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ON REALIZING HNN GROUPS IN 3-MANIFOLDS

C. D. FeusTEL AND R. J. GREGORAC

In this paper we suppose that the fundamental group of
a 3-manifold M has a presentation as an HNN group. We
then show that under suitable conditions we can realize this
presentation by embedding a closed, connected imcompressible
surface in M.

In [2], [3], and [4] we show that if 7, (M?®) is constructed in cer-
tain ways, one can realize this construction by a surface embedded
in M?. In this paper we show that one can realize the HNN construc-
tion when certain relationships between z,(M?® and M*® are present.
The results in this paper are related to Theorem 2.4 in [10].

In this paper all spaces will be simplicial complexes, all maps
will be piecewise linear, and all 3-manifolds will be 3-manifolds with
boundary. However the boundary may be vacuous. Let X be a con-
nected subspace of a space Y. As usual we shall denote the boundary,
closure, and interior of X in Y by bd (X), cl (X), and int (X) respec-
tively. The natural inclusion map from X into Y will be denoted by
© and the induced homomorphism from x,(X) into 7, (Y) by 0,. Let
S be a closed connected surface other than the 2-sphere of projec-
tive plane embedded in a space Y. Then S is incompressible in Y if
04: T(S) — 7 (Y) is one-to-one. If S is a closed surface embedded in
Y, then S is incompressible in Y if each component of S is incom-
pressible in Y. Irreducible and P*irreducible are defined as in [7].
We denote the unit interval [0, 1] by I throughout.

DErFINITION 1. Let K be a group and A a subgroup of K. Let
S be a closed connected surface other than the projective plane or
2-sphere. Let A; = 7,(S) and A; c A for j =1,2. Let k be an ele-
ment of K not in A such that A, = k4,k. Then if A and k generate
K and all relations of K are consequences of the relations of A to-
gether with the relations &k induces between the elements of A, and
A,, we shall say that K is an extension of A by k across A, and A,.
The reader will note that the class of groups defined above is a sub-
class of the Higmann, Neumann, Neumann (H.N.N.) groups [8].

Let M be a 3-manifold, © a point in M, and S an incompressible
surface in M such that M — S is connected. Then it is a consequence
of Van Kampen’s Theorem that x,(M, ) is an extension of 7, (M — S, x)
by some element of m,(M, %) across appropriate subgroups of z,(M, ).
One might then wonder “If x,(M, ) were such an extension, could
we embed in M an incompressible surface which realizes this exten-
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sion.” We will show blow that this can, in fact, be done. Let M
be a compact 3-manifold and « a point of M. We suppose that 7,(M, x)
is an extension of A by % across A, and A, as given in Definition 1
above. We can represent this extension by an ordered sequence
(m (M, z), A, A, A,, k). If for each component F' of the boundary of
M some conjugate p,7m,(F') is contained in A, we shall say that the
extension preserves the peripheral structure of M. Suppose a second
representation of m,(M, «) is given by (z,(M, %), B, B,, B,, k> and this
extension of B is induced by an incompressible, closed, two-sided
surface S embedded in M and a loop ! meeting S in the single point
x, i.e., B is generated by the elements of 7,(M, x) having representa-
tive loops which do not cross S, k=[], B =p.7 (S, ) and B,=[l]B][l]™
We shall say that S realizes the extension of B if there is an
isomorphism

0: (M, x) — 7,(M, %)

such that

(1) 94 =B

(2) 9A)=B; j=12
(3) Ok) =k.

THEOREM 1. Let M be a compact 3-manifold such that w,(M) = 0.
Let S be a closed connected surface other than the 2-sphere or projective
plane. Suppose w (M, x) has a representation given by

(m(M, v), A, A, Ay, k)

where A, = w,(S) and the extemsion above preserves the peripheral
structure of M. Then there is an embedding of S in M which realizes
the given extemsion.

The proof of Theorem 1 above is similar in many respects to the
proof of Theorem 1 in [3]. One first constructs a complex X having
the same fundamental group as M. One then finds a map f: M — X
inducing an isomorphism from 7z, (M) to 7(X). The complex X is
constructed to contain an embedded surface S realizing the given
extension. One shows that there is a map g homotopic to f such
that ¢~'(S) is an incompressible, connected, closed surface in M and
that ¢7*(S) realizes the given extension.

The following three lemmas appear in [4]. We omit the proofs
which are not difficult.

LeMMA 1. Let M be a compact, connected 3-manifold such that
(M) = 0. Let X be a connected complex and S a closed imcompressi-
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ble surface embedded in X and having a meighborhood homeomorphic
to S x I. We suppose that no component of S is a 2-sphere or pro-
jective plane. Let X,, k=1, -+, n be the components of X — S. We
suppose that w(X)=m(X,) =0 for 1=2 and k=1,---,n. Let
f: M— X be a map such that fy: w,(M)— 7, (X) is one-to-one f bd(M)
does not meet S. Then there is a homotopy, constant on bd (M), of
f to a map g such that g7*(S) is an incompressible surface in M.

LEMMA 2. Let S, and S, be disjoint, incompressible, connected,
two-sided surfaces which are embedded in a P*irreducible 3-maifold
M. Then if S, is homotopic to S, in M, S,US, bounds an S, x I
embedded in M.

LEMMA 3. Let M, be a compact, connected, 3-manifold, X a con-
nected complex, and F and S incompressible connected surfaces in M,
and X respectively. We suppose that S is meither a 2-sphere or pro-
jective plane and w,(X) = 0 for i = 2.

Let f: (M, F)— (X,S) be a map of pairs such that for some
zeF

S M, @) < (S, f()) -

Then f is homotopic under a deformation, constant on F, to a map
into S.

Proof of Theorem 1. It is a consequence of Remark 1 in [9] that
we may assume that M is irreducible.

Let (M,, %, p) be the covering space of (M, x) associated with 4
(M, x). Let f, fu (S, y) — (M, x) be maps such that fi(7.(S, y)) = 4;,
for 7 = 1,2. Since fix(7,(S, ¥)) C p.m.(M,, %), there is a map f, @S, y)—
(M,, 2) such that pf; = f; for j =1,2. Let X be the union of M,
and S x I with identifications f,(s) = (s, 0) and fi(s) = (s, 1). We note
that the arc{y} x [0,1] S x I becomes a simple loop [ after the
identification above since fi(y) = fi(y) = &. Let @: A U {k} — 7 (X, &)
be a function defined by @(k) = [l] and @(a) = P;*(a) for ac A. Then
® can be extended to an isomorphism of x,(M, ) onto 7,(X, Z) since
X has been constructed so that =,(X,Z) will have a presentation
identical to the given presentation of =,(M, ).

It can be shown as in the proof of the theorem in [2] that 7,(X) =
(X —8S) =0 for i = 2.

We denotes S x {1/2} < X by S.

Let the boundary of M be expressed as %-, ¥, where F, is a
closed connected 2-manifold. Then some conjugate of p,x,(F,) is
contained in A for m=1,---,n. Thus we can find a collection
{an|m =1, .-+ m} of simple arcs embedded in M such that intersec-
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tion of each pair of these arcs is z, «, meets F, in a single point,
and there is a map p: U=, (F,, U @,) — M, such that pp = p. Note
that for each loop 1, in Y-, (F,, U «,) based at =, [0l,] = @[l,]. Since
0405 = 0o, T,(Us%-, (F,, U @), 2) — (X, &), we can extend 0 to a map
fi: M— X such that @ = f,: n,(M, ») > 7,(X, £) by using standard
techniques from obstruction theory. (See [2] or [3] for the details
of this construction.) It is a consequence of Lemma 1 that there is
a map g, homotopic to f such that ¢;7(S) is an incompressible surface
in M and ¢, = f on the boundary of M.

Since ¢7'(S) and S are incompressible in M and X respectively, if
S, is any component of ¢g7'(S), the homomorphism (g,]S,),: 7.(S;) — 7.(S)
is one-to-one. Thus by Theorem 1 in [6] ¢,|S, is homotopic to a
covering map. Thus after a deformation, constant outside of a small
neighborhood of S, we may assume that g,]S, is a local homeomorphism.
Thus we may assume that g, is a local homeomorphism on g¢7*(S).

Let z be a point on S, Suppose that the isomorphism @, =
Gyt T(M, 2) — (X, 9,(2)) does not carry m,(S,, 2) onto (S, g,(z)). It
is a consequence of the result in [1] that M is P*irreducible. Since
o7, (S, 9,(z)) would properly contain 7.(S,, #), we would have by
Theorem 6 in [7] that S, bounds a twisted line bundle N < M. One
can easily show using the techniques of [7], as has been done in [5],
that 0,7, (N, z) may be taken to be @;(0,7.(S, 9.())). It follows from
Lemma 3 that there is a deformation of g, to a map g, which pushes
g.(N) first onto S and then to one side of S so that ¢;(S) = ¢7(S) — S..
Thus we can assume that (¢,]S,).: 7.(S,) — 7.(S) is an epimorphism for
each component S, of g7'(S).

Since 7, (M) & A, g7'(S) is not empty.

Let S, and S, be components of ¢7(S). We claim that S, U S,
bounds a copy of S, x [0, 1] embedded in M. Since M is P*-irreducible,
this will follow from Lemma 2 after we show that S, and S, are
homotopic. Let 2z, be a point on S,. Since ¢,|S, and g¢,|S, are assumed
to be homeomorphisms, there is a unique point 2z, on S, such that
9.(z) = 9.(z). Let a be an arc running from z, to z,. Since g,.is an
isomorphism, we can find a loop !, based at z, such that the loops
9.(l) and g,(a) represent the same element in 7,(X, ¢,(z,)). Thus we
may assume that [g,(a@)] = 1erm(X). Let N\, be a loop on S, based
at 2z, and X\, a loop on S, such that ¢g,(») = ¢.(\,). Since the loop
9:(0)g:(@) (9.(M)) " (9. ()" is nullhomotopic and 7,(X) = 0, we can show
as in the proof of Theorem 1 in [3] that S, and S, are homotopic.
Our claim follows.

We wish to show that we may assume ¢7'(S) contains exactly one
component.

Suppose there is more than one component in ¢7*(S) and that the
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number of components of ¢7(S) cannot be decreased by a small defor-
mation of g,. Let I: S'— M be a loop in M such that g.[l] = [[]. We
may assume that

(i) ¢.() meets S since the intersection number of [I] and S is
one. Thus we can take our basepoint to lie on one of the surfaces in
g7(S).

(ii) ! crosses g;7'(S) at each point in [ N ¢g~(S) and thus (g.0)~*(S)
is a finite set whose cardinality cannnot be reduced.

(iii) ¢.(Z N g7 (S)) is a single point.

Let D be a disk and B, and B, arcs in the boundary of D such
that 8, N B, = bd (B8). Then we can define a map v: D — X such that
v(B,) is the loop ¢,l(S*) and ¥(B,) is the loop .

We wish to show that ¢7'(S) may be taken to be homeomorphie
to S (connected). Assume that ¢;'(S) is not connected; then it has
been shown that each pair of distinct surfaces in ¢7*(S) bounds a copy
of S x I embedded in M. If this is the case, it is clear that [7'g7(S)
contains more than one point. Let 6, ---, 0, be the closures of the
components of S* — [7'g7(S). After a general position argument we
may assume v~ '(S) contains an arc @, which cuts off an arc B, < B,
and that ¢,l(0,) = v(B). Now [ carries bd (d,) to one or two components
of g7(S).

If I(bd (9,)) is a single point, the loop 1(d,) is homotopic to a loop
I, © g7(S) such that g,(I,) = 7(B,) since the restriction of g, to each
component of ¢7(S) is a homeomorphism and ¢,. is an isomorphism.
It would follow that the number of points in I'¢7(S) could have
been reduced by a different choice of [. Thus we conclude that !
carries the points of bd (4,) to distinet components of g7'(S).

Let N be closure of the component of M — ¢7'(S) which meets
1(0). Let S, be a component of bd (N). Since ¢,|S, is a homeomor-
phism and the loop ¢,l(d,) is homotopic to a loop in S, we may assume
that the loop ¢,l(0,) is homotopic to a point. (One alters the image
of 1 in a neighborhood of S,.)

Since the loop ¢,l(0,) is nullhomotopic in X, it can be shown that
the map ¢,|N is homotopic mod bd (N) to a map into S; full details
of a similar argument appear in [3]. It follows after an argument
by induction that there exists a map g: M —X homotopic to g, mod
bd (M) such that ¢g~'(S) contains exactly one component S, and g¢|S,
is a homeomorphism. After an argument similar to the one given
above, we can find a loop ! meeting S, in a single point and based
at e M such that g,[l] = [{].

We observe that S, and ! induce an expression of 7,(M, x) as an
extension of a subgroup B of 7,(M, x). Let B, and B, be the asso-
ciated subgroups of 7, (M, x). Then we see that our map ¢ induces
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an isomorphism g,: 7,(M, x) — 7,(M, x) such that

(1) 9B cA

(2) g*(Bl) = A,

(3) g*Bz = Az‘

Thus Theorem 1 is an immediate consequence of the remark pre-
ceding Lemma 2 on page 238 in [8] which shows that g, sends B
onto A.

REMARK 1. The remark mentioned above allows us to strengthen
the statement of the theorem in [2] so that the splitting and the
cutting are both actually realized.

REMARK 2. We can also realize geometrically more general pre-
sentations of 7,(M) as an HNN group. In particular one might have
that 7,(M) has a presentation as in the first definition in §4 in [8]
where each of the subgroups L; of K is isomorphic to the fundamental
group of a closed connected surface other than S* or the projective
plane and there are only finitely many of the ¢, The proof of this
result varies only slightly from the one given above.

REMARK 3. Theorem 1 in this paper together with Theorem 1
in [3] or [4] give us a sort of converse to Van Kampen’s theorem as
applied to a closed, connected, incompressible surface, other than S*
or the projective plane, embedded in the interior of a compact 3-
manifold.

REMARK 4. This paper is in some sense a generalization of
Stalling’s work in [11].
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