7 = ypx. Since ψ fixes
x, gφ is monotone decreasing on 7. If y(t) e π~ι(Kc) for some £ ̂  0
then gφ(p) < δ rg /^(TQ ^ sv(7£) ^ gφ(p)> This contradiction shows that
7 does not meet π~ι(Kc) and hence 7Γ07 does not meet Kc

By adding a further restriction we can show that parabolic fixed
points are almost D-minimizing.

COROLLARY 7.13. Let H be geodesίeally bounded and let x be a
fixed point of a parabolic element of D. Let G be the subgroup of
D consisting of elements that fix x and preserve limit spheres at x.
If L/G is compact for any limit sphere L at x then x is almost D-
minimizing.

Proof. Let yex, 7(0) = p. Let L = L(p, x). Since L/G is com-
pact there exists A > 0 such that for any q e L there exists ξ e G
such that d(p, ξq) <̂  A. Suppose that x is not almost D-minimizing.
Then there exist sequences {φn} S D and {tn} ϋ R such that φn(p) e
L(7tn, x) where tn —> + co as n —> 00. Let qn = rj{φnp) where rj is the
projection on *L. Choose {ξn} S G such that d(p, ξn(gn)) ^ A. By
convexity and the fact that rj commutes with φ we find that
d(7tn, ξnφnp) ^ d(ψtn, ηξnφnp) = d(p, ξnqn) ^ A. This implies that 7
is not D-divergent which contradicts the preceding theorem.

If H has dimension two then a limit sphere L in H is homeo-
morphic to R\ Thus if G Φ 1 then L/G is compact. This need not
be the case however in higher dimensions.

8* Trichotomy* As usual D denotes a properly discontinuous
group of isometries of H, and we use the cone topology on H through-
out. By Propositions 1.4 and 2.9, the cone limit set L(D) £ H(oo) is
well defined and nonempty when D is nontrivial. By considering the
cardinality of L(D), or certain of its subsets, we obtain the trichotomy
for Visibility manifolds mentioned in the introduction. This tri-
chotomy will also be described, perhaps more naturally, by the number
of equivalence classes of closed geodesies in M = H/D.

Let A{D) be the set of all fixed points of axial elements of D,
and let P(D) be the fixed points of parabolic elements. 0{D) =
H(oo) — L(D) is the set of ordinary points.

PROPOSITION 8.1. Let H satisfy Axiom 1. Then
(1) A(D) and P(D) are disjoint countable subsets of L(D). In

particular any fixed point of 1 Φ φ e D is in L(D).
(2) L(D), O(D), P(D) and A(D) are each invariant under the
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normalizer of D in the isometry group I(H) of H.

Proof. (1) By Propositions 6.4 and 6.7, A(D)SL(D). By
Theorem 6.5 and a remark following it, P(D) a L(D). By Proposition
6.8, P(D) and A(D) are disjoint. P(D) and A(D) are countable by
Theorem 6.5, since D ̂  π^H/D) is countable.

(2) By Propositions 1.4 and 2.9, L(D) and hence O(D) have the
invariance property. Let x be a fixed point of an axial [parabolic]
element φ of D. If ψeN{D), then ψφψ"1 e D fixes ψ>(a?) and is also
axial [parabolic].

We now introduce an important relation, depending on D, between
points at infinity.

DEFINITION 8.2. Points x, y in iϊ(co), not necessarily distinct,
are said to be dual relative to D provided that given any neighbor-
hood £7, V of x and y respectively in H there exists φ e D such that
φ(H - U) S V and hence φ~ι(H - V) a U.

It is easy to see that the set of points dual to xeH(oo) is closed
and invariant under D. Duality is a symmetric relation.

The following result shows that dual points must both lie in L(D).

PROPOSITION 8.3. // x, y are dual points in H(oo) then there
exists a sequence {φn} £ D such that φήι(p) —+ x and φn{p) —•> y as n —>
oo for any point p e H.

Proof. Let {Un} and {Vn} be nested local bases at x and y respec-
tively. Let p e H. By duality, for each n there exists φn e D such
that φn(S — Un) a Vn. For sufficiently large n, pίUn hence φn{p) e
Vn. Thus φn(p)—>y as n —* co. Similarly we show that φ^ι{p) —>x by
using the relation φ~ι{H- Vn) a £/*.

Without some conditions on i ϊ there is no guarantee that x e
L(D) has any dual points. For example, if H = Rn then no point in
L(D) has a dual point. If H satisfies Axiom 1, however, we obtain
a converse to the preceding proposition.

PROPOSITION 8.4. Let H satisfy Axiom 1. Let x, y e H(o^) and
let {φn} a D be a sequence such that for p e H we have φn(p) —> y and
Φnι(p) —> % as n —> co. Then x and y are dual. Moreover if U and
V are neighborhoods in H of x and y respectively, then for n suffi-
ciently large φn(H - U) a V and φ~\Ή. - V)^U.

Proof. We may assume that V is a cone with vertex pi U. By
Proposition_4.7, <£P(φn(H - U)) - <^φ-ip(H - U) ->0 as n-> ̂ ._ Since
Φ*{p) e ΦnΦ- — U), the maximum angle at p from φn{p) to φn(H — U)
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approaches zero as n—+oo. Since φn(p) —»V as n —> oo, it follows that
for n sufficiently large φn(3 — U)SV.

By this result and the remark following Theorem 6.5 the following
consequences are immediate: (1) every point of L(D) has a dual point,
(2) the endpoints of an axis are dual, (3) parabolic fixed points are
self dual. Further results on duality appear in [7].

Using duality we obtain the following generalization of a well
known result of automorphic function theory.

PROPOSITION 8.5. Let H satisfy Axiom 1 and let D be a properly
discontinuous group of isometries of H. Then the set of points of H
at which D is properly discontinuous is H{J O(D) = H — L(D).

Proof. By Proposition 1.4, D is not properly discontinuous at
any point of L(D). Let xe O(D), and suppose that D is not properly
discontinuous at x. If {Un) is a local basis at x then for each n there
exists φneD such that φn{Un) meets Un. Choosing a subsequence if
necessary, let φn(p)~+y and φnι{v)-*y* a s n~~>oo Since y and y*
are in L{D) they are distinct from x, and we may choose neighbor-
hoods V, F* of y, y* respectively whose closures do not contain x.
By Proposition 8.4, if n is sufficiently large, then φn(Un)^φn(H— V*)£
V^S — Un, a contradiction.

The proof of following proposition simplifies a classical argument
in automorphic function theory.

PROPOSITION 8.6. Let H satisfy Axiom 1 and let x, y be distinct
dual points in L(D). Given any neighborhoods U of x and V of y
in H there exists an axis of some element in D such that one end-
point is in U and the other endpoint is in V.

Proof. We may assume that U and V are cones in H whose
closures are disjoint. By Corollary 2.12, V is a topological w-cell. By
duality there exists φeD such that φ(V) ϋ φ{H — U) S V. Hence
ψ has a fixed point in V. Similarly φ~ι{U) g U, so φ~ι (hence ψ)
has a fixed point in U. The result follows from Proposition 6.4.

We now investigate the cardinalities of various subsets of H(oo)
determined by D. The following fact is basic.

PROPOSITION 8.7. Let H satisfy Axiom 1 and let X be a non-
empty subset of H(co) invariant under 1 Φ φeD. Then X consists
of one, two or infinitely many points, and if X is finite, φ fixes
every point of X.

Proof. If X is finite, then some power φn fixes every point of
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X. Also D ** π^H/D) is torsion-free. Hence X can contain at most
two points, since φn Φ 1 fixes at most two points. If X consists of one
point x, then clearly φ fixes x. Suppose X — {x, y). If φ fixes either
point then it fixes both. If φ fixes neither point then it fixes some
point z distinct from x and y; but then φ2 fixes x, y and z, contra-
dicting Theorem 6.5.

The hypothesis holds, of course, if X is ^-invariant.

REMARK 8.8. If H satisfies Axiom 1 then the possible cardinalities
for an orbit D(x) are 1, oo; for L(D) are 1, 2, oo; for P(D) are 0, 1,
oo; for A(D) are 0, 2, oo.

PROPOSITION 8.9P. If H satisfies Axiom 1 then for any group D
the following are equivalent:

(1) L{D) is a singleton, {x}.
(2) D has a unique common fixed point, x.
(3) H/D is parabolic (7.9).
( 4) Every 1 Φ φ e D is parabolic.

Proof. (1) => (2). Clearly the uniqe element of L(D) is a common
fixed point of D, and all fixed points are in L(D) by Proposition 8.1.

(2) => (3). If 1 Φ φeD fixes a point y Φ x then by Proposition
6.4, φ has an axis joining x to y. By Proposition 6.8, y is also a
common fixed point of D.

(3) => (4). This follows by definition.
(4) => (1). Let xeL(D). x is dual to some point yeH(oo) and

hence to each point of D{y). Since no axis exists, Proposition 8.6
implies that y = x and D{x) = {x}. Hence every point in L(D) is a
common fixed point of D. Again since no axis exists, Proposition
6.4 implies that L(D) is a single point.

PROPOSITION 8.9A. // H satisfies Axiom 1 then the following are
equivalent for any group D:

(1) L(D) consists of two points x and y.
(2) D has exactly two common fixed points x and y.
(3) H/D is axial (6.11) and D is infinite cyclic.

Proof. (1) => (2). This follows from the last assertion of Propo-
siton 8.7.

(2) =*• (3). H/D is axial by Proposition 6.4 and infinite cyclic by
Proposition 6.11.

(3) => (1). The common endpoints x and y of the axes of D are
in L(D). Let zeL(D), and let φ be a generator of D. There exists
a sequence of integers {nk} such that φnk(p) —> z as k —> oo. By Proposi-
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tion 6.7, z is either x or y.
We emphasize a distinction between the two preceding results:

if D consists solely of parabolic isometries they must all have the
same fixed point, but if D consists solely of axial isometries they
need not have the same fixed points, that is, equivalent axes.

Recall that a complete (nonsimply connected) manifold M = H/D
with curvature K ^ 0 is a Visibility manifold if H satisfies Axiom 1.
A Visibility manifold that is neither axial nor parabolic is said to be
fuchsian.

PROPOSITION 8.9F. // H satisfies Axiom 1 then the following are
equivalent for any group D:

(1) L(D) is an infinite set.
(2) D has no common fixed points.
( 3 ) H/D is fuchsian.
( 4) A(D) is infinite.

Proof. In view of the possible cardinalities listed in Remark
8.8, this proposition follows from the two preceding ones and the
consequence of Theorem 6.5 that D has at most two common fixed
points.

Thus the parabolic, axial and fuchsian types can be distinguished
by the number of axes, the number of common fixed points, or the
cardinality of the limit set. The first of these criteria can be stated
in stronger form as follows:

THEOREM 8.10. Let M = H/D be a Visibility manifold. Then
M is parabolic, axial or fuchsian if and only if the number of
equivalence classes of closed geodesies in M is 0,1 or co respectively.

Recall that geodesies 7, a in M are equivalent if they possess
lifts 7, o in H which join the same points in iϊ(oo). Thus if H
satisfies Axiom 2 as well, then each equivalence class contains a
unique geodesic and we may omit "equivalence classes of" from the
the statement of the theorem.

Proof. We know that a parabolic manifold contains no closed
geodesies and that an axial manifold contains exactly one equivalence
class of closed geodesies. Thus it suffices to prove that a fuchsian
manifold M contains infinitely many classes.

If an axis of φ e D joins x to y, we call (x, y) an axial pair.
By Proposition 8.9F there is an axial pair (x, y) in L(D) x L(D), and
D(y) contains a point z distinct from x and y. It follows from Proposi-
tion 6.9 that (x, z) is not an axial pair. Since x and y are dual so
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are x and z, and by Proposition 8.6 there exists a sequence {(xn, zn)}
of axial pairs such that xn —»x and zn —* z as n —> oo. Let An be the
set of axes joining xn to zn. π(An) is an equivalence class of closed
geodesies in M. If M contains only finitely many such classes then
we may assume that π(An) = A for every n by taking a subsequence
if necessary. Fix a closed geodesic 7 in A, and let an be a lift of
7 in An for every n. In view of Proposition 4.4 we may assume, by
taking another subsequence, that {an} converges to a geodesic a
joining x to z. Since π°an = 7 for every w, we have τroα: = 7; hence
α: is an axis. This contradicts the fact that (x, z) is not an axial pair.

From the preceding result and Proposition 6.16 we obtain

COROLLARY 8.11. If a Visibility manifold M contains either
(a) two inequivalent closed geodesies or (b) a closed but not simply
closed geodesic, then M is fuchsian and hence contains infinitely many
inequivalent closed geodesies.

Part (a) above confirms a suspicion stated in [3] for K ^ c < 0.
A geodesic ray p in M = H/D is parabolic if p has a lift p to

H such that jθ(oo) is a parabolic fixed point. In view of Theorem
7.12, a ray p in a Visibility manifold M is parabolic if and only if
it is divergent and its ray group (cf. §9) is nontrivial, that is, there
is a geodesic loop at at ρ(t) whose length decreases as t —> co. In
dimension two, one can produce a parabolic ray by adding a con-
tracting tube to a suitable surface. Using Proposition 8.9 we obtain,
as suggested in [3], the following complement to Corollary 8.11.

COROLLARY 8.12. If a Visibility manifold M contains (a) a para-
bolic ray and a closed geodesic or (b) two nonasymptotic parabolic
rays or (c) two parabolic rays starting at the same point, then M is
fuchsian.

Proof, (a) P{D) and A(D) are nonempty.
(b) P(D) is not a singleton.
(c) If the two rays belong to an asymptote class yeA(M), then

π~ι(y) is infinite. Hence P(D) is infinite.
We conclude this section with two more characterizations of para-

bolic, axial and fuchsian manifolds.
An asymptote class y e A(M), M — H/D, is simple if through

each point of M there passes a unique element of y (up to parametriza-
tion). It is easy to see that y is simple if and only if π~ι{y) is a
singleton, hence a common fixed point of D. Thus the three types
of manifolds are characterized by the number of simple classes.



92 P. EBERLEIN AND B. O'NEILL

PROPOSITION 8.13. Let M be a Visibility manifold.
(a) M is parabolic if and only if M has a unique simple class,

the principal asymptote class.
(b) M is axial if and only if M has exactly two simple classes,

those containing the (oppositely oriented) closed geodesies.
(c) M is fuchsian if and only if M has no simple classes.

We may also describe the types of Visibility manifolds in terms
of their ultimately minimizing geodesies.

PROPOSITION 8.14. Let M be a Visibility manifold.
(a) M is parabolic if and only if every geodesic of M is ultimately

minimizing.
(b) M is axial if and only if through each point of M there are

exactly two geodesic rays that are not ultimately minimizing.
(c) M is fuchsian if and only if through each point of M there

are infinitely many geodesic rays that are not ultimately minimizing.

Proof. This follows from Propositions 7.5, 7.7, and 8.9PAF.

9* Fundamental group* The fundamental group πx(M) is of
obvious importance for a complete K ^ 0 manifold, since the higher
homotopy groups of M all vanish. In general the only known algebraic
restrictions on π^M) are that it be countable and torsion-free. We
shall investigate the fundamental group of a Visibility manifold.
The fuchsian type turns out to be the interesting one, and we consider
some of its natural subtypes.

The axial type is very special; πx{M) is infinite cyclic, and by
Corollary 6.16 there are only two diffeomorphism types, Sι x Rn~ι

and B x Rn~2, where B is the Mobius band.
The evidence in dimension two suggests that parabolic Visibility

manifolds may be rare, since the cylinder S1 x R1 is the only diffeo-
morphism type; furthermore we have seen in Theorem 7.10 that (in
any dimension) such manifolds have quite special geometric structure.
Nevertheless the fundamental groups of parabolic manifolds form a
very large class.

PROPOSITION 9.1. Let G be the fundamental group of an arbitrary
complete K ^ 0 manifold F. Then G is the fundamental group of a
parabolic Visibility manifold.

Proof. Let M be the warped product R x e x p F. Then πjjd) ^
πt(F) ^ G, and by the curvature formula on page 27 of [3] M has
curvature K <^ — 1. Since M is complete, it is a Visibility manifold.
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By Lemma 7.8 of [3], expoπ is strictly convex without minimum on
M. Hence M has no closed geodesies and must be parabolic.

The fundamental group of every complete ^-dimensional K ^ 0
manifold occurs as the fundamental group of a complete (n + 1)-
dimensional K ^ c < 0 parabolic manifold.

By the remarks above, every two-dimensional Visibility manifold
not diffeomorphic to a cylinder or a Mobius band must be fuchsian.
In spite of this diversity we shall see the fundamental group of an
arbitrary fuchsian manifold must satisfy strong conditions extending
results of [3], [5] and [14].

For H and D arbitrary, if xeH{<^), denote by Dx the stability
group {φeD: φ(x) — x). These subgroups appear in [3] frequently
in an alternative formulation as ray subgroups πx(M, m, p) of the
fundamental group πx(M, m). The equivalence of the two is described
in and preceding Proposition 10.5 of [3].

For a Visibility manifold M = H/D it follows from earlier results,
especially Proposition 6.8, that the non-identity elements of a stability
group are either all parabolic or all axial. In the latter case the axes
are all equivalent and Dx is infinite cyclic. From this viewpoint axial
and parabolic Visibility manifolds H/D are exactly those for which
D itself is the unique stability group.

We can generalize slightly Corollaries 10.6 and 10.11 and Propo-
sition 10.12 of [3] as follows, omitting the vacuously true axial and
parabolic cases:

PROPOSITION 9.2. If M = H/D is fuchsian then
(1) D ^ 7Cι{M) is the disjoint (but for {1}) union of its stability

groups Dx, x e H(oo).
(2) Stability groups are permuted by inner automorphisms:

φDxφ~~x — Dφx. Furthermore, Dψx = Dx if and only if φe Dχ0

Proof. (1) If 1 Φ φ e Dx Π Dy then by Proposition 6.4, φ trans-
lates a geodesic joining x to y. Then by Proposition 6.8 we get Dx —
Dy, an axial group.

(2) If φ £ Dx then the condition Dφx = Dx implies as in (1) that
there exists an axis 7 from x to φx. Since the axes y and φoy have
the endpoint φ{x) in common it follows from Proposition 6.9 that y
and <po7 are equivalent, hence φ2(x) = x. Since φ leaves the set {x, φx}
invariant, Proposition 8.7 implies that φ fixes x, a contradiction.

We abstract the major part of these algebraic properties as fol-
lows: A disjoint decomposition of a group G is an indexed collec-
tion {Gi} of subgroups such that

(a) G = \Ji Gi9 and for any i, j either Gi = G5 or Gi Π Gs = 1.
(b) Each Gi has strictly disjoint conjugates, that is, if xG/x"1 Γ)
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Gi Φ 1 then x e G*.
A group is monίc if the only disjoint decomposition it possesses

is the trivial one: Gi = G for all i. Otherwise G is multic.
Elements x and y of a group G are equivalent, written x ~ y,

provided that for any disjoint decomposition of G, x and y are in the
same subgroup G .̂ This is an equivalence relation on G — {1}.

LEMMA 9.3. Let G be a group.
(1) If x,y are elements of G such that xnyp = yqxn for integers

p, q, n such that xn Φ 1, yp Φ 1, then x ~ y.
(2) If H is a monic subgroup of G then for any disjoint de-

composition of G, H is contained in a single G^

Proof. (1) There exists a Gi such that y e Gi hence yp eG{.
Since xnypx~n = yq and 1 Φ yq e Gi9 it follows from (b) that xn e G^
Since xn Φ 1, x e G<; hence x ~ y.

( 2 ) This follows from the fact that if {GJ is a disjoint decom-
position of G, then {GiΠ H) is a disjoint decomposition of H.

LEMMA 9.4. A group G with any one of the following properties
is monic;

(1) G has nontrivial center.
(2) G is a nontrivial product.
( 3) G has a monic normal subgroup N Φ 1
(4 ) G is solvable.

Proof. (1) Let z Φ 1 be a central element. If x is any element
of G, then x ~ z by Lemma 9.3.

(2) Let {Gt} be a disjoint decomposition of G = A x B, where
A and 5 are nontrivial. Fix 1 Φ a £ A, with (α, 1) e G> Then for
any nontrivial a G i , ?/ e B by Lemma 9.3 we have (x, 1) — (1, y) ~
(α, 1). Thus (A x 1) U (1 x B) is contained in G{, and hence G = G>

(3) Let {G^ be a disjoint decomposition of G. Since JV is monic
N^ Gi for some i. If x e G then since N is normal in G we have
α G^- 1 n Gi 2 JV ̂  1. Hence α? e G< and G = G«.

( 4 ) We prove somewhat more. Suppose there is a (possibly in-
finite) sequence iϊ 0 £ fli £ £ -Hi* £ °f subgroups of G such that
(a) Ho Φ 1 is monic, (b) fl* is normal in Hn+ι for each w Ξ> 0, and
(c) U Hn = G. Then G is monic. This follows readily from (3) and
Lemma 9.3(2). It clearly implies (4) since abelian groups are monic.

Further algebraic results about monic groups will appear else-
where.

By Proposition 9.2 the stability groups Dx, x e H(oo)9 constitute a
disjoint decomposition of D. (Alternatively we may speak of ray sub-
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groups of the fundamental group of M = H/D.) If M is axial, then
πxM is infinite cyclic, hence trivially monic. If M is parabolic it will
follow from Proposition 9.1 that D can be either monic or multic.
Preceding results yield:

THEOREM 9.5 If M is a fuchsian manifold, then its fundamental
group Kι(M) is multic. Furthermore each monic subgroup of π^M)
is contained in a single ray group.

We deduce some consequences.

EXAMPLE 9.6. The following groups are multic.
(1) The fundamental group of any compact surface S except

the sphere, projective plane, torus and Klein bottle. S admits a
Riemannian structure with K~ — 1; hence S is fuchsian and π^S)
is multic. These groups have a presentation with a single relation.
(The four exceptions have monic fundamental groups by Lemma
9.4(1).)

(2) Any free group F on at least two generators. By attaching
contracting tubes to a surface S as above one constructs a fuchsian
manifold M with π^M) ^ F, at least in the case when F is countably
generated.

( 3) The fundamental group of the hyperbolic dodecahedral space
[15], a 3-dimensional compact manifold with K == — 1.

Another consequence is a generalization of Preissmann's theorem
that a compact manifold with K < 0 cannot be a nontrivial topological
product.

COROLLARY 9,7. If a non-parabolic Visibility manifold M is
homotopically equivalent to a product P x Q of manifolds, then either
P or Q is contractible.

Proof. Since the higher homotopy groups of M vanish so do
those of P and Q. In the fuchsian case πλ{M) is multic, so by
Lemma 9.4(2) either P or Q is simply connected hence contractible.
The same must occur in the axial case, since πγ{M) is infinite cyclic.

REMARK 9.8. A product M x N of Visibility manifolds need not
admit a Riemannian structure making it a Visibility manifold. In
fact, if M and N are compact fuchsian manifolds then M x N cannot
be a parabolic Visibility manifold since it is compact and cannot be
a nonparabolic Visibility manifold by the preceding corollary.

We give some examples which show in particular (9.10(2)) that
the conclusion of 9.7 does not hold in the parabolic case even when
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M has constant curvature.

REMARK 9.9. If F is a complete K ^ c < 0 [K = -1] manifold,
then the warped product W(F) = R x cosh F is a complete i£ ^ c < 0
[K = — 1] manifold of the same type as F: parabolic, axial or fuchsian.
By results in [3] the closed geodesies of W(F) are exactly the closed
geodesies of the totally geodesic submanifold 0 x F = F. The result
then follows from Theorem 8.10.

EXAMPLE 9.10. Negative Space Forms diffeomorphic to products.
(1) M axial, diffeomorphic to N x Rn. With the exception of

the Mobius band every axial Visibility manifold is of this diffeomor-
phism type. To obtain these as space forms set M = Wn(N), where N
is a circle or a Mobius band with K = — 1. (Wn(N) is the nth iterate
of W(N) defined above.)

(2) M parabolic, diffeomorphic to a product of nonsimply con-
nected manifolds. Let A and B be nonsimply connected, flat, space
forms, and let M = R x e x p {Ax B). Then M and Wn(M) have the
required properties.

(3) M fuchsian, diffeomorphic to N x Rn. Let M = Wn(N)
where N is a fuchsian negative space form, for example a double
torus.

For examples of K ^ — 1 product manifolds that do not admit a
complete K = — 1 metric see [8].

Preissmann in [14] considered manifolds M = HID for which every
element of D is axial. In [3] such an M is called full (there is a closed
geodesic in every free class of loops in M). Axial manifolds are full,
but not conversely since every compact M is fuchsian and full. More
generally, Proposition 10.15 of [3] asserts that M is full if it contains
a compact totally convex set. Generalizing results of Preissmann
[14] and Byers [5] on abelian and solvable subgroups respectively we
have:

COROLLARY 9.11. Let M be a full Visibility manifold (for ex-
ample compact, K<0). Then every monic subgroup of the fundamental
group π^M) is infinite cyclic.

Proof. For a full manifold the disjoint decomposition {Dx: x e
H(oo)} of Dr&π^M) consists, by Theorem 6.11, of infinite cyclic groups.
But any monic subgroup is contained in some Dx.

One consequence is that a full Visibility manifold cannot have
either a retract or a covering manifold with monic but noncyclic fun-
damental group.
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PROPOSITION 9.12. Let H/D be a Visibility manifold. If N is
a nontrivial normal subgroup of D, then L(N) = L(D).

Proof. Clearly L(N) ^L(D), so we prove the reverse inclusion.
Let y eL(D). Choose p e H and 1 Φ φ e N. Given any neighborhood
V of y in H we will find a ψ e D such that ψφψ~ι{p) e V. Since
ψφψ~ιeN it follows that yeL(N). We can suppose p&V.

The result is obvious if H/D is parabolic or axial, so we can
assume it is fuchsian. Let y be dual to z. For some η e D the point
x — ηz is not fixed by φ yet dual to y. Thus there is neighborhood
U of x such that φUΠ U — •• By duality there is a ψeD such
that ψ(H - U)dV and ψ-^H - V)aU. Thus f~l{p) e U, and hence
Φψ~\v) εH — U, which implies irφψ~ι(p) e V.

If τ]\ N —• M is a Riemannian covering of a Visibility manifold
M = iϊ/D, then the Visibility manifold iV can be identified with HjE,
where E is a subgroup of D. Furthermore η is a regular covering
if and only if E is a normal subgroup. Thus the preceding proposi-
tion asserts that a nonsimply connected regular covering manifold
N of a Visibility manifold M has the same limit set as M.

Considering arbitrary (nonsimply connected) coverings, parabolic
or axial manifolds can be covered only by manifolds of the same
type. A fuchsian manifold M always has coverings by axial mani-
folds, and if not full, by parabolic manifolds; however the preceding
remark shows that any regular covering manifold of M must be
fuchsian.

1O* Faces and ends. We have seen how to add points at infinity
to a Hadamard manifold H; now we consider the nonsimply connected
case M = H/D. For simplicity we assume throughout that M is a
Visibility manifold; however much of what we do is valid under
weaker hypotheses.

Clearly an arbitrary asymptote class y e A(M) of M cannot con-
stitute a point at infinity of M, since y need not even diverge. We
shall define the set M(°°) of points at infinity of M to be the set of
almost minimizing classes in A(M), and as before let M = M U M(oo).
Note that M(o°) is empty if and only if M is compact. By Proposi-
tion 7.4 the counterimage of M(°°) under the projection πa: H(^) —•
A(M) is Oh(D). Thus the projection π: H-+ M extends in an obvious
way to a function, also denoted by π, from X = H U Oh(D) onto M.
For any me M the set π~x{m) § X is an orbit under D, hence we
may write M — XID. Recall that since M is a Visibility manifold,
Lh(D) SL(D), hence 0{D) £ Oh{D). We assign Xthe topology gener-
ated by
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(1) all open sets of H;
(2) for each x e O(D), the intersections with X of all cone neigh-

borhoods of x;
(3) for each xeOh(D) Π L(D), all augmented limit balls Bx =

B U {x} at x.
Finally we give M the quotient topology derived from the projec-

tion π: X—>M. The space M is called the asymptotic closure of M.
(We shall see in a moment that unlike the special case H, M need
not be compact.) We emphasize that X is in general not a subspace
of H; however H U O(D) is an open subspace of both X and H. Since
0{D) and Oh(D) Π L(D) are each invariant under D, the space Λf(°o)
is the disjoint union of its subspace

F(M) = O(D)/Z> and F(M) = (0,(2?) Π L(D))/D .

By Proposition 8.5, D is properly discontinuous on H{jO(D), hence
the restricted maps π: H (J 0(2?) —> Λf U ̂ W) and TΓ: 0(Z)) -> i^M) are
covering maps. In particular, M U F(M) is a Hausdorff topological
manifold with boundary F(M). We call the connected components
of F(M) the faces of ikf; they are topological (n — 1)-manifolds. By
contrast the induced topology on Oh(D) Π L(D), and hence on V(M),
is discrete. Points of V(M) are called vertices of M. Both faces and
vertices are open-and-closed subsets of Λf(oo).

EXAMPLE 10.1. (1) Let M be parabolic with L(D) = {z}. Then
O(D) = ίί(oo) - {̂  }^ ie^-1, so M has a single face. Since zeOh(D),
M also has a single vertex v = πz. Using results from §7 one can
show (at least when H also satisfies Axiom 2) that any limit sphere
at z is homeomorphic to O(D), and it follows that M is homeomorphic
to the cone over F(M) with vertex v. Thus in particular M is com-
pact if and only if F(M) is. When dim M = 2, M is a 2-cell with
boundary circle F(M); however in higher dimensions M is never a
manifold with boundary, for since F(M) cannot be a sphere the vertex
v does not have Euclidean neighborhoods.

(2) Let M be axial, with L(D) = {x, y}. Then O(D) = H(oo) -
{x, y}^Rix Sn~\ Since x, y e Lh(D), M has no vertices. If dimM =
n ^ 3, M has a single face homeomorphic to S1 x Sn"2 and M is homeo-
morphic to S1 x En~ι (En~ι the closed (n - l)-cell). Thus M is a
generalized solid torus with boundary Λf(©o) = F(ikf) a generalized
torus. In dimension 2, M is either an ordinary band Sι x E1 with
faces the two boundary circles, or a Mδbius band with its boundary
circle the only face. Thus in all cases M is a compact manifold with
boundary Jkf(©o).

Note that if φ is an isometry of H that preserves Oh(D), then
its (bijective) extension φ: X-+X is a homeomorphism, since Φ pre-
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serves cones and limit balls. It follows that the projection π: X—>
M is open, since for U a X we have π~\πU) = DU.

If ψ is an isometry of M and a a geodesic of M, then as before
we can define the asymptotic extensions ψ and a to M, using the
same letter to denote asymptotic extensions.

We now verify that the topology of M is admissible in the sense
defined for H in §1. Explicitly:

PROPOSITION 10. Let M be a Visibility manifold with M its
asymptotic closure. Then

(1) M is an open dense subspace of M.
(2) // a: [0, oo) —>M is an almost minimizing geodesic of M,

then the asymptotic extension a: [0, oo] —̂ ikf is continuous.
(3) If ψ is an isometry of M, then the asymptotic extension

ψ: M-+M is a homeomorphism.
(4) If U is a neighborhood ofye M(oo) in M and r > 0 is any

number, then there is a neighborhood V of y such that Nr(V) C U.

Proof. Properties (1), (2), (4) derive in a straightforward way from
the admissibility of the cone and horocycle topologies on H, and the
fact that π: X—+M is open. To prove (3) it suffices to show that ψ
has a continuous extension ψ:M-+M; for ψ is then necessarily the
asymptotic extension.

Since H is simply connected it is easy to show that there is an
isometry v of H that covers φ, that is, such that πov = ψoπ, Then
for any ψ e D we have TΓoj o^oi;"1 = ^oτzoφo\rγ = Ί/ΓOTΓOΪ;-1 = ψoψ-ιoπ —
π; hence j ocpoi;-1 e D. Similarly, since v~ι covers ψ~ι we have v~~γ°φ°v e
D. Thus v is in the normalizer N{D) of D in I(H). By Proposition
1.4, Oh(D) is invariant under v, hence as noted above v: X—>X is a
homeomorphism.

We assert that πov: X—»M is D-invariant. In fact, if φ e D then
»oφ — rjov for some rjeD] thus τroj;o<p = π°7]ov — π°v. The induced
function ψ on M, for which πoj; = ψoπ, is continuous since M has
the quotient topology. Now ψ and ψ |Λf are equal since both are
covered by v; hence f is the required continuous extension of ψ.

Next we identify the ends of M with certain subsets of Λf(©o)
and relate them to the faces of M. It will be convenient to express
the notion of end as follows. Divergent curves a and β in M will
be called cofinal, written a ^ β, if given any compact set K in M
some final segments oc([s, co)) and /3([ί, oo)) of a and /3 lie in the same
connected component of M — K. This is clearly an equivalence rela-
tion on the set AM of divergent curves in N, and the resulting equiva-
lence classes are the ends of M.

It is clear that asymptotic divergent geodesies are cofinal. A
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variation of a standard argument shows that there is a minimizing
geodesic ray cofinal to any given divergent curve. Thus the relation
** induces an equivalence relation on M(oo), and the natural bijection
M(oo)/f& •-». ΔM\?& identifies the resulting equivalence classes in M(oo)
with the ends of M.

PROPOSITION 10.3. Each face of a Visibility manifold M is con-
tained in a single end.

Proof. We make the following observations: (1) If K is a com-
pact set of H, then the closure of DK in H is DK\J L(D). (2) If
C is a connected component of O(D), then π(C) is an entire component
of F(M), that is, a face of M.

Let u and v be distinct points in the same face of M. By (2)
there exist points x and y in the same component of O(D) such that
πx = u and πy = v. Since O(D) is open in H(c^) ^ Sn~\ its components
are path connected. Thus there is a continuous curve σ:I—*0(D)
joining x and y. Fix a point pe H, and for each t e I let pt be the
geodesic from p to σ(t). We will show that the (almost minimizing)
geodesies πop0 and π^p1 are cofinal; then πpo(°°) = w and πp^oo) = ^
are in the same end.

Let A be an arbitrary compact set in M. Then there is a com-
pact set B in i? such that DB Ξ2 TΓ^A). Since σ lies in 0(2)), by (1)
there is a neighborhood Z7 of σ{I) in £? that does not meet π~ι{A).
If t e /, then since ?7 contains a truncated cone neighborhood of σ(t)
with vertex p, there is a number rt and a neighborhood iV* of t in
7 such that

if seNt , then ^([r,, oo)) s Z7 .

Thus by the compactness of / there is a number r such that
Pt([r, °°)) S Ϊ7 for all t e /. The function t —> ^(r) is continuous; hence
the set \J{πpt[r, c>o);tel} is connected, and by construction it does
not meet A. In paticular πpo[r, oo) and πp\r, oo) are in the same
component of M — A, so πop0 and πopL are cofinal.

This proposition implies that each end of M is a union of faces
and vertices, hence is open and closed in M{oo), Even if there are
no vertices, a single face need not be an end; a manifold with one
end consisting of two faces can be constructed by the method of
Example 10.6.

Referring to Example 10.1, let M parabolic. If FM is compact,
then M has two ends, the face FM and the vertex v. Otherwise M
has only one end, M(°°) = FM U {v}. For an axial manifold, faces
and ends are the same, with one or exceptionally two of each.
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Since in the parabolic and axial cases there are at most two ends,
we have

COROLLARY 10.4. A Visibility manifold with at least three ends
is fuchsian.

(If M has no ends it is compact, hence trivially fuchsian.) Similar
but nontopological criteria may be expressed in terms of the number
of faces and vertices. For example, a Visibility manifold (^S1 x Rι)
with at least two faces—or no faces—must be fuchsian.

COROLLARY 10.5. // a Visibility manifold M = H/D has finite
volume, then M has no faces.

Proof. If M has a face, then there is an ordinary point x e
H(oo). By proposition 8.5 there is a cone neighborhood U of x in H
such that φ( U) Π U = • for every 1 Φ φ e D. Thus the Riemannian
covering π:H—>M is injective on U Π H. It is easy to see that
U Π H has infinite volume, hence so do π( U Γ) H) and M.

The converse is false. For example, let M be the double torus
with its usual K = — 1 Riemannian structure, and let H be the com-
mutator subgroup of πx{M). The Riemannian covering manifold MΠ

determined by H may be pictured as the surface of an infinite grid.
Since H has infinite index in π^M), MH has infinite area. Because
M is compact it follows from Proposition 9.12 that MH has no faces.

We conclude with another method for constructing manifolds
with interesting faces and limit sets.

EXAMPLE 10.6. If M — HID is a complete K ^ c < 0 ^-manifold
we saw in §9 that M' = R xC0ShM is a complete K <S c < 0 (n + 1)-
manifold of the same type (parabolic, axial, or fuchsian). M' is
covered by Hf = R x C0Sh H with projection π' = 1 x π, and HQ = {0} x H
is a totally geodesic copy of H in H\ By Clairaut methods one can
show that every geodesic of H' that does not asymptotically approach
Ho is asymptotic to a geodesic normal to Ho. Thus £Γ(oo) ^ Sn is
separated into two copies of H, denoted H~ and H+, by H0(co) & ff(oo) p&
Sn~\ Also the action of Dr — 1 x D on if" and on £f+ is essentially
that of D on H ^ Ho. It follows that (1) L{D') can be identified with
L{D) c JHfo, hence O(D') = H~ U H+\J O[D)\ (2) ^(M') is the double of
the manifold with boundary M [J F(M), that is, two copies identified
on F(M); and (3) V{M')**V{M).

For instance if B is the punctured torus in Example 11.19, then
F{B) is a circle and F(Bf) is a double torus.

If M has no faces, so L(D) = H(o°), then by iterating the opera-
tion above k times we get a (fuchsian) manifold M{k) whose limit set
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is, by (1), an (n — l)-sphere in the (n + k — l)-sphere H{k){o°).
Further geometric features of faces and ends appear in the fol-

lowing section.

11* Convex functions* It is known that the convex functions
on a manifold M = H/D are significantly related to the geometry of
M. By linking the convex functions on M to the limit set L(D) we
can see in some detail how this comes about. In particular we show
that the qualitative character of the convex functions on a Visibility
manifold is largely determined by its type (parabolic, axial, or
fuchsian).

The totally convex subsets of M contain much the same informa-
tion as the convex functions. Thus M admits a nonconstant convex
function f if and only if M contains a closed totally convex subset
Aφ M. In fact [3], given / let A = {meM:f(m) ^f(p)} for some
p, and given A let f = d( , A).

For a complete manifold M we consider the following natural
generalization of compactness: M is core-compact if it contains a
(nonempty) compact totally convex subset A. Although this property
is of interest in general we apply it only in the case of nonpositive
curvature, where it is equivalent to the existence of a convex func-
tion with compact minimum set. Topologically, the set A is a strong
deformation retract of M (Proposition 3.4 of [3]), and since M is full
we have seen in § 9 that the fundamental group of M has the gener-
alized Preissmann property. In this section we show that core-com-
pact manifolds have a number of desirable geometric properties.

Recall from [3] that if a convex function is monotone decreasing
on a geodesic 7 of M, the same is true for any asymptote of 7. In
particular, it is meaningful to say that a convex function on H is
monotone decreasing on xeH(c°).

LEMMA 11.1. Let f be a convex function on a Hadamard mani-
fold H, and let xeH(oo). Then f is monotone decreasing on x if
and only if there is a sequence {pn} in H such that {pn} —* x and
{fpn} - inf/.

Proof. Suppose / is monotone decreasing on x and let {qn} be
an arbitrary minimizing sequence, that is, {fqn} —* inf/. Let {Un}
be a nested local basis at x. For each n, let yn be the geodesic
from q% to x. Then there exists tn ^ 0 such that pn = Ύn{tn) e Un.
Since / is monotone decreasing on 7 we have f(pn) ^f(qn) Hence
{pn} has the required properties.

Conversely, given such a sequence {pn} we show that / is monotone
decreasing on a ex. Let p = tf(0). For s ^ O we must prove
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f(p). Let σn be the geodesic segment from p to pn. Since pn—>x,
by Proposition 2.14 we get σ'n(0) —> oc'(Q), hence σn(s) —> a(s). (For large
w, σn(s) is well defined.) But by convexity fσn(s) ^ max {f(p),f(pn)}
Since fσn(s) ~->f(ocs) and /(p%) —>inf/, we conclude that f{as) <*f(p).

As usual D is a properly discontinuous isometry group on H.

LEMMA 11.2. Let f be a D-invariant convex function on H. If
xeL(D), then f is monotone decreasing on x.

Proof Let {qn} be a minimizing sequence for /, that is {f{qn)} —*
inf/. Let {Un} be a nested local basis at x for the cone topology.
Since x e L{D) there exists φn e D such that φn(qn) e Z7%o Thus {9>»(i»)}
is a minimizing sequence by the D-invariance of /, and {φn{qn)}—>x
by construction. The result then follows from the preceding lemma.

By imposing Axiom 1 we obtain the following basic result used
already in §6.

PROPOSITION 11.3. Let H satisfy Axiom 1. If a convex function
f on H is monotone decreasing on distinct points x, y in H(co), then
f has a minimum. In fact there exists a geodesic 7 joining x and
y such that 7 is contained in the minimum set Min (/) of f.

Proof. By the preceding lemma there exist minimizing sequences
{Pn} —> x and {qn} —> y. If σn is the geodesic segment from pn to qn,
then Proposition 4.4 implies that, passing to a subsequence if necessary,
{σn} converges to a geodesic 7 joining x and y. By convexity f°σn ^
max {fpn, fqn} Since the latter are minimizing sequences, we con-
clude that 7SMin(/) .

COROLLARY 11.4. If f is a convex function on a non-parabolic
Visibility manifold M = H/D then any two distinct points of L(D)
are joined by a geodesic whose projection lies in the minimum set
Min (/).

Proof. This follows immediately from Lemma 11»2 and Proposi-
tion 11.3.

COROLLARY 11.5. A Visibility manifold M is parabolic if and
only if M admits a convex function without minimum.

Proof. If M is parabolic its Busemann function is a C1 convex
function without minimum (Theorem 7.10). If M admits a convex
function without minimum, then by the preceding corollary L{D) is
a single point and M is parabolic.

Let / be a convex function with minimum on M. If σ is a geo-
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desic contained in Min (/), then / is trivially monotone decreasing
on σ and hence on any asymptote of σ. Also the Busemann function
of a parabolic manifold is monotone decreasing on the principal asymp-
tote class. Surprisingly, these are essentially the only ways that
the monotone decreasing relation can occur:

PROPOSITION 11.6. Let f be a convex function on a Visibility
manifold M = H/D. If f is monotone decreasing on a geodesic 7,
then either

(1) M is parabolic and 7 is a principal asymptote, or
(2) / has a minimum and 7 is asymptotic to a geodesic σ £

Min (/).

Proof. Let a be any lift of 7 to H, so foπ is monotone decreasing
on a. Suppose (1) does not hold. Then either M is not parabolic or
M is parabolic and α(oo) is not the unique element of L(D). In either
case there exists an xeL(D) different from a(c^). By Lemma 11.2
the function foπ is monotone decreasing on x. By Proposition 11.3
there is a geodesic β from x to a(oo) such that β £ Min {foπ). Hence
7 is asymptotic to πoβ g Min (/).

We now consider some properties of core-compact manifolds. This
class is closed under Riemannian products and Riemannian coverings
of finite multiplicity. Parabolic manifolds are never core-compact,
since the latter implies full. On the other hand, an axial manifold
M is always core-compact since, as we have seen, if 7 is a closed
geodesic of smallest period then Ί(R) is totally convex.

The following result shows that / = ώ( , ΊR), 7 as above, is typi-
cal of convex functions on M with compact minimum set.

PROPOSITION 11.7. Let M be an axial Visibility manifold and
let g be a convex function on M with compact minimum set. Then

(1) g is monotone decreasing on a geodesic a if and only if a
is asymptotic to a closed geodesic,

(2) g is constant on a geodesic a if and only if a is equivalent
to a closed geodesic,

(3) if Axiom 2 holds, g is constant on a if and only if a is
the unique closed geodesic of M.

Proof. (1) If g is monotone decreasing on a then goπ is monotone
decreasing on a lift β of a. Since goπ satisfies the hypotheses in
the lemma below, we conclude that β(c^)eL(D); that is, /S(^) is an
axial endpoint. Hence a is asymptotic to a closed geodesic. The
converse is immediate since a convex function is necessarily constant
on a closed geodesic. The proof of (2) is similar, and (3) follows
from (2).
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The following may be considered a partial converse to Lemma
11.2.

LEMMA 11.8. Let f be a convex function with minimum on H,
and suppose there is a compact set K in H such that DKΏ, Min (/)•
// / is monotone decreasing on xeH(oo), then xeL(D).

Proof. Let a be a geodesic from a point p e Min (/) to x. Assume
xeO{D). Thus there is a neighborhood U of x in H such that
D(p) Π U = •• By the intensive property of the cone topology there
is a neighborhood V of x such that DK Π F = Π For large r, we
have a(r) e V; thus / is not monotone decreasing on a and hence not
on x.

Let M be a complete ϋΓ^O manifold. With terminology close to
that of [3] we say that an asymptote class y e A(M) is principal if
y is almost minimizing and every convex function on M is monotone
decreasing on y.

The notion of vertex set defined in §10 remains valid for M,
namely V(M) = πa(L(D) Π OhD) s Af(°o).

REMARK 11.9. Every vertex of Λf is a principal asymptote class.
This follows immediately from Lemma 11.2 and Proposition 7.4. (See
also Proposition 11.15.)

For a parabolic Visibility manifold M the vertex πz is the only
principal asymptote class, since by Axiom 1 the Busemann function
of M is monotone decreasing only on πz.

PROPOSITION 11.10. Let M be a complete K <£ 0 manifold. Then
M is core-compact if and only if M has no principal asymptote classes.

Proof. If M is compact, the assertion holds trivially, so we may
assume M is noncompact. If M is core-compact with compact totally
convex set A, then f = d( 9 A) is a convex function that is unbounded
on any divergent curve, hence M contains no principal asymptote
classes.

Suppose now that M is not core-compact, so every (nonempty)
totally convex set is noncompact. We will show that M has a prin-
cipal asymptote class. Fix pe M, and for each convex function /
on M let K(f) be the set of vectors v e S(p) such that the geodesic
ray Ύv is minimizing and / is monotone decreasing on yv. Previous
arguments show that K{f) is a closed set; we assert that it is non-
empty. By hypothesis the minimum set of / is either empty or
noncompact. In either case there exists a divergent sequence {pn}
in M such that f(pn) ^ f(p). Let σn be a minimizing geodesic segment
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from p to pn. Arguing as in the proof of Lemma 11.1 we see that
every accumulation point of {σ'n{Q)\n ^ 1} in S(p) lies in K(f).

We must show that some unit vector v is contained in every
K(f). Since each K(f) is a closed nonempty subset of the compact
space S(p), it suffices to show that {K(f): f convex on M) has the
finite intersection property. Given convex functions fl9 •••,/« we set
g = Σef\ Then g is a positive convex function, and as shown above
there exists a minimizing geodesic ray p starting at p on which g is
monotone decreasing. Thus each efi

9 and also each fi9 is bounded on
p hence monotone decreasing. Therefore p'(0) e Π K(fi).

The major argument above makes no use of the curvature hy-
pothesis K ^ 0. In fact, it shows that if an arbitrary complete
Riemannian manifold contains no compact totally convex sets then
from each point there is a minimizing ray on which every convex
function is monotone decreasing.

COROLLARY 11.11. If M — HID is a core-compact Visibility mani-
fold, then (1) Lh{D) = L(D), and (2) every almost minimizing geode-
sic in M is ultimately minimizing.

Proof. (1) By the preceding Proposition, M has no principal
asymptote classes and hence no vertices. But this means that L(D) Π
Oh(D) is empty, that is, L(D) g Lh(D). We have seen that the reverse
inclusion holds for a Visibility manifold. (2) follows from (1) by the
initial results in §7.

Note that since M has no vertices its asymptotic closure M is a
manifold with boundary F(M).

Many Riemannian manifolds N do not admit nonconstant convex
functions; this is the case if N is compact or more generally if N has
finite volume (Proposition 2.2 of [3]). The following result shows
there are many complete K ^ 0 manifolds with infinite volume which
do not admit nonconstant convex functions (see the example following
Corollary 10.5).

COROLLARY 11.12. If M = HID is a {complete, K ^ 0) manifold
with L(D) = H(oo)9 then every convex function on M is constant.

Proof. Let / be a convex function on M. By Lemma 11.2 the
function foπ is monotone decreasing on every xeL(D) — if(co).
Thus foπ is constant on every geodesic of H; hence foπ and / are
constant.

The converse may well be true, at least for Visibility manifolds,
however we have been able to prove it (in Proposition 11.15) only for
special cases.
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LEMMA 11.13. If H has constant negative curvature or if H is
two-dimensional and satisfies Axiom 1, then each point of H(oo) has
arbitrarily small neighborhoods U such that H — U is convex.

Proof. Let C(v, ε) be a cone neighborhood of x = Ύv(°o). By the
Visibility property, there exists an r > 0 such that the open halfspace
JJ = C(Yv(r), τr/2) is contained in C(v, ε). The boundary of U in H is
the submanifold exp (v1) which under the hypotheses on H (though
not in general) is totally geodesic. This implies that H — U is con-
vex.

When the conclusion of this lemma holds we obtain the converses
of several earlier results, starting with Lemma 11.2:

LEMMA 11.14. If H satisfies the conclusion of the preceding
Lemma, then x e L(D) if and only if every D-invariant convex func-
tion on H is monotone decreasing on x.

Proof. It suffices to show that if xeO(D), then there is a D-
invariant convex function that is unbounded on x. Fix p e H. By
hypothesis there is a neighborhood U of x such that D(p) Π U — •
and H — U is convex. Let A = f]{φ(H — U):φeD}. Then A is a
D-invariant convex set, and p e A. If a is the geodesic from p to
x, then for large r we have a(r) e U C H — A. Hence / = d( , A) is
the required function.

Note the following refinement. If L(D) Φ i2"(°°), choose such a
neighborhood Ux for every x e O(D) and redefine A to be Π {φ{H— Ux):
φeD, xeO(D)}. Then f = d( ,A) is unbounded on every xeO(D),
hence the induced convex function on M = H/D is unbounded on
every asymptote class yeF(M), faces of M.

The three assertions in the following proposition improve Remark
11.9, Proposition 11.10, and Corollary 11.12 respectively. The asser-
tions are valid for Visibility manifolds of constant curvature or dimen-
sion 2, and we consider it likely that they hold for all Visibility
manifolds.

PROPOSITION 11.15. Let M = H/D be a Visibility manifold satis-
fying the conclusion of the preceding lemma. Then

1. The vertices of M are exactly the principal asymptote classes
of M.

2. M has no vertices (i.e. LD — LhD) if and only if M is core-
compact.

3. M has no faces (i.e. LD = Jϊ(oo)) if and only if every convex
function on M is constant.
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Proof. (1) is clear, since the hypothesis implies the converse of
Remark 11.9. Thus (2) becomes a restatement of Proposition 11.10.
The hypothesis also shows that if L(D) Φ H{OO) there is a DΛnvariant
convex function on H that is unbounded. Thus the converse of Corol-
lary 11.12 is true, proving (3).

EXAMPLE 11.16. In [4], page 198, Busemann has given two
interesting examples of complete K = — 1 surfaces; see also [7]. Each
is diffeomorphically a punctured torus, hence is noncompact with one
end. The surfaces are given as H/D, where D is a free group gen-
erated by two axial isometries with orthogonal axes. Being punctured
tori they are necessarily fuchsian (§9), however their other geometric
properties are quite dissimilar.

(1) Surface A may be visualized as a torus with a contracting
tube. A has finite area hence no faces, and thus every convex func-
tion on A is constant. A has exactly one vertex v, hence {v} is the
end of A; it follows that v is ultimately minimizing. The commuta-
tor of the generators is parabolic (with fixed point projecting to v)>
hence A is not full. Its asymptotic closure A is a torus (add the
vertex v = A(°°) to the end of the tube).

(2) Surface B is a torus with an expanding tube. B has exactly
one face, hence infinite area. Examination of a fundamental domain
of D shows that B contains a compact totally convex set whose
boundary is a closed geodesic (neck of the expanding tube). Thus B
is core-compact, full, and has no vertices. Its asymptotic closure B
is a torus with open disc deleted (add the face B(oo) ̂  S1 to the
end of the tube).
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