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STARLIKE AND CONVEX MAPS IN BANACH SPACES

T. J. SϋFFRIDGE

Let X and Y be complex Banach spaces and let B = {x e
X: 11 x 11 < 1}. This paper concerns holomorphic maps f:B-+Y
which have local holomorphic inverses. That is, for each
x e B9 there is a neighborhood N c Y of f(x) and a holomorphic
function g:N->B such that g(f(x)) = x and f(g(y)) = y for
all yeN. Necessary and sufficient conditions are found which
guarantee that such a map be one-to-one and map the unit
ball B onto a domain which is convex or starlike with respect
to 0.

l Introduction* When X — Y— C (the complex plane), it is
well known that if / is holomorphic in | z | < 1 and satisfies /(0) =
0, /'(0) Φ 0 then / is univalent and maps the disk onto a domain
which is starlike with respect to 0 if and only if Re [zff(z)/f(z)] > 0
when \z\ < 1. Intuitively, this results from the fact that if we
choose z = rei&

9 0 < r < 1, f(z) Φ 0 and let φ{Θ) be a continuous
branch of arg f{reiθ) locally then dφ/dθ = Re [zf'(z)/f(z)]. This idea
does not extend readily to Banach spaces so we consider a different
approach suggested by the following theorems due to M. S. Robertson
[4].

T H E O R E M A . Let w(z, t) = ΣjTbn(t)zn be regular in \z\ < 1 for
0 ^ t ^ 1. Let \w(z, t)I < 1 for \z\ < 1, 0 ^ t ^ 1, w(z, 0) = z. Let

p be a positive real number for which w(z) = lim ί_0+ (w(z91) — z)/ztp

exists. Then Re w(z) ^ 0 for \z\ < 1. If w(z) is also analytic in\z\<

1 and Re (w(0)) Φ 0, then Re (w(z)) < 0 for \z\ < 1.

THEOREM B Let f(z) = z + a2z
2 + δe regular and univalent

in I z I < 1. For 0 ^ £ ̂  1 Zeί -F\z, £) δe regular in \ z | < 1. Lei F(z,
0) == /(z) αm£ i^O, £) Ξ 0. Le£ p be a positive real number for which
F(z) — limί_>0+ (F(zf t) — F(z, O))/ztp exists. Let F{z, t) be subordinate
to f(z) in \z\ <lfor0^t^l. Then Re (F(z)/f'(z)) ^ 0, | z \ < 1. //
in addition F(z) is also analytic in \z\ < 1 and Re(jF(0)) Φ 0, then
Re(f'(z)/F(z))<0,\z\<l.

As observed by Robertson, if / is holomorphic and univalent in
\z\ < 1, /(0) = 0, and /( |z | < 1) is starlike with respect to 0 then
(1 - t)f{z) is subordinate to f(z) (i.e., (1 - t)f(\z\ < l ) c / ( | z | < 1))
for each t, 0 ^ t ^ 1. We may set F(z, £) = (1 - t)f{z) in Theorem B
and obtain F(z) = — f(z)jz when p — 1. Thus we obtain the necessary
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576 T. J. SUFFRIDGE

condition Re [zf'(z)lf(z)\ > 0 by using the concept of subordination.
Now assume / is holomorphic in | z | < 1, /(0) = 0, f'(z) Φ 0 in | z | < 1

and w(z) = f(z)/zf'(z) where Re(w(z)) > 0(equivalently Re[z/'(z)//(z)] >
0). Expanding / - 1((1 — t)f{z)) in powers of t about t = 0, we have

/-'((I - tf{z)) = z - tf(z)/f'(z) + o(ί) - z(l - tw(z)) + o(ί)

so I f~\(l - t)f{z)) \<\z\ when 0 < t < t0 for some ί0 > 0. As we shall
see later, this will imply / is one-to-one and f(\z\ < 1) is starlike
with respect to 0. This is the approach which is needed for extension
of these ideas to Banach spaces.

It is well known that the image of the unit disk under a holomorphic
map / satisfying /'(0) Φ 0 is convex if and only if the function zf'{z)
has an image which is starlike with respect to 0. The generalization
of this result to Banach spaces is false. In fact, we will show that
if X = sι then / : B—>Y is a biholomorphic map of B onto a convex
domain if and only if / is a bounded linear map having a bounded
inverse (Corollary 1). We will also show (Corollary 2) that if X =
/°° and / : B-* Y is a biholomorphic map of B onto a convex domain
then / = Log where g: B->X is given by g = (gl9 g2, •••), 0*(α) =
gk(xk) = xk + Oafcί&l + •••,#= (a?!, a?2, •) and L is a bounded linear
map having a bounded inverse (i.e., / is a linear map composed with
a function whose coordinates are functions of one variable only).

See [6] for extension of Robertson's Theorems A and B to Cn

and see [3] and [6] for some results concerning starlikeness and
convexity in Cn.

2* Starlike maps in Banach spaces* Let Br — {x G X: || x \\ < r}
and B = Bλ. For 0 Φ x e X, let T(x) be the collection of all continuous
real linear functionals xr on X (regarded as a real linear space) satisfy-
ing xf(x) = 11 $| | and x'{y) ^ \\y\\ for all y e X. By the Hahn-Banach
theorem, T(x) is nonempty. Also, if x' e T(x) then {y e X: xf{y) = ||α;||}
is a supporting hyperplane for the convex set Bm>. Let &*0(B) be the
class of mappings w: J5 —> X which are holomorphic and satisfy w(0) =
0 and x'{w{x)) ^ 0 when 0 Φ xeB and α'e T(α ). Further, let &*(B)
be the class of w e ,^Q{B) which satisfy xf(w(x)) > 0 when 0 Φ x e B
and xr

 G T(a;)

EXAMPLES. If X = C and 20 ^ 0 then Γ(«o) contains only the
functional $' given by x'(z) — R e [ | ^ o | ^ o ] and .^(B) consists of the
class of w such that w(z)/z is holomorphic in \z \ < 1 and Re [w(z)/z] > 0.

If X = Cn with sup norm, and 0 Φ xe X then T(a ) consists of

those functionals x' given by x'(y) = Σι*fc:=ιι*ιι 1̂1 ̂ 11 R e (W%) where

ί* ^ 0 for each & and ΣiχΛι=n*ιι ^ = l ^ n ^ s c a s e » ^(-B) is the class
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of w\B-+X which are holomorphic and satisfy w(0) — 0 and
Re [wjixj/xj] > 0 when | |g | | = \xs\ > 0. We remark that ^(B) in this
case is the class & defined in [6].

If I = / p , l < p < o o , and 0 Φ xeX then T(x) contains only
the functional x' given by αj'd/) = Re ( Σ I ^ I W ^ V I I ^ I I ^ a n d &*(B)
consists of those holomorphic w: B—>/p satisfying w(0) — 0 and

If X = z 1 and 0 =£ a; 6 X then T(x) consists of those f unctionals x'
given by

x'(y) = Re ( Σ I % I Vil*i + Σ «/!//)
0 0

where α, satisfy | αy | ^ 1. In this case, & (B) consists of those
holomorphic w: B—> s1 satisfying w(0) = 0 and Re [Σ»y*o|#il Wj (a?)/α?y —
Σ*y=o I -̂(α?) |] > 0. In the finite dimensional case using the p norm,
1 ^ P < °° the class ^0(-B) is the class ^ v defined in [6].

The following lemmas generalize Robertson's Theorems A and B
to Banach spaces. They also include Lemmas 1-4 of [6]

LEMMA 1. "Let v(x, t): B x I—+B be holomorphic for each te I =
[0,1], v(091) = 0 αwd v($, 0) = x. If limt^+ [(x — v(x9

is holomorphic in B then w e

Proof. Let 0Φ xeB andx' e T(x). By Schwarz lemma, 11v(x, t) \\ ̂
\\x\\ so x'[(x - v(x, t))/t] - ( | |s | | - x'(v(x, t)))jt ^ (\\x\\ - \\v(x, t)\\)/t ̂  0
and the desired result follows by continuity of α?\

The following example shows that there are nontrivial cases in
which the limit function w of Lemma 1 is not in the class

EXAMPLE. Let X = C2 with | |α;| |2 = \x^2 + \x2\\ For 0 ^ ί ^ 1,
let v(α;, t): B-^ B be the restriction of the linear map having matrix

V l - t2 t

- t

Then the limit function w of Lemma 1 is given by w(x) = (— x2, x^
If xf e T(x) then x'{y) = Re ( ^ ^ + ^22/2)/||^|| so ί»'(w(a?)) = Re (— xγx2 +

LEMMA 2 Let f: B—>Y be a biholomorphic map (holomorphic
with a holomorphic inverse) of B onto an open set f{B) c Y and let
/(0) = 0. Let F{x, t): B x I —+Y be a holomorphic function of x for
each t e I, F(x, 0) = f(x), F(0, ί) = 0 and suppose F(B, t) c f{B) for
each te I. Further, suppose limt_>0+[(F(xt 0) — F(x, t))/t] = F(x) exists
and is holomorphic. Then F(x) — Df(x)(w(x)) where w e ̂ 0(B) (Df(x)
is the Frechet derivative of f at x).
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Proof. Since F(B, t) c f(B) for each t e I, there exists v: B x /—•
5 (V(OJ, ί) = f~ι(F(x, t))) holomorphic for each t e I such that f(v(x, t)) =
Fίa?, ί) where \\v(x, t)\\ ^ ||α?||. Fix x, \\x\\ > 0. Then

f(v(x, ί)) = /(a?) + Df(x)(v(x, * ) - » ) + Λ ( φ , t), a?)

where ||22(2/, α?)||/||2/- a?|| > 0 a s \\y - x\\ >0. Therefore

F(x, 0) - F(x, t) = Df(x)f*-Φ,t) __ R(v(x,t),x)\ β

6 \ ί % '

We wish to conclude JK(v(a;, ί), a?)/ί—>0 as ί~>0+ so that
v(x, t))jt) exists and an application of Lemma 1 completes the proof
We first show that \\x — v(x, t)\\/t is bounded as t-+0+. Suppose for
some sequence {tn}, tn~+0+ and \\x — v(x, £«)||/£»—» °° We have

x ~ Φ***) \ R(v(x,t%),x) l\\x - v(x9tn

and since R(v(x, tn), x)/\\x — v(x, tn) ]| —> 0 we must also have Df(x)((x —
V(OΣ, ίw))/|I $ — !;(#, ί») II)—>0. This contradicts the assumption f~ι is
holomorphic so such a sequence cannot exist, i.e., \\x — v(x,t)\\/t is
bounded as ί—>0+. The desired conclusion now clearly follows.

If X = C and w e ̂ 0(B) then Re (w(z)/z) ;> 0 when |«| < 1. It is
then easy to see that for | α | <l,w(az)/cte&*0(B) and in fact we
&*(B) unless Rew'(0) = 0 and in this case w is constant. This result
takes the following form in normed linear spaces.

L E M M A 3. If we&*0(B) and\a\ < 1 then

— w ( a x ) e ^ 0 ( B ) (—w(ax) is understood to be the limit value

Dw(O)(x) when a = 0) .

Further, if x' e T(x), 0 < ||a?|| < 1 then xr{w{x)) = 0 if and only if
x'(Dw(O)(x)) = 0 and in this case x'(l/a-w(aχ)) = 0 when \a\ < l/ | | a j | | .

Proof. For 0 < | a \ < 1 and x' e T(x), define x'a by x'a(y) = x'{\ a \ y/a)
for all yeX. Then xa(aχ) = \\aχ\\ and x'a(y) ^\\y\\ for all yeX so
x'a e T(aχ). Therefore,

0 ^ —xra(w(aχ)) = xf(w(aχ)ja)

and by continuity of x\ x'(Dw(0)(x)) ^ 0. Thus we have shown w(aχ)fa e
~"B) when \a\ < 1.

Also, x'(y) = Re [α?'(i/) — ia?'(ii/)] is the real part of a continuous
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complex linear functional BO x'(w{ax)ja) is a nonnegative harmonic
function of a for fixed x,\a\ < l/||α?||. Therefore x'(w(aχ)/a) > 0 or
x'(w(ax)/a) == 0 (x fixed). This completes the proof.

DEFINITION 1. A holomorphic map f: B-+Y is star like if / is
one-to-one, /(0) = 0 and (1 - t)f(B) c f(B) for all t e I.

THEOREM 1. Suppose f:B—*Y is starlike and that /~x is holomorphic
on f(B) open c Γ , There exists we^(B) such that

(1) f(x) = Df(x)(w(x)).

Proof. Apply Lemma 2 with F(x, t) = (1 - t)f(x) to obtain (1)
with w e ^o(B). Since

—f{aχ) = Df(ax)(±-w(aχ)
a \a

for \a\ < 1, letting a—>0 we have

Df(Q)(x) = Df(0)(Dw(0)(x))

so Dw(0)(x) = x since Z"1 holomorphic implies Df(0) is invertible.
Using Lemma 3 we conclude w e ̂ (1?).

We have the following "converse" to Theorem 1.

THEOREM 2. Let f:B~>Y be holomorphίc and /(0) = 0. Assume
Df(x) has a bounded inverse for each xeB (hence f"1 exists and is
holomorphίc in a neighborhood of each point of f{B)) and that for
some w G ̂ (B), f(x) = Df(x)(w(x)). Suppose further that for each r,
0 < r < 1, there exists M(r) such that \\[Df(x)]~l\\ ̂  M(r) when \\x\\ <L
r. Then f is starlike.

Proof. We first observe that f(x) Φ 0 if x Φ 0 for f(x) = 0
implies Df(x)(w{x)) = 0 so w(x) — 0 since Df{x) is invertible. But
xf e T(x) implies x'(w(x)) > 0 so w(x) Φ 0 when x Φ 0.

For 0 Φ xeB, let Nx be a neighborhood of f(x) in which Z"1

exists as a holomorphic function. Let v(x, t) = /""'((I — t)f(x)) for
— t0 <t <tL where ί0 and tt are positive such that (1 — t)f(x) e Nx

when — ί0 < * < ίi We wish to show \\v(x, t)\\ is strictly decreasing
as a function of t. Note that

φ , ί) - v(x, 0) + [D/ία?)]-^- tf{x)) + o(ί)

= a? — tw{x) + o(0

so for α;' G Γ(aj) we have
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\\v(x, OH ̂  tf(v(x, t)) = x'{x) - tx'{w{x)) + o(ί)

= \\x\\-tx'(w(x)) + o(t)> \\x\\

when £ is negative, | ί | sufficiently small. But we may apply this
result at y = v(α?, ί) (so v(j/, r) = /"'((I — r)(l — t)f(x))) to conclude
that ||v(aj, ί)ll *s strictly decreasing in — t0 < t < ^.

For 0 ^ ί ^ 1, let At = {(1 - τ)f(x): 0 ^ r ^ t) and let Γ = {ί e
[0,1]: there exists a neighborhood Nt of At such that /~x exists as
a holomorphic function on Nt such that /^(/(x)) = x} It is easy to
see that T is open and nonempty. We wish to show that T is closed
so T = [0,1]. Let 0 < ί2 ^ 1 where 0 ^ ί < t2 implies teT. We wish
to show t2 e T. Define

(2) Lr= [wiDfif-^l - t)/(αO))Γ(- /(»))ll *
Jo

Computing the derivative of /"^(l — t)f(x)) with respect to t,
we see that the integral (2) gives the length of the arc /-1{(1 — t)f(x):
0 ^ t ^ τ} Note also that for 0 ̂  τ < ί0, 11 f~\{l - ί)/(α?)) 11 ^ p 11 in the
integrand since \\f~~\(X — t)f(x))\\ decreases with t. Hence by hypoth-
esis, the integrand is continuous and bounded by Λf(||a?||) ||/(a?)|| so
the integral exists for 0 ^ r ^ ί2. Further, if 0 ^ τ,. < τ2 < ί2 we have

Lr% ~ Lrι = ^2\\[Df(f-\(l - t)f(x)))Γ(- f(x))\\ dt

^ | | / - ( ( I - τ2)f(x)) - /-( (I - τθf(x))\\

Let {τJfcLi be an increasing sequence of values of τ such that Lΐ]c —
(1 - 2~k)Lh. Then

^ | | /-((I - τj/(a?)) - /-((I - τw)/(α;))||

so {/-1((1 — ̂ *)/(«))}?=i is a Cauchy sequence which converges to some
value yeX such that \\y\\ ^\\x\\. Clearly /(#) = (1 - U)f{x). Let
G be a neighborhood of f(y) such that f~ι exists uniquely in G as a
holomorphic function and f~ι{f{y)) — y* Since some of the values (1 —
t)f(x) lie in G for t < ί2, the values of Z"1 in G and in Nt must
agree for these values of t. Therefore, (|Jo^<i2 Nt) U G is a neighbor-
hood of Aί2 on which / has a unique holomorphic inverse. Thus we
have proved t2e T and T is closed.

Now suppose f(x) = /(#), x Φ y. Then there exist inverses &
and #2 of / holomorphic in a connected neighborhood N of A = {(1 —
ί)/(α): 0 ^ ί ^ 1} such that ^(/(«)) = α; and g2(f(x)) = ί/. Clearly,
the set of points on which ^ and <72 agree is both open and closed
(relative to N) so either gγ = g2 or gλ{u) is never equal to g2(u), ue N.
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But 0 e N and ^(0) = g2(0) = 0 while also f(x) e N and &(/(&)) = x Φ
y = g2(f(x)). This contradiction completes the proof of the theorem.

REMARK. We do not know whether Theorem 2 remains true
without assuming X is complete or without the boundedness condition
on [Df(x)]~~\ The usefulness of this boundedness condition comes
from the fact that for r < 1 this condition implies that the boundary
of f(Br) (as a subset of Y rather than f(B)) is /(||a?|| = r).

EXAMPLE. Let X == Y = s°° and define f:B~>Y by f(x) = (/„
/ 2, •) where /^a?) = x1 and / , (a?) = a?, (l — xλ) if i ^ 2. Then

[Z)/(a;)r(/(α;)) = w(a>) - (wlf w2, . . •)

where wx = ^ and w3> = xόl(l — x,) if j ^ 2. Suppose 0 Φ X e B and
x'eT(x). If I ^ K I I O J H then α;'(l, 0, 0, •••) - 0 = s'(ϊ, 0, 0, •• •) for
otherwise we may choose a so that ||α?|| = \\x + (α, 0, 0, ) | | and
||a?|| < α'(α;) + x'(a, 0, 0, . . . ) - a;'(aj + (α, 0, 0, . . ) ) .

If 11 a? 11 = I ^ I, then x'(xl9 0, 0, •••) ^ 0 otherwise, choose a = —
ί a?! where ί is small and positive so that ||a? + (α, 0, 0, •••)!! ^ IIaII
and a?'(a? + (a, 0, 0, -.)) > »'(«) = IMI

Also, if ||a?|| = K | then x'(ixlf 0, 0, •••) = 0 since τ/ l + f \\x\\ ^

«'((! ± iί)«i, «2, •) = α'(&) ± tx'(ixl9 0, 0, •) so

± a?'(ia?x, 0,0,

Similarly, a?'(i(0, a?2, α̂ , •)) = 0 and a;f(0, a;2, aj3, a;4, •) ̂  0. There-
fore

x'(w(x)) = x'(xu 0, 0, •) + ^(—ί— (0, a?,, K, •))
\ 1 — Xι J

- aj'(ajlf 0, 0, •) + Re ( _ l _ ^ ( 0 , xt, x3, . •))
VI — xx J

>0

so / is starlike. Note that as x tends to a boundary point of the
form (1, a?2, £3, •), f(x) tends to the point (1, 0, 0, 0, •).

3* Convex maps of the unit ball* We wish to obtain necessary
and sufficient conditions that / : B -+ Y be a biholomorphic map of B
onto a convex domain in Y. We begin with the following lemma.

LEMMA 4. If f: B—*Y is a biholomorphic map of B onto a
convex domain then f(Br) is convex for each r, 0 ^ r ^ 1.
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Proof. S u p p o s e xQ,yeB,\\y\\ S\\xQ\\ a n d x0 Φ 0. T h e n tf(x0) +
(1 - t)f(y)ef(B) when 0 ^ t ^ 1 and we wish to show tf(x0) +
(1 - t)f(y)e f(Br) when ||a?0|| < r. Let / b e a (complex) continuous
linear functional satisfying •(&„) = 1, | | / | | ^ l/||α?0||. Let tf(x) + (1 —
t)f{s{x)y) = f{v{x, ί)). Then v(0, ί) = 0 and \\v(x, t) | | < 1 so || v(α>, ί) || ^
||fl?||. Hence /(v(a;0, t)) = «/(&,) + (1 - t)f(y) where | | φ 0 , t) | | ^ ||α>0||
and the lemma is proved.

DEFINITION 2. If f:B-+Y is a biholomorphic map of B onto
a convex domain, we say that / is convex.

If X = C, it is well known than a function / holomorphic in | z | <
1 satisfying /'(0) φ 0 is convex if and only if Re \zf"{z)lf'{z) + 1] > 0 in
I z I < 1. The analogous condition for a general Banach space is
necessary but not sufficient.

THEOREM 3. If f: B—>Y is convex then

( 3) D*f{x){x, x) + Df(x)(x) = Df(x)(w(x))

where w e

Proof. Let F(x, t) - l/2(/(eίVT£) + f(e~iVTx)) for t e I. Then F(x,
t) satisfies the hypotheses of Lemma 2 with

F(x) = lim
0+

= lim - —(Df(x)((2 cos VT - 2)x)
ί->o+ 2t

+ D2f(x) (ί sin VTx, i sin VTx) + o(t))

I ;, a?)) .

Hence (3) follows with w e ^,(5) . Again, Dw{o)(x) = a? and by Lemma
3, w e ^ ( B ) .

The example X = C2 with sup norm and /fo, 2̂) = («! + «i/2, ̂ 2)
shows the condition is not sufficient (/ is not convex by Corollary 2
below).

Let Qo(B) be the class of functions w: B x B—+X which are
holomorphic in each variable and which satisfy w(x, x) = 0 and x'(w(x,
y)) ^ 0 when x'e T(x) and \\y\\ S \\x\\. Let Q(B) be the collection of
all weQ0(B) which satisfy x'(w(xyy)) > 0 when α?' e T(x) and

LEMMA 5. If we QQ(B) and \ a\ < 1 then l/a w(ax, ay) e Q0(B) (the
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limit value at a = 0 is Dw(0, 0)(x} y)). Further, if x' e T(x), 0 Φ x e B,
and || y || ^ || a? || then x*(w(x, y)) = 0 if and only ifx'(Dw(0, 0)(x9 y)) = 0.

Proof. See the proof of Lemma 3.

THEOREM 4. Suppose f:B-+Y is convex. Then f(x) - f(y) =
Df(x)(w(x, y)) where w e Q(B).

Proof. Since (1 - t)f{x) + tf(y) e f{B) for all x,yeB when 0 ^
t ^ 1, there exists v(x, y,t): B x B x I - * J5 such that /(v(aj, #, £)) =
(1 - t)f{x) + tf(y). By Lemma 4, \\v(x,y, ί ) | | ̂ max( | |α j | | , | | y | | ) . Also,

f(Φ, V, «))• = /(») + Df(x)(v(x, y, t) - α?) + Λ(i;(a?, y, ί), »)

so

/(a,) - / ( ) / ( Φ « ) )

- lim φ / ^ ^ " ^ ^ ^ ) - lg(φ, y , t),
ί->0+ V t / t

= Df(x)(w(x, y)).

Since t(;(α;, y) = limί_0+ (® — ̂ (#, VJ 0)/̂ > it ^s clear that w e Q0(B). Since
Dw(0, 0)(x, y) — x — y, Lemma 5 implies that w e Q(B).

Again assuming a boundedness condition on [Df{x)\~ι we can prove
the converse.

THEOREM 5. Suppose f: B-+Yis holomorphic, Df{x) has bounded
inverse for each xeB and that for some w eQ(B), f(x) — f(y) =
Df(x)(w(x, y)). Suppose further that for each r, 0 < r < 1, there exists
M(r)>0 such that | | [ A / W Γ Ί ! ^ M(r) when | | α j | | ^ r . Then f is
convex.

Proof. Since w(x, 0) e^(B), f(x) - /(0) is starlike. Let
v(x9 y, t) - Γ\{1 - t)f(x) + tf(y)) w h e n x,yeB a n d ί e [0, t0] w h e r e
ί0 is such that (1 - t)f(x) + tf(y) e f(B) when 0 ^ t ^ ί0. Proceeding
as in the proof of Theorem 2, we have

v(x, y9t) = x — tw(x, y) + o(t)

so II v(α?, 2/, ί) || is decreasing (as a function of t) when || v(x9 yy t)\\ > \\y\\.
By methods similar to those used in the proof of Theorem 2, we
conclude that the set of allowable values of t0 e [0,1] is nonempty,
open and closed. Hence we may choose ί0 = 1 and it follows that
f(B) is convex.
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THEOREM 6. Let f: B-+Y be convex, 0 Φ X e B and let x' e T(x).
Then the hyperplane {y e Y: xf[(Df(x)yi(y)] — ̂ r[(Df(^)yi(f(x))]} is a
supporting hyperplane for the convex set f(B{]x]{). If y Φ 0, x'(y) — 0
and \\x + ty\\ = ||α;|| for 0<t< t0, then xf[(Df(x))'1(f(x + ty))] =
xf[(Df(x))~1(f(x))] for 0 < t < t0 (i.e., f(x + ty) lies in the supporting
hyperplane described above).

Proof. B y T h e o r e m 4, \\y\\ < \\x\\ i m p l i e s

0 < x'(w(x, y)) = x'[(Df(x))-i(f(x) - /(»))]

so

x'[(Df(x))-\f(x))) > x'[(Df(x)y\f(y))\ .

That is, all points in f(Bllxll) lie on the same side of the hyperplane
and the first part of the theorem is proved.

Expanding f(x + ty) in a power series about x we have

fix + ty) = fix) + tDf(x)(y) + λfD2f(x)(y, y) + o(f)

Δ

SO

w(x, x + ty) = {Df{x))~\f(x) - f{x + ty))

= -ty- ±-t\Dfix)ΠD*fix)iy, y)) + o(ί2)
Δ

and

*\j \ (Λ/\*Λ/m v î  Vyji —~ ~~~ V *Kf \JLsJ \*λJl) V *-' J x™) \y j £/// 1̂  "^t/ y

2

By Lemma 5 and Theorem 4, we conclude xr{X(Df(\x))~1(D2f(Xx)(y,
y))} ^ 0 when |λ | ^ l/||a?|| with equality when λ = 0. Since the func-
tion under consideration is a harmonic function of λ we conclude
x'((Df(x))~l(D2f(x)(y, y))) = 0. Using induction on the higher order
terms in the series we obtain the desired result, x'(w(x, x + ty)) = 0.

Note that if x is not an extreme point of the closed ball of radius
|| x I \y x φ 0, then y and xr as given in the theorem do exist.

We now apply Theorem 6 to two particular spaces which show
that the requirement that a holomorphic map of the unit ball be
convex is very restrictive at least in some spaces. We asume that
(S, R, μ) is a measure space with μ a positive measure defined on the
σ-ring R of subsets of S. We assume S has two disjoint subsets of
finite positive measure.

THEOREM 7. Let X = L(μ) (the space of complex valued integrable
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functions on S). If f: B—>Y is convex then f(x) — /(0) is linear.

Proof. We may assume Y= X, /(0) = 0 and Df(O) = I (otherwise,
replace / by [A/XO)]"1^) - /(0))). Since f(x) = x + l/2.D*f(0)(x,
x) + , it is sufficient to show Dnf(0) = 0, n = 2, 3, . The proof is
by induction. Let x = aχE + βa^ where E and i*7 are disjoint sets
of finite positive measure, xE and xF are characteristic functions for E
and F respectively, \a\μ(E) + IβlμCF7) < l(soa eΰ) and α/3 =£ 0.
Let xf be the real continuous linear functional on X given by

x'(u) =

and let

y = -a/(\a\μ(E))(l - ir)xE + βj{\β\

where r and s are real.
Then x'(y) = 0 and

= | α | (μ(E) - t/\a\)i/l + (rt/(\a μ(E) - t)f

(μ(F) H

l̂l + \a\μ(E)rΎ/(2(\a\μ(E) - ί)2)

\β\μ(F)sH2/(2(\β\μ(F) + ί)2)

if | ί | is sufficiently small.
Therefore, using Theorem 4 and the definition of Q we conclude

x'(w(x + ί#, x)) ^ 0 if | t | is sufficiently small. Since x'(y) = 0, it
follows as in the proof of Theorem 6 that α;'(jDί(α;))-1(i)2/(α;)(7/, y)) = 0.

Letting Lβ( , .) = (Df(x))~ι(irf(x)(-, .)) we have

- 2̂ 8(1 - ΐr)(l + is)/(\β\μ(E)μ(F))

Lx{xE, xF) + \a\ β\l + isγi(a\β\ψ{F))L.{xF9 xF))dμ

- 2α(l - ir)(l + is)/(\a\ μ(E)μ(F))

Lx(xE, xr) + jS(l + is)2/(\β\μ2(F))Lx(xF, xF))dμ] = 0 .

In (4), if we replace a and β by Xa and λ/S and multiply through
by I λ I we obtain an analytic function of λ for | λ | < R where R > 1
which has 0 real part and is 0 at λ = 0. Therefore the quantity in
brackets is 0. Since α, β, r, and s are variable, we conclude that each
of the six terms above is 0. Letting a and β tend to 0, we conclude
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that if A and B are disjoint measurable sets of finite measure then

( D2f(0)(xA, xA)dμ = \ D2f{ϋ){xM xA)dμ = ( D2f(0)(xA, xB)dμ = 0 .
JA Js JA

If A and E\J F are disjoint and A has finite positive measure,
we may replace the functional xr in the argument above by x[ where

x[(u) = x(u) + Re \ Ίudμ
)A

where | 7 | ^ 1 , 7 complex. This leads to the conclusion, \ D2f(0)(xE,

xF)dμ = 0.
Hence we may now conclude that for simple functions y we have

D2f(0)(y9 y) = 0. This implies D2f(0)(y,y) = 0 for all yeL(μ).
Similarly, Dkf(0)(y, y, •. , y) = 0 for k = 3, 4, . .

The theorem now follows from the power series for / about 0.
Choosing S to be the positive integers and μ counting measure

we obtain the following corollary.

COROLLARY 1. If X = sι and f: B~*Yis convex then f(x) — /(0)
is linear.

THEOREM 8. Let X — L°°{μ) {the space of essentially bounded,
complex valued, measurable functions on S) and suppose f: B—>Y is
convex. If x,yeB where x(s) = y(s) for all seEaS and μ{E) > 0
then {Dfφ))-ι{f{x)){s) = φ / i O))"1/^/)^) for almost all seE.

Proof. We may assume Y = X, /(0) = 0 and Df(0) = / (otherwise,
replace / by φ/(0))- ι(/(αj) - /(0))). We will show that if μ(E) > 0,
then for almost all seE we have f(x)(s) = f(xxE)(s) (where xE is
the characteristic function of E). We accomplish this by showing,
(Df(x))-1Dnf(x)(y, , y)(s) = 0 a.e. o n # when y(s) = 0onE(n^2) and
D2f(x)(xE, y) = 0 when /̂ = 0 on jδ/ An induction argument will then
show Dnf(x)(xE, y,y, , y) = lim « -> 0 [ D ' 1 - 1 / ^ + ^ ) f e , #, #, •••,!/)-
Dn~1f(x)(xEi y,y, , #)]/£ = 0 for ^ ^ 3 when ?/ = 0 on E and using
the fact that Dnf(x) is ^-linear and symmetric (writing y =
2/(1 — xE)) we have

Dw/(#)(2/, y, •••,#) = Dnf(x)(yxE, yxE, , 2/^)

+ Dnf(x)(y(ί - xs), y(ί - xE), , »(1 - ^ ) )

for all % ̂  1 when £7 is measurable. Hence for s € £/ we have

Dnf(0)(y, y, ---, y)(s) = Dnf(0)(yxE, yxE, , 2/^)^) a.e. on #

Therefore,
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^ Έ , xxE, . . , xxE)(s)

= f(xxE)(s) for almost all seE .

Let E be a set of positive measure, let 0 < s < r < 1 and

( 7 ) α? = αa?* + (1 — xE)u, ueX

where | α | = r and \\u\\ S r — ε.
Let ί / e ΰ satisfy

( 8 ) y(s) = 0 if s G E .

Then 11 a? + βy\\ = ||a?|| = r for |/9| sufficiently small. Let xf be
the real continuous linear functional on X given by

'(v) = Re [(-JL-λvdμ .
B\rμ(E)J

Then a;' e Γ(a?) and α?'(̂ 2/) = 0 so Theorem 6 applies. Since arg β is
arbitrary we may therefore conclude

(9) (Df{x)rιD2f{x)(y, y)(s) = 0 a.e on E .

But {Df{x))-1D<ίf{x){y, y) is an analytic function of a for \a\ < 1 (ί7, %,
and 7/ remain fixed) which satisfies (9) when | α | > | | u | | . Hence (9)
holds when | α | < l and | | w | | < l . For arbitrary xeB, we may
approximate xxE on E by simple functions to see that (9) holds for
all xe B if y(s) = 0 on E. An induction argument shows that (9)
holds when D2f(x)(y, y) is replaced by Dnf(x){y, y, , y) where n ^
2 and y = 0 on i7.

We now wish to show D2f(x)(xE, y) = 0 for all a?e J5 and p i
satisfying #(s) = 0 if s e # .

Let a? and y be given by (7) and (8) and set h = βy + taxE where
\β\ = £1/2. Then for ί sufficiently small, \\x + ft||vT+~P ||a?|| and

where

v -
V i + 1 2 -1 i/i +

With xf as above, applying Theorem 4 we obtain
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/ / i \ \

0 ^ x'ywlx, , 2-.{x + h)JJ

+ o(f).

Since \β\ — ί1'2 and arg β is arbitrary, we conclude

(10) ^(DfWyWfixXxz, y)dμ = 0 when ^ 0 o n £ 7 .

Let FdS,F measurable, and μ{F) > 0. Equation (10) implies

( {Df{x)r^f{x){xE, y)dμ = 0 .
JFKE

Also,

\ Lx(xE, y)dμ = I Lx(yxF, xE)
J F~E J F-EL

i 1
),xE + y(l — XF)) Lx(xE, xE)

JL=Q

for the first term is 0 by (10) applied to F — E and the other 3 terms
are 0 by (9) applied to F - E. Hence we conclude {Df(x))~ίD2f{x){xE,
y)(s) = 0 a.e. on S so D2f(x){xEy y) = 0 .

Again taking S to be the positive integers with μ the counting
measure we obtain the following corollary.

COROLLARY 2. IfX= s~ and f:B—*Y is convex then f(x) -
/(0) = Df(0)(g(x)) where g(x) = {g^x,), g2(x2), •••) and gk(xk) = xk +

+ maps I % I < 1 (mίo a convex domain.

4. Discussion. The techniques used in this paper may also be
used to extend the concepts of close-to-convexity and spirallikeness
to Banach spaces. There are at least two different ways of extending
the analytic condition for close-to-convexity to Banach spaces and these
apparently lead to different classes of functions. Results concerning
these concepts are as yet incomplete and will be discussed in a later
paper.
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