ON A PROBLEM OF COMPLETION IN BORNOLOGY

V. B. MOSCATELLI

In this note an example is given to show that the bornological completion of a polar space need not be polar. Also, a theorem of Grothendieck's type is proved, from which necessary and sufficient conditions for the completion of a polar space to be again polar are derived.

1. Notation and terminology are as in [4]. In particular, b.c.s. means a locally convex, bornological linear space over the scalar field of real or complex numbers.

In [4, 5. p. 160] Hogbe-Nlend lists, among unsolved problems in bornology, the following one, which was first raised by Buchwalter in his thesis [1, Remarque, p. 26]:

Is the bornological completion of a polar b.c.s. again polar?

The purpose of this note is to exhibit an example that answers this question in the negative. We also prove a theorem of Grothendieck's type for regular b.c.s. with weakly concordant norms, which enables us to give necessary and sufficient conditions for the completion of a polar b.c.s. to be polar.

2. For each *n* let the double sequence $a^n = (a_{ij}^n)$ be defined by $a_{ij}^n = j$ for $i \leq n$ and all *j*, $a_{ij}^n = 1$ for i > n and all *j*, and denote by E_n the normed space of scalar-valued double sequences (x_{ij}) with only finitely many nonzero terms, under the norm

(1)
$$||(x_{ij})||_n = \sup_{i,j} \frac{|x_{ij}|}{a_{ij}^n}.$$

Let E be the bornological inductive limit of the spaces E_n ; thus $E = E_n$ algebraically, and a set $B \subset E$ is bounded for the inductive limit bornology if and only if there exist positive integers n, k such that $||(x_{ij})||_n \leq k$ for all $(x_{ij}) \in B$. It is easily seen that E is a polar b.c.s. whose dual E^{\times} consists of all scalar-valued double sequences (u_{ij}) such that

$$\sum\limits_{i,j=1}^{\infty}a_{ij}^{n}\,|\,u_{ij}\,|<\infty$$
 for all n .

By [1, Théorème (2.8.15)] the completion \hat{E} of E is given by $\hat{E} = \lim_{\to \to} \hat{E}_n$ (bornological inductive limit), where \hat{E}_n is the completion of the normed space E_n , i.e., the Banach space of scalar-valued double sequences (x_{ij}) such that $\lim_{i,j\to\infty} x_{ij}/a_{ij}^n = 0$ under the norm (1). It also

follows from [1, Théorème (2.8.15)] that $\hat{E}^{\times} = E^{\times}$. Thus, it remains to show that the b.c.s. \hat{E} is not polar with respect to the duality $\langle \hat{E}, E^{\times} \rangle$, i.e., that there is a bounded subset B of \hat{E} whose bipolar $B^{\circ\circ}$ is unbounded. In fact, the set

$$B=\left\{(x_{ij})\in \hat{E}\colon \sup_{i,j}\mid x_{ij}\mid \leq 1 ext{ , } \lim_{i,j
ightarrow\infty}x_{ij}=0
ight\}$$

is bounded in the Banach space $\hat{E_{i}}$ and hence bounded in $\hat{E};$ however, since

$$B^{\scriptscriptstyle 00} = \left\{ (x_{ij}) \in \widehat{E} \colon ext{ sup } | ext{ } x_{ij} \mid \leq 1
ight\}$$
 ,

the sequence $\{(x_{ij}^n)\}$ with $x_{ij}^n = 0$ for $i \neq n$ and all $j, x_{ij}^n = 1$ for i = n and all j, is contained in B^{00} and yet is unbounded, for

$$(x_{ij}^n)\in \widehat{E}_n\thicksim \widehat{E}_{n-1}$$
 .

Therefore, B^{00} is unbounded in \hat{E} .

3. Let E be a regular b.c.s. with dual E^{\times} . For a bounded, absolutely convex set $B \subset E$ we set:

 $E_{\scriptscriptstyle B}$ = the normed space spanned by B,

- $\hat{B}~=$ the completion of B in the Banach space $\hat{E}_{\scriptscriptstyle B},$
- $E'_{\scriptscriptstyle B}$ = the dual of $E_{\scriptscriptstyle B}$,
- B' = the unit ball of $E'_{\scriptscriptstyle B}$,
- B° = the polar of B in E^{\times} ,
- B^{00} = the bipolar of B in \hat{E} ,
- $p_{\scriptscriptstyle B} =$ the gauge of $B^{\scriptscriptstyle 0}$ in $E^{\scriptscriptstyle imes}$,
- $E_{\scriptscriptstyle B}^{\scriptscriptstyle imes} = {
 m the normed space} \ E^{\scriptscriptstyle imes}/p_{\scriptscriptstyle B}^{\scriptscriptstyle -1}(0).$

Moreover, we denote by $E^{\times *}$ the algebraic dual of E^{\times} and identify, as usual, E_B^{\times} with a $\sigma(E_B', E_B)$ -dense subspace of E_B' .

THEOREM 1. Let E be a regular b.c.s. with weakly concordant norms. The completion \hat{E} of E consists, up to isomorphism, of all those linear functionals on E^{\times} whose restrictions to B° are bounded and $\sigma(E^{\times}, E_{B})$ -continuous for some bounded, absolutely convex set $B \subset E$. Moreover, for every base \mathscr{B} of the bornology of E, the family $\widehat{\mathscr{B}} = \{\hat{B}: B \in \mathscr{B}\}$ is a base of the bornology of \hat{E} and we have

(2)
$$\hat{B} = \{x \in B^{00}: x \text{ is } \sigma(E^{\times}, E_B) \text{-continuous on } B^0\}$$

for every $\hat{B} \in \mathscr{B}$.

Proof. If $x \in \hat{E}$, then by [3, Théorème 2, p. 221] there exists a bounded, absolutely convex subset B of E such that $x \in \hat{E}_B$; hence there is a sequence $\{x_n\} \subset E_B$ which converges to x in the Banach

space \widehat{E}_{B} . It is easily seen that $\{x_n\}$ converges to an element $y \in E^{\times *}$ for the topology $\sigma(E^{\times *}, E^{\times})$ and, therefore, y = x. Since $\{x_n\}$ is a bounded sequence in E_B , there is a positive number M such that $|\langle x_n, u \rangle| \leq M$ for all n and all $u \in B^{\circ}$. It follows that $|\langle x, u \rangle \leq M$ for all $u \in B^{\circ}$. It remains to show that the restriction of x to B° is $\sigma(E^{\times}, E_B)$ -continuous. By Grothendieck's theorem x is $\sigma(E'_B, E_B)$ continuous on B'; hence x determines a unique bounded linear functional z on E_B^{\times} whose restriction to the unit ball of E_B^{\times} is $\sigma(E_B^{\times}, E_B)$ continuous. Let ϕ be the canonical map $E^{\times} \to E_B^{\times}$. Since $p_B^{-1}(0) =$ $(E_B)^{\circ}$, ϕ is continuous from $(E^{\times}, \sigma(E^{\times}, E_B))$ to $(E_B^{\times}, \sigma(E_B^{\times}, E_B))$ and, therefore, the restriction of $x = z \circ \phi$ to B° is $\sigma(E^{\times}, E_B)$ -continuous.

We have also proved that

(3)
$$\widehat{B} \subset \{x \in B^{00}: x \text{ is } \sigma(E^{\times}, E_B) \text{-continuous on } B^0\}$$
.

Conversely, let $x \in E^{\times *}$ and suppose that, for some bounded, absolutely convex subset B of E, the restriction of x to B° is $\sigma(E^{\times}, E_{B})$ -continuous and satisfies

$$(4) \qquad |\langle x, u \rangle| \leq M \qquad \text{for all } u \in B^{\circ},$$

with M > 0. By going through the mapping ϕ introduced above we see that x determines a unique bounded linear functional z on E_B^{\times} $(z \circ \phi = x)$ whose restriction to the unit ball $B^0/p_B^{-1}(0)$ of E_B^{\times} is $\sigma(E_B^{\times}, E_B)$ -continuous. Now $\sigma(E_B^{\times}, E_B)$ is the topology induced by $\sigma(E'_B, E_B)$ on E_B^{\times} , $B^0/p_B^{-1}(0)$ is a $\sigma(E'_B, E_B)$ -dense subset of B' and B'is a complete uniform space for the uniformity induced by that of $(E'_B, \sigma(E'_B, E_B))$. It follows that z, being uniformly $\sigma(E'_B, E_B)$ -continuous on $B^0/p_B^{-1}(0)$, has a unique extension $y \in (E'_B)^*$ which is uniformly $\sigma(E'_B, E_B)$ -continuous on B'. By Grothendieck's theorem $y \in \hat{E}_B$ and, by (4),

$$|\langle y, u \rangle| \leq M$$
 for all $u \in B'$.

This essentially proves the converse implication of (3). Thus (2) holds and the proof is complete, in virtue of the fact that if \mathscr{B} is a base of the bornology of E, then $\widehat{\mathscr{B}} = \{\hat{B} : B \in \mathscr{B}\}$ is a base of the bornology of \hat{E} by [3, Théorème 2, p. 221].

COROLLARY. Let E be a regular b.c.s. with weakly concordant norms. Then E is complete if and only if every linear functional on E^{\times} which is bounded and $\sigma(E^{\times}, E_{\scriptscriptstyle B})$ -continuous on B° for some bounded, absolutely convex subset B of E, is $\sigma(E^{\times}, E)$ -continuous on E^{\times} .

The referee has informed us of a Note [2] where Theorem 1 and

its Corollary for polar b.c.s. are arrived at independently, and where counter examples to the same effect as that given in Section 2 are to be found. As every polar b.c.s. has weakly concordant norms (the converse being clearly false), the results in [2] are a particular case of the ones given here.

An immediate consequence of Theorem 1 is the following criterion for the completion of a polar b.c.s. to be again polar.

THEOREM 2. Let E be a polar b.c.s. The completion \hat{E} of E is polar if and only if every bounded subset B of E is contained in a bounded, absolutely convex set $C \subset E$ such that the restriction of every $x \in B^{00}$ to C^0 is $\sigma(E^{\times}, E_c)$ -continuous.

References

1. H. Buchwalter, Topologies, Bornologies et Compactologies, (Thesis, Lyon, 1968).

2. J-F. Colombeau, M. Grange and B. Perrot, Sur la complétion des espaces vectoriels bornologiques polaires, C.R.A.S., **273** (1972), 1481-1483.

3. H. Hogbe-Nlend, Complétion, tenseurs et nucléarité en bornologie, J. Math. Pure et Appl., **49** (1970), 193-288.

4. ____, Théorie des Bornologies et Applications, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

Received April 25, 1972. This work was supported by an Italian National Research Council grant.

WESTFIELD COLLEGE, UNIVERSITY OF LONDON