A VERY WEAK TOPOLOGY FOR THE MIKUSINSKI FIELD OF OPERATORS

HARRIS S. SHULTZ

Using a generalized Laplace transformation the Mikusinski field is given a topology T such that sequences which converge in the sense of Mikusinski converge with respect to T, such that the mapping $q \to q^{-1}$ is continuous and such that the series $\sum (-\lambda)^n s^n/n!$ converges to the translation operator $e^{-\lambda s}$.

In [3] it is shown that the notion of convergence defined in [8] for the Mikusinski field of operators is not topological. Topologies for the Mikusinski field are given in [1], [3], and [9]. In the present paper we endow this field with a topology T such that sequences which converge in the sense of Mikusinski converge with respect to T, such that the identity

$$e^{-\lambda s} = \sum_{k=0}^{\infty} \frac{(-\lambda)^k}{k!} s^k \qquad (\lambda > 0)$$

holds and such that the mapping $q \to q^{-1}$ is continuous. The author wishes to acknowledge that this paper constitutes proofs of assertions proposed by Gregers Krabbe [7].

Let L denote the family of complex-valued functions which are locally integrable on $[0, \infty)$. Under addition and convolution L is an integral domain. If Q denotes the quotient field of L then Q is the Mikusinski field of operators. Elements of Q will be denoted $\{f(t)\}$: $\{g(t)\}$ and the injection of L into Q will be denoted $f \to \{f(t)\}$. We define S to be the set of all f in L for which the integral

$$\int_0^\infty e^{-zt} f(t) dt$$

converges for some z. For f in S let

$$\overline{f}(z) = \int_0^\infty e^{-zt} f(t) dt$$

and $\bar{S} = \{\bar{f} : f \in S\}$. Each element of \bar{S} is holomorphic in some right half-plane. Let B denote the set of all sequences (\bar{f}_n) of nonzero elements of \bar{S} for which there exists f in L such that

$$f_n = f \text{ on } (0, n) \qquad \text{for all } n.$$

For a given f the set of all elements of B satisfying (1) will be

denoted \widehat{f} . Let B^* denote the set of all elements (\overline{g}_n) of B such that $(\overline{g}_n) \in \widehat{g}$ where g is a nonzero element of L. Finally, let X denote the set of all sequences $(\overline{f}_n/\overline{g}_n)$ where $(\overline{f}_n) \in B$ and $(\overline{g}_n) \in B^*$. Then X consists of sequences of functions which are meromorphic in some right half-plane.

LEMMA. Let $(\overline{f}_n) \in \widehat{f}$, $(\overline{g}_n) \in \widehat{g}$, $(\overline{F}_n) \in \widehat{F}$ and $(\overline{G}_n) \in \widehat{G}$ and suppose that g and G are nonzero elements of L. Then $f_n^*G_n = F_n^*g_n$ on (0, n) for all n if and only if $\{f\{t\}\}$: $\{g(t)\} = \{F(t)\}$: $\{G(t)\}$.

Proof. Since $f_n^*G_n = f^*G$ on (0, n) and $F_n^*g_n = F^*g$ on (0, n), the statements $f_n^*G_n = F_n^*g_n$ on (0, n) for all n and $f^*G = F^*g$ are equivalent.

THEOREM 1. There exists a mapping Φ of X onto Q such that if q belongs to Q, say $q=\{f(t)\}$: $\{g(t)\}$, and if (\overline{f}_n) and (\overline{g}_n) belong, respectively, to \widehat{f} and \widehat{g} , then $\Phi((\overline{f}_n/\overline{g}_n))=q$.

Proof. Let $(\overline{f}_n/\overline{g}_n) \in X$. If $(\overline{f}_n) \in \widehat{f}$ and $(\overline{g}_n) \in \widehat{g}$ define

$$\Phi((\bar{f}_n/\bar{g}_n)) = \{f(t)\}: \{g(t)\}.$$

If $(\overline{f}_n/\overline{g}_n) = (\overline{F}_n/\overline{G}_n)$ then $\overline{f}_n\overline{G}_n = \overline{F}_n\overline{g}_n$ (all n), that is, $\overline{f_n^*G_n} = \overline{F_n^*g_n}$ (all n). Therefore, $f_n^*G_n = F_n^*g_n$ (all n) and hence, by the lemma,

$$\Phi((\bar{F}_{\scriptscriptstyle n}/\bar{G}_{\scriptscriptstyle n})) = \Phi((\bar{f}_{\scriptscriptstyle n}/\bar{g}_{\scriptscriptstyle n}))$$
 .

Thus, Φ is well-defined. Now, for any $q \in Q$ there exist f and g in L such that $q = \{f(t)\}: \{g(t)\}.$ Let $(\overline{f}_n) \in \widehat{f}$ and $(\overline{g}_n) \in \widehat{g}.$ Then $(\overline{f}_n/\overline{g}_n) \in X$ and $\Phi((\overline{f}_n/\overline{g}_n)) = q.$ Therefore, Φ is "onto."

For each nonempty open subset Ω of the complex plane let $M(\Omega)$ denote the set of all functions which are meromorphic in Ω . We equip $M(\Omega)$ with the topology of uniform convergence on compact subsets of Ω with respect to the chordal metric. Thus $\varphi_{\mu} \to \varphi$ in $M(\Omega)$ if and only if

$$\lim_{\mu} \left[\sup_{z \in K} \frac{|\varphi_{\mu}(z) - \varphi(z)|}{\sqrt{1 + |\varphi_{\mu}(z)|^2} \sqrt{1 + |\varphi(z)|^2}} \right] = 0$$

for all compact subsets K of Ω . Let $M = \bigcup M(\Omega)$ where Ω varies over the nonempty open subsets of the complex plane and equip M with the finest topology for which all of the injections $M(\Omega) \to M$ are continuous. Let Y denote the set of all sequences in M and equip Y with the product topology. We may then endow its subset X with the relative topology. Finally, Q is given the quotient topology (relative to Φ and the topology of X). Let T denote this

topology. Thus, T is the finest topology on Q for which the function $\Phi \colon X \to Q$ is continuous.

THEOREM 2. If q_k converges to q in the sense of Mikusinski then q_k converges to q with respect to the topology T.

Proof. Suppose q_k converges to q in the sense of Mikusinski. Then there exists g, f and f_k $(k = 1, 2, \cdots)$ in L such that $\{g(t)\}q = \{f_k(t)\}$ and $\{g(t)\}q = \{f(t)\}$ and such that f_k converges to f uniformly on compact subsets of $[0, \infty)$. Define

$$\overline{f}_{k,n}(z) = \int_0^n e^{-zt} f_k(t) dt$$

and

$$\overline{f}_n(z) = \int_0^n e^{-zt} f(t) dt$$
.

Then $(\overline{f}_{k,n}) \in \widehat{f}_k$ and $(\overline{f}_n) \in \widehat{f}$. Moreover, $\overline{f}_{k,n}$ and \overline{f}_n are entire functions and

$$\lim_{k\to\infty} \left[\sup_{z\in K} |\bar{f}_{k,n}(z) - \bar{f}_{n}(z)| \right] = 0 \qquad (n = 1, 2, \cdots)$$

for any compact set K. Let $(\overline{g}_n) \in \widehat{g}$ and, for each n, choose a non-empty open set Ω_n such that \overline{g}_n is holomorphic and nonvanishing in Ω_n . Then $\overline{f}_{k,n}/\overline{g}_n$ is holomorphic in Ω_n and

$$\lim_{k\to\infty} \overline{f}_{k,n}/\overline{g}_n = \overline{f}_n/\overline{g}_n$$

in $M(\Omega_n)$ and therefore in M. Thus,

$$\lim_{k\to\infty} (\overline{f}_{k,n}/\overline{g}_n) = (\overline{f}_n/\overline{g}_n) \quad \text{in } X.$$

But $\Phi((\overline{f}_{k,n}/\overline{g}_n)) = q_k$ and $\Phi((\overline{f}_n/\overline{g}_n)) = q$ by Theorem 1. Therefore, since Φ is continuous, it follows that

$$\lim_{k\to\infty}q_k=q.$$

Let us define

$$h_{eta}(t)=rac{t^{eta-1}}{(eta-1)!} \hspace{1cm} (eta=1,2,\cdots)$$

 $s^{\scriptscriptstyle 0}=$ the identity element of Q

$$s^{eta}=\{h_{eta}(t)\}^{-1}$$
 $(eta=1,\,2,\,\cdots)$.

We also define $e^{-\lambda s} = s\{f(t)\}\$, where

$$f(t) = egin{cases} 0 & 0 \leqq t < \lambda \ 1 & 0 < \lambda \leqq t \end{cases}$$

Then s is the differential operator and $e^{-\lambda s}$ is the translation operator.

Theorem 3. $e^{-\lambda s} = \sum_{k=0}^{\infty} (-\lambda)^k / k! s^k$.

Proof. If f and h_{β} are defined as above then $\overline{f}(z)=e^{-\lambda z}/z$ and $\overline{h}_{\beta}(z)=z^{-\beta}$ ($\beta=1,\,2,\,\cdots$). Let

$$arphi_k(z) = rac{(-\lambda)^k}{k!} z^k \qquad (k = 0, 1, 2, \cdots).$$

Then

$$rac{\overline{f}(z)}{\overline{h}_1(z)} = e^{-\lambda z} = \sum_{k=0}^{\infty} \varphi_k(z)$$

where the convergence is uniform on compact sets. Therefore,

$$ar{f}/ar{h}_{\scriptscriptstyle 1} = \sum\limits_{k=0}^{\infty} arphi_k \qquad ext{(convergence in M)}$$
 .

That is,

$$ar{f}/ar{h}_{\scriptscriptstyle 1} = \lim_{N o \infty} \sum_{k=0}^N arphi_k \qquad ext{(convergence in M)}$$
 .

Thus,

$$(\overline{f}/\overline{h}_1, \overline{f}/\overline{h}_1, \cdots) = \lim_{N \to \infty} \left(\sum_{k=0}^N \varphi_k, \sum_{k=0}^N \varphi_k, \cdots \right)$$

where the convergence is in X. But $\Phi\left((\bar{f}/\bar{h}_{\scriptscriptstyle 1},\bar{f}/\bar{h}_{\scriptscriptstyle 1},\cdots)\right)=e^{-\lambda s}$ and

$$\Phi\left(\left(\sum\limits_{k=0}^N \varphi_k,\;\sum\limits_{k=0}^N \varphi_k,\;\cdots\right)\right) = \sum\limits_{k=0}^N \frac{(-\lambda)^k}{k!}\; s^k$$
 .

Since Φ is continuous it follows that

$$e^{-\lambda s} = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{(-\lambda)^k}{k!} s^k$$
.

Let Q^* denote the set of nonzero elements of Q and define Γ : $Q^* \to Q^*$ by the equation $\Gamma(q) = q^{-1}$ (all q in Q^*).

Theorem 4. The function Γ is continuous.

Proof. Let $X^* = \{x \in X : \Phi(x) \in Q^*\}$. Since Q^* has the quotient topology (relative to Φ and the topology of X^*) it suffices to show

that the composition $\Gamma^{\circ} \Phi$ is continuous [5, p. 95, Theorem 9]. Suppose x_{μ} is a net in X^{*} which converges to x in X^{*} . Let $x_{\mu} = (\overline{f}_{\mu,n}/\overline{g}_{\mu,n})$ and $x = (\overline{f}_{n}/\overline{g}_{n})$. If $(\overline{f}_{\mu,n}) \in \widehat{f}$ then $f_{\mu} \neq 0$ (since $x_{\mu} \in X^{*}$) and therefore $(\overline{f}_{\mu,n}) \in B^{*}$. Similarly, $(\overline{f}_{n}) \in B^{*}$. Therefore, $(\overline{g}_{\mu,n}/\overline{f}_{\mu,n})$ and $(\overline{g}_{n}/\overline{f}_{n})$ belong to X^{*} . Since $x_{\mu} \to x$ it follows that $\overline{f}_{\mu,n}/\overline{g}_{\mu,n} \to \overline{f}_{n}/\overline{g}_{n}$ in M for each n. Therefore, for each n there exists Ω_{n} such that

$$\overline{f}_{u,n}/\overline{g}_{u,n} \longrightarrow \overline{f}_n/\overline{g}_n$$

in $M(\Omega_n)$. Since the reciprocals $\overline{g}_{\mu,n}/\overline{f}_{\mu,n}$ and $\overline{g}_n/\overline{f}_n$ are also meromorphic in Ω_n , the identity

$$\frac{\left|\frac{1}{z} - \frac{1}{w}\right|}{\sqrt{1 + \left|\frac{1}{z}\right|^2} \sqrt{1 + \left|\frac{1}{w}\right|^2}} = \frac{|z - w|}{\sqrt{1 + |z|^2} \sqrt{1 + |w|^2}}$$

implies that $\overline{g}_{\mu,n}/\overline{f}_{\mu,n} \to \overline{g}_n/\overline{f}_n$ in $M(\Omega_n)$ and therefore in M. Since this is true for each n it follows that $(\overline{g}_{\mu,n}/\overline{f}_{\mu,n}) \to (\overline{g}_n/\overline{f}_n)$ in X^* . Therefore, $\Phi((\overline{g}_{\mu,n}/\overline{f}_{\mu,n})) \to \Phi((\overline{g}_n/\overline{f}_n))$ in Q^* . But, by Theorem 1, $\Phi((\overline{g}_{\mu,n}/\overline{f}_{\mu,n})) = \Gamma(\Phi(x_\mu))$ and $\Phi((\overline{g}_n/\overline{f}_n)) = \Gamma(\Phi(x))$. Therefore,

$$\Gamma(\Phi(x_{\mu})) \longrightarrow \Gamma(\Phi(x))$$
,

from which we may conclude that the function $\varGamma^\circ \varPhi$ is continuous.

REFERENCES

- 1. J. Anthony, Topologies for quotient fields of commutative integral domains, Pacific J. Math., 36 (1971), 585-601.
- L. Berg, Asymptotische Auffassung der Operatorenrechung, Studia Math., 21 (1962), 215-229.
- 3. T. K. Boehme, On Mikusinski operators, Studia Math., 33 (1969), 127-140.
- 4. W. A. Ditkin, On the theory of operational calculus, Dokl. Akad. Nauk SSSR, 123 (1958), 395-396.
- 5. J. Kelley, General Topology, Van Nostrand, Princeton, New Jersey, 1955.
- 6. G. Krabbe, Ratios of Laplace transforms, Mikusinski operational calculus, Math. Annalen, **162** (1966), 237-245.
- 7. ——, A very weak topology for the Mikusinski field, Notices Amer. Math. Soc., 19 (1972), 358.
- 8. J. Mikusinski, Operational Calculus, Pergamon Press, New York, 1959.
- 9. R. Struble, A genuine topology for the field of Mikusinski operators, Canad. Math. Bull., 11 (1968), 297-299.

Received April 26, 1972.

CALIFORNIA STATE UNIVERSITY, FULLERTON