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DENDRITIC COMPACTIFICATIONS OF CERTAIN
DENDRITIC SPACES

B. J. PEARSON

A dendritic space is a connected space in which every
two points are separated by a third point. In this paper we
describe a very natural method for obtaining a dendritic
compactification of any connected space for which a dendritic
compactification exists. The method is an extension of the
familiar process of compactifying E1 by adjoining — oo and
+ oo.

In what follows, an arc is a Hausdorff continuum with only two
noncut points. A ray is an arc minus one of its noncut points. The
space X is semi-locally connected at the point p if each open set
containing p contains an open set V containing p such that X — V
has at most finitely many components.

LEMMA. If the space X is arcwise connected but is not semi-
locally connected at the point p, then there exists an open set U con-
taining p such that if V is an open set containing p and lying in
U, then X — V has infinitely many components that intersect both
V and X- U.

Proof. There exists an open set U containing p such that for
each open set V containing p and lying in U, X — V has infinitely
many components. Let V be an open set containing p and lying in
U, and let S^ be the collection of all components of X — V that
intersect both V and X — U. Suppose £f is finite. Let W be the
union of V and all components of X — V lying in U. It follows
from the arcwise connectivity of X that each component of X — V
intersects V. Therefore W = X — (J Sf, so that W is open. But

W^ U, X- W= Ό<9*,

and C is a component of X — W if and only if C e £^. Therefore Sf
is infinite.

THEOREM 1. If the connected space X has a dendritic compact-
ification, then X is arcwise connected and semi-locally connected.

Proof. Suppose X has a dendritic compactification X*. Since
X* is a dendritic continuum, it is locally connected, and it then fol-
lows from Theorem 7.1 of [3] that the interval ab of X*, which consists
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of a and b and the set of all points of X* separating a from b, is
an arc Suppose ab contains a point x not in X. Then X* — {x} is
the union of two disjoint open sets U and V such that ae U and
be V. But then X is a connected subset of Ϊ7U F, so that X g U7
o r l g 7 . Therefore αδ S X.

Suppose X is not semi-locally connected at p. There exist open
sets U and V in X* such that p e F f i F g £7 and an infinite net
{Ca} of distinct components of X — F intersecting both V and X — U,
where the closures are taken in X*. For each a let xaeCaf] V.
Some subnet {xaj of {xa} converges to a point x in X*. For each %
let yaneC«nn (X — U). Since X* is compact, the net {yaj has a
cluster point # in X*. Now xeV and i / e l * - U, so that xφ y.
But then no point separates # from y in X*.

THEOREM 2. 7/ ίfee space X is dendritic, semi-locally connected,
and arcwise connected, and each ray in X is a subset of some arc in
X, then X is compact.

Proof. Let p e X. Suppose {xa} is a net of points in X — {p}
with no cluster point. Suppose that for each a and each point x of
the arc pxa different from p there is a β > a such that x g pxβ. Let U
be an open set containing p such that for each a there is a β > a such
that xβ ί U. There is an open set V containing p and lying in U such
that X — V has at most finitely many components. There is an a0 such
that xaQ € X — V. Let α?0 e pα;αo such that px0 £ F. There is an αx > α(

such that a?βl e X — F and $0 g pα?αi. Let ^ e pasαi such that p ^ £ F.
There is an α2 > ax such that ^ e l - F, £ 0 ί P̂ «2> and xι £px«2.
Continue this process. There exist m and n such that mφ n and
some component of X — F contains both xam and %an. But then no
point of X separates xam from α?«n. This is a contradiction, and hence
the set R of all points x in X — {p} such that for some a, x e pxβ for
each β > a is nonempty. Let x, y e R. There is an aγ such that
x e pxβ for β > ax. There is an a2 such that y e pxβ for β > a2.
Hence if β > al9 a2, then x,ye pxβ. It follows that if x,ye R, then
either px £ py o r VV £ P^ Therefore there exists a point g of X
distinct from p such that R = pq or iϋ = pg — {q}. For each α let
ya be the last point of pxa on pg. Let U be an open set containing
g. There is a point y such that p̂ /# and yq £ C7. Since y e R, there
is an α such that if β > ot, then 7/ € pαv Hence ^ e yq for β> a,
so that the net {?/«} converges to g. It follows that there is a subnet
{2/αJ of {ya} converging to q such that if m < n, then 2/«m precedes
l/βn on pq and α;α% ί pq. There exists an open set F containing q and
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lying in U such that X — V has only finitely many components.
Hence there is an m such that if n > m, then xan e V. It follows
that q is a cluster point of {xa}.

An incorrect version of the following lemma is stated as Lemma
3 to Theorem 3 in [1]. The lemma stated here may be used as a
substitute without altering the proof of that theorem.

LEMMA. If H and K are two separated connected sets in the
arcwise connected dendritic space X, then some point of X separates
H from K.

Proof. Let aeH and beK. Since H and K are separated,
there exists a point p of the arc ab not in H\J K. Let U be the
set of all points x Φ p such that px contains a point of ap — {p},
and let V= X— (U\J{p}). Suppose the point x of U is a limit
point of V. Then there exists a net {xa} of points in V — pb con-
verging to x and a net {ya} of points in pb such that for each a, ya

is the last point of pb on pxa. Some point y of pb is a cluster point
of {ya}, and hence no point of X separates x from y. This is a con-
tradiction. Therefore U is open, and it follows by a similar argu-
ment that V is open. Since H and K are connected, H <ϋ U and
K S V. Therefore p separates H from K.

THEOREM 3. The dendritic space X has a dendritic compactifica-
tion if and only if X is arcwise connected and semi-locally connected.

Proof. Suppose X is arcwise connected and semi-locally connected.
Let p G X, and let X* be the union of X and the collection of all
maximal rays in X starting from p. Let S^ be the collection of all
open sets U in X such that X — U has at most finitely many com-
ponents. For each U in S^ let U* be the union of U and the col-
lection of all maximal rays starting from p and having a subray
lying in U. Let Sf* = {[/* | Ue&*). It is easily seen that if
U, Ve £f, then UΠVe^ and (UΠ V)* = U* Π V*. Therefore ^ *
is a base for a topology of X*, and X with its original topology is
a subspace of X*. Now for each maximal ray R in X starting from
p the point iZ of X* is a limit point of the point set R. Therefore
X is dense in X*. Furthermore R U {R} is an arc from p to R.
Therefore X* is arcwise connected. Suppose Ue^ and C is a com-
ponent of X* — Z7* containing a point i? of X* — X. If R has a
subray in U, then Re U*. Hence there is a point x in R — U. Let
iΓ be the component of X — U containing x. Since

X - USX* - U* ,
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it follows that K S C. Hence each component of X* — Ϊ7* contains
a component of X — U. Therefore X* is semi-locally connected. Let
a and b be points of X. There is a point x of X such that X — {x}
is the union of two disjoint open sets U and V in X such that
αe Z7 and beV. Since the only component of X — U is V\J {x}, it
follows that UeS^ and similarly that Fe.9? Since Uf)V=0, it
follows that £7* Π F* = 0 . If ReX* - X, then there is a subray
S of R such that ί»ίS. Hence S g ί / o r S £ 7 , so that 22 e £7* or
Re V*. Therefore X* - {x} = £7* U F*. It follows that a? separates
a from ί> in X*. Now let αe X and ReX* ~ X. There is a subray
S oΐ R such that α g S. Some point x of X separates a from S in
X, and it follows as before that x separates a from R in X*. Finally,
let P and i£ be two elements of X* — X There exist disjoint rays
Q and S such that Q § P and S £ iϋ. Some point a? of X separates
Q from S in X. It follows that x separates P from R in X*. There-
fore X* is dendritic. It remains to be proved that X* is compact.
Suppose R is a ray in X* starting from a point q in X*. Now
X* — X is totally disconnected since each two points of X* — X are
separated by a point of X, and if a? and y are points of X, then the
arc xy in X* is a subset of X. It follows that i2 — {q} £ X. Hence
there is a maximal ray S in X starting from p and containing a
subray of R. Since S u {£} is an arc in X*, R is contained in some
arc in X*. It now follows from Theorem 2 that X* is compact.
This completes the proof.

Two other methods for obtaining dendritic compactiίications of
dendritic spaces may be found in the literature. In [2] Ward proves,
by embedding in a Tychonoίf cube, that every locally connected
dendritic space satisfying a certain convexity condition has a dendritic
compactiίication. In [1] Proizvolov proves, by considering maximal
collections of closed connected sets having the finite intersection pro-
perty, that every locally peripherally compact dendritic space has a
dendritic compactification.
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