DENDRITIC COMPACTIFICATIONS OF CERTAIN DENDRITIC SPACES

B. J. PEARSON

A dendritic space is a connected space in which every two points are separated by a third point. In this paper we describe a very natural method for obtaining a dendritic compactification of any connected space for which a dendritic compactification exists. The method is an extension of the familiar process of compactifying E^1 by adjoining $-\infty$ and $+\infty$.

In what follows, an *arc* is a Hausdorff continuum with only two noncut points. A *ray* is an arc minus one of its noncut points. The space X is *semi-locally connected* at the point p if each open set containing p contains an open set V containing p such that X - Vhas at most finitely many components.

LEMMA. If the space X is arcwise connected but is not semilocally connected at the point p, then there exists an open set U containing p such that if V is an open set containing p and lying in U, then X - V has infinitely many components that intersect both \overline{V} and X - U.

Proof. There exists an open set U containing p such that for each open set V containing p and lying in U, X - V has infinitely many components. Let V be an open set containing p and lying in U, and let \mathscr{S} be the collection of all components of X - V that intersect both \overline{V} and X - U. Suppose \mathscr{S} is finite. Let W be the union of V and all components of X - V lying in U. It follows from the arcwise connectivity of X that each component of X - Vintersects \overline{V} . Therefore $W = X - \bigcup \mathscr{S}$, so that W is open. But

$$W \subseteq U, X - W = \bigcup \mathscr{S},$$

and C is a component of X - W if and only if $C \in \mathcal{S}$. Therefore \mathcal{S} is infinite.

THEOREM 1. If the connected space X has a dendritic compactification, then X is arcwise connected and semi-locally connected.

Proof. Suppose X has a dendritic compactification X^* . Since X^* is a dendritic continuum, it is locally connected, and it then follows from Theorem 7.1 of [3] that the interval ab of X^* , which consists

of a and b and the set of all points of X^* separating a from b, is an arc. Suppose ab contains a point x not in X. Then $X^* - \{x\}$ is the union of two disjoint open sets U and V such that $a \in U$ and $b \in V$. But then X is a connected subset of $U \cup V$, so that $X \subseteq U$ or $X \subseteq V$. Therefore $ab \subseteq X$.

Suppose X is not semi-locally connected at p. There exist open sets U and V in X^{*} such that $p \in V \subseteq \overline{V} \subseteq U$ and an infinite net $\{C_{\alpha}\}$ of distinct components of X - V intersecting both \overline{V} and X - U, where the closures are taken in X^{*}. For each α let $x_{\alpha} \in C_{\alpha} \cap \overline{V}$. Some subnet $\{x_{\alpha_n}\}$ of $\{x_{\alpha}\}$ converges to a point x in X^{*}. For each n let $y_{\alpha_n} \in C_{\alpha_n} \cap (X - U)$. Since X^{*} is compact, the net $\{y_{\alpha_n}\}$ has a cluster point y in X^{*}. Now $x \in \overline{V}$ and $y \in X^* - U$, so that $x \neq y$. But then no point separates x from y in X^{*}.

THEOREM 2. If the space X is dendritic, semi-locally connected, and arcwise connected, and each ray in X is a subset of some arc in X, then X is compact.

Proof. Let $p \in X$. Suppose $\{x_{\alpha}\}$ is a net of points in $X - \{p\}$ with no cluster point. Suppose that for each α and each point x of the arc px_{α} different from p there is a $\beta > \alpha$ such that $x \notin px_{\beta}$. Let U be an open set containing p such that for each α there is a $\beta > \alpha$ such that $x_{\beta} \notin U$. There is an open set V containing p and lying in U such that X - V has at most finitely many components. There is an α_0 such that $x_{\alpha_0} \in X - V$. Let $x_0 \in px_{\alpha_0}$ such that $px_0 \subseteq V$. There is an $\alpha_1 > \alpha_0$ such that $x_{\alpha_1} \in X - V$ and $x_0 \notin px_{\alpha_1}$. Let $x_1 \in px_{\alpha_1}$ such that $px_1 \subseteq V$. There is an $\alpha_2 > \alpha_1$ such that $x_{\alpha_2} \in X - V$, $x_0 \notin px_{\alpha_2}$, and $x_1 \notin px_{\alpha_2}$. Continue this process. There exist m and n such that $m \neq n$ and some component of X - V contains both x_{α_m} and x_{α_n} . But then no point of X separates x_{α_m} from x_{α_n} . This is a contradiction, and hence the set R of all points x in $X - \{p\}$ such that for some $\alpha, x \in px_{\beta}$ for each $\beta > \alpha$ is nonempty. Let $x, y \in R$. There is an α_1 such that $x \in px_{\beta}$ for $\beta > \alpha_1$. There is an α_2 such that $y \in px_{\beta}$ for $\beta > \alpha_2$. Hence if $\beta > \alpha_1, \alpha_2$, then $x, y \in px_\beta$. It follows that if $x, y \in R$, then either $px \subseteq py$ or $py \subseteq px$. Therefore there exists a point q of X distinct from p such that R = pq or $R = pq - \{q\}$. For each α let y_{α} be the last point of px_{α} on pq. Let U be an open set containing q. There is a point y such that pyq and $yq \subseteq U$. Since $y \in R$, there is an α such that if $\beta > \alpha$, then $y \in px_{\beta}$. Hence $y_{\beta} \in yq$ for $\beta > \alpha$, so that the net $\{y_{\alpha}\}$ converges to q. It follows that there is a subnet $\{y_{\alpha_n}\}$ of $\{y_{\alpha}\}$ converging to q such that if m < n, then y_{α_m} precedes y_{α_n} on pq and $x_{\alpha_n} \notin pq$. There exists an open set V containing q and

lying in U such that X - V has only finitely many components. Hence there is an m such that if n > m, then $x_{\alpha_n} \in V$. It follows that q is a cluster point of $\{x_{\alpha}\}$.

An incorrect version of the following lemma is stated as Lemma 3 to Theorem 3 in [1]. The lemma stated here may be used as a substitute without altering the proof of that theorem.

LEMMA. If H and K are two separated connected sets in the arcwise connected dendritic space X, then some point of X separates H from K.

Proof. Let $a \in H$ and $b \in K$. Since H and K are separated, there exists a point p of the arc ab not in $H \cup K$. Let U be the set of all points $x \neq p$ such that px contains a point of $ap - \{p\}$, and let $V = X - (U \cup \{p\})$. Suppose the point x of U is a limit point of V. Then there exists a net $\{x_{\alpha}\}$ of points in V - pb converging to x and a net $\{y_{\alpha}\}$ of points in pb such that for each α, y_{α} is the last point of pb on px_{α} . Some point y of pb is a cluster point of $\{y_{\alpha}\}$, and hence no point of X separates x from y. This is a contradiction. Therefore U is open, and it follows by a similar argument that V is open. Since H and K are connected, $H \subseteq U$ and $K \subseteq V$. Therefore p separates H from K.

THEOREM 3. The dendritic space X has a dendritic compactification if and only if X is arcwise connected and semi-locally connected.

Proof. Suppose X is arcwise connected and semi-locally connected. Let $p \in X$, and let X^* be the union of X and the collection of all maximal rays in X starting from p. Let \mathcal{S} be the collection of all open sets U in X such that X - U has at most finitely many components. For each U in \mathcal{S} let U^* be the union of U and the collection of all maximal rays starting from p and having a subray Let $\mathscr{S}^* = \{ U^* \mid U \in \mathscr{S} \}$. It is easily seen that if lying in U. $U, V \in \mathcal{S}$, then $U \cap V \in \mathcal{S}$ and $(U \cap V)^* = U^* \cap V^*$. Therefore \mathcal{S}^* is a base for a topology of X^* , and X with its original topology is a subspace of X^* . Now for each maximal ray R in X starting from p the point R of X^* is a limit point of the point set R. Therefore X is dense in X^{*}. Furthermore $R \cup \{R\}$ is an arc from p to R. Therefore X^* is arcwise connected. Suppose $U \in \mathcal{S}$ and C is a component of $X^* - U^*$ containing a point R of $X^* - X$. If R has a subray in U, then $R \in U^*$. Hence there is a point x in R - U. Let K be the component of X - U containing x. Since

$$X-U \subseteq X^* - U^* ,$$

it follows that $K \subseteq C$. Hence each component of $X^* - U^*$ contains a component of X - U. Therefore X^* is semi-locally connected. Let a and b be points of X. There is a point x of X such that $X - \{x\}$ is the union of two disjoint open sets U and V in X such that $a \in U$ and $b \in V$. Since the only component of X - U is $V \cup \{x\}$, it follows that $U \in \mathscr{S}$ and similarly that $V \in \mathscr{S}$. Since $U \cap V = \emptyset$, it follows that $U^* \cap V^* = \emptyset$. If $R \in X^* - X$, then there is a subray S of R such that $x \notin S$. Hence $S \subseteq U$ or $S \subseteq V$, so that $R \in U^*$ or $R \in V^*$. Therefore $X^* - \{x\} = U^* \cup V^*$. It follows that x separates a from b in X*. Now let $a \in X$ and $R \in X^* - X$. There is a subray S of R such that $a \notin S$. Some point x of X separates a from S in X, and it follows as before that x separates a from R in X^* . Finally, let P and R be two elements of $X^* - X$. There exist disjoint rays Q and S such that $Q \subseteq P$ and $S \subseteq R$. Some point x of X separates Q from S in X. It follows that x separates P from R in X^* . Therefore X^* is dendritic. It remains to be proved that X^* is compact. Suppose R is a ray in X^* starting from a point q in X^* . Now $X^* - X$ is totally disconnected since each two points of $X^* - X$ are separated by a point of X, and if x and y are points of X, then the arc xy in X* is a subset of X. It follows that $R - \{q\} \subseteq X$. Hence there is a maximal ray S in X starting from p and containing a subray of R. Since $S \cup \{S\}$ is an arc in X^* , R is contained in some arc in X^* . It now follows from Theorem 2 that X^* is compact. This completes the proof.

Two other methods for obtaining dendritic compactifications of dendritic spaces may be found in the literature. In [2] Ward proves, by embedding in a Tychonoff cube, that every locally connected dendritic space satisfying a certain convexity condition has a dendritic compactification. In [1] Proizvolov proves, by considering maximal collections of closed connected sets having the finite intersection property, that every locally peripherally compact dendritic space has a dendritic compactification.

References

1. V. V. Proizvolov, Peripherally bicompact tree-like spaces, Dokl. Akad. Nauk SSSR, **189** (1969), 724-727.

2. L. E. Ward, Jr., On dendritic sets, Duke Math. J., 25 (1958), 505-514.

3. G. T. Whyburn, Cut points in gereral topological spaces, Proc. Nat. Acad. Sci. USA, **61** (1968), 380-387.

Received April 28, 1972 and in revised form July 13, 1972.

UNIVERSITY OF MISSOURI