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SUBDIFFERENTIALS OF CONVEX FUNCTIONS ON
BANACH SPACES

GEORGE L U N A

This note was motivated by a paper of P. D. Taylor, which
contains a simple proof of Rockafellar's basic theorem that
the subdifferential map df of a lower semicontinuous proper
convex function / on a Banach space is maximal monotone.
Taylor based his proof on a theorem which can be considered
as a sharpening (for the epigraph of a convex function) of
a result (Lemma 1.1) concerning support points and functions
of convex sets due to Brondsted-Rockafellar and Phelps. It
is shown that Taylor's theorem can be generalized somewhat,
using related methods. (It is shown, by an example, that
there is a limitation on the extent of generalization possible.)
The theorem follows from a slightly technical result (Proposi-
tion 1.3) which admits a dual version (Proposition 2.2). As
an application of Proposition 2.2, a short proof of Rockafellar's
theorem relating the graph of (d/*)"1 to that of df is given.
The methods of this paper yield a generalization (Corollary
1.9) of one of the density results of Bishop-Phelps.

1* Let E be a topological vector space and E* its dual. The
natural pairing between these spaces will be denoted by <#, #*> for
xeE and x* eE*.

We recall some standard definition and facts about convex sets
and functions. For more detail see Moreau [6] or Rockafellar [9].
If / : E—• [oo, oo] is a function, then its epigraph (or "supergraph")
epi / is {(x, r) QEx R\f{x) ^ r ) . Recall/is convex if and only if epi /
is convex and that / is lower semicontinuous (l.s.c.) if and only if
epi / is closed in E x R. If epi / is nonempty and contains no vertical
lines, i.e., sets of the form {(x, r)\r eR} where xeE, then/ is called
proper. The natural projection of epi / onto E is called the effective
domain off and is written dom /; thus dom/= {xeE\f(x) < oo}.

If g is a function on a set X we write sup g{X) in place of
sup [g(x)\xeX} If C is a closed convex nonempty subset of E, a
support point for C is a point xeC for which there exists an element
x* 6 E*\{0} such that (x, x*) = sup x*(C). Such an element x* is called
a support functional for C

We identify (E x R)* and E* x R in the obvious way, so that the
pairing between E* x R and E x R is given by ((x, r), (α?*, s)) = <#, £*> + rs
for (x,r)eExR and (x*, s)eE* x R.

If / is a convex function on E, a subgradient for / at a point
x e dom / is an element x* e E* such that (x*, — 1) is a support func-
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tional of epi / a t (x,f(x)). The collection (possibly empty) of all sub-
gradients at x is denoted df(x). In this way, a set valued map
df:E-+E* is obtained.

A monotone set G in E x i?* is a subset of E x E* for which
(x — y,x* — 2/*> Ξ> 0 whenever (x, x*) e G and (y, y*) eG. A monotone
set is called maximal if it is not properly contained in any other
monotone subset of ExE*. By Zorn's lemma any monotone set is
contained in a maximal monotone set.

If / is a convex function on E, then gr df = {(x, x*) | x* e df(x)}
is a monotone subset of E x E*. Rockafellar [11,10] showed that gr df
is actually maximal monotone if / is a l.s.c proper convex function
and E is a Banach space.

If N is a closed subspace of E, then N1 will denote the annihilator
of N in £7*, i.e., N1 = {π* e #* | O , π*> - 0 for each n e N}. If / is
a convex function on E, then the conjugate of / is the function
/*: E*->RΌ {OO} defined by /*(α?*) = sup {<£, α*> - /(a?) |α? e E).

We recall that the following three statements are equivalent [9]:
z* e 3/(2), 2 G df*(z*)> and /*(«*) + f(z) = <z, z*).

If Cd E, the indicator function ψc for C is defined for each
x e E by ^c(») — 0 if x e C and by ^c(») = °° if ^ ? C.

If C C J E * , the support function Sc for C is defined for each a eί?
by Sc(x) = sup {<α;, x*) \x* e C).

If C is a nonempty convex subset of ϋ7, then 0+C will denote the
asymptotic cone of C, i.e., 0+C ={2/eJ5|a; + λ2/eC for each λ ^ 0 and
xeC).

The following lemma of Phelps [7] is a geometric formulation of
the lemma of Brondsted-Rockafellar [2].

LEMMA 1.1. Let C be a closed convex subset of the Banach space
E. Suppose x e C, x* e i?* and ε > 0 satisfy

sup x*{C) ^ <α, x*> + ε .

Then for any k > 0 ί/ιerβ exist w eC and w* eE* satisfying

(w, w*) = s u p w * ( C ) , ||α? — w\\ ^ ε/fc α ^ d ||a?* — w* || ^ k .

We remark that Lemma 1 of [12] and the result [1, Theorem 2]
which inspired it are easy consequences of the above lemma.

We show next that the lemma yields a short proof of [1, Theorem 2].

THEOREM 1.2. [Bishop-Phelps]. Suppose that C and X are sub-
sets of a Banach space E, that C is closed and convex and that X is
bounded and nonempty. If ε > 0 and if #* e E* is such that
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supα?*(Q <infα;*(X) ,

then there exist w* eE* and w eC such that

\\x* - w*\\ ^ ε and <w, w*> = supw*(C) < infw*(X) .

Proof. Let δ = inf x*(X) - supα;*(C); then δ > 0 and we can
assume 2ε — S < 0. Choose zeC such that supx*(C) ^ <z, #*> + ε.
Since X is bounded, there is a number iV such that

N — 1 > sup {||2 — £|| |a;eX} .

Let k = ε/ΛΓ in Lemma 1.1; then there exist w* e E* and w e C such
that

*(C) = O , w*>, ||w* - Λ*| | ^ ε/ΛΓ and ||w - «|| ^ iSΓ.

Since N > 1, we have ε/]V < ε, so it only remains to show that

<>, w*> = sup w*(C) < infw*(X) .

First notice that

for any x e l (since | |w* — α?*|| ̂  ε/iV). This implies tha t

( 1 ) (z, w*} - <«, α;*> + inf x*(X) ^ ε + inf w*(X) .

Similarly, sup w*(C) - <w, w*> ^ <«, ̂ *> + (e/N) \\w - x\\ - (z,
(w, x*} which combines with (1) to yield

<w, w*> ^ ε + inf w*(Jf) - inf x*(X) + ε

Proposition 1.3 (below) yields a slightly generalized version of
Taylor's theorem [12]. The proof of the proposition, although technical,
is conceptually very simple: one separates epi / from an appropriate
subset of a given linear variety and then uses Lemma 1.1 to obtain
a supporting hyperplane of the desired type. In order to facilitate
this idea, we introduce some notation.

Suppose that N is a closed subspace of the Banach space E, that
BN is the unit ball of ΛΓ, and that / is a convex function on E. For
each ε > 0, we let

S(f, e, N) = {** e E* I sup (**, -l)(epi /) ^ inf {z\ -1)(BN x {-ε})} .

Thus, S(f, ε, N) is the projection onto E* of those functionals in
E* x {— 1} which separate the convex set epi f from the convex set
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BN x { —ε}. It can also be described by

where ||z* \\N = sup{|<^, z*> \ \n eBN} .

PROPOSITION 1.3. Let f be a l.s.c. proper convex function on a
Banach space E and let N be a closed subspace of E. Suppose that
/(0) = 0 and that z* e S(f, ε, N). Then for each k e (0,1), there exist
w e E and w* e E* such that

w*edf{w),\<w,w*}\^{ellΛίlJrk^ " - * " ^ k

1 - fc

\w\\ ̂  ε/k, \f(w) I ̂  e/k, \\z* - w* \\ £ f l

1 — k

Proof. Since z* e S(f, ε, N) and (0, 0) e epi /, it follows that,
0 ^ sup (z*, - l)(epi /) ^ - ||z* \\N + e and hence that sup (z*, -1)
(epi/) g ε and | |z*|U ^ ε By Lemma 1.1, for any fc > 0 there exist
Ge(Ex R)* and (w,f(w)) e epi/ such that

sup G(epi/) = G(w, f(w)), \\(w,f(w)) \\ £ e/k and \\(z*, -1)-G\\^k.

Thus I G(0, -1) - 11 ̂  k and since A < 1 we have 0 < 1 - k < G(0, -1).
Let a = (G(0, —I))"1; then there is an element w* eE* such that for
each yeE

<V, w*> - aG(y, 0) .

If yedomf, then

and therefore w*edf(w).
Since (w,f(w)) 6epi/, we have <w, 2*> — f(w) ^ ε; thus

0 ^ G(w,f(w)) ^ \\(w,f(w)) \\k+<wf z*} - /(w)

^ ε + ε = 2ε

and therefore

I < w > w *> I = | α G ( w , 0) I - \aG{wJ{w)) + f(w) \

< 2 s + -1 = £ ί1 + k\
= 1 - jfc fc fcVl- fc/ #

Because ||«* — G(0, — l)ιι;*|| ^ k, the triangle inequality yields
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1-k )

k (Λ ^ | | z * |
1-k"

Clearly,

^ k + lls* IL ^ & + ε
c t ' ~ 1 - k ~ 1 - k

and the proof is complete.

COROLLARY 1.4. Suppose that f is a l.s.c. proper convex func-
tion on a Banach space E, that /(0) = 0, and that N is a closed sub-
space. Then the following two statements are equivalent:

(1) For each ε > 0 the set S(f, ε, N) is nonempty.
(2) For each ε > 0 there exist w eE and w* eE* such that

^ ε , | | w * | L ^ ε and \f(w)\£e.

Proof. (1) -> (2). We can suppose that 0 < ε < 1. Choose δ > 0
so that (δ112 + δ)/(l - δ1/2) < ε. Let a;* e S(/, δ, JV) and apply Proposi-
tion 1.3 with k = <51/2. Since <51/2 < (δ1/2 + δ)/(l - δ) < ε assertion (2)
follows.

(2)->(l). Let ε > 0 and apply (2) with e/3. Since w* edf(w)
we have f*(w*) — (w, w*) — f(w), so that

f*(w*) + \\w*\\N £ <w,w*}-f(w) + \\w*\\N

^ 6/3 + e/3 + e/3 = ε

and therefore w* e S(f, ε, N).
It is now easy to prove the more general version of the theorem

of Taylor [12] referred to earlier. It is readily seen that (1) of
Corollary 1.4 is equivalent to (1)' For each ε > 0 we have

0tcl(BN x{-ε} - e p i / ) ,

which is in turn equivalent to saying that there exists a hyperplane
in E x R which strictly separates epi/ from BN x { — ε}. This suggests
that a generalization of Taylor's theorem is not possible for arbitrary
closed subspaces N and the example following Theorem 1.5 shows
that this is indeed the case. In [12], the space N is assumed to be
one dimensional.



166 GEORGE LUNA

THEOREM 1.5. Suppose f is a l.s.c. proper convex function on a
Banach space E and that N is a reflexive subspace of E. Suppose
also that y edom / and y* eE* are such that for each neN

Then for each ε > 0 there exist z e E and z* e E* satisfying

z*edf(z), \\z* -y*\\ir£ε, \\y - z\\ £ e and \(y - z, z * > | ^ ε .

Proof. Let h = f(y + •) — f(y) — < , y); then h is a l.s.c. proper
convex function on E, h(0) — 0 and h ^ 0 on N. Hence the weakly
closed convex set epi h is disjoint from the weakly compact convex
set BN x { — ε} for every ε > 0. By the separation theorem, there is a
Ge(Ex R)* such that

sup G(epi h) < inf G(BN x {-ε}) .

Since (0, 0) eepih, we have G(0, -1) > 0. Thus for any ε > 0, the
set S(h, ε, N) is nonempty. By applying Corollary 1.4, with δ =
ε/(l + \\y* ||) in place of ε, we obtain weE and w* eϋ/* such that

w*edh(w), \<w,w*)\ ^ δ, \\w\\ ^ δ a n d | | w * | U ^ δ .

Let ^* = w* + 2/* and ^ = w + /̂ it is easy to check that z* and z
satisfy the conclusion of the theorem.

We refer the reader to [12] for the application of this result to
an easy proof of Rockafellar's theorem that for any l.s.c. proper
convex function / on a Banach space, the subdifferential map df is
maximal monotone.

The following is an example of a l.s.c. proper convex function
F and a subspace N of codimension 1 for which F(0) — 0 and F(n) ̂  0
for all neN, but (1) of Corollary 1.4 does not hold. This shows that
Theorem 1.5 is not valid for arbitrary closed subspaces N.

Let

E = 1°° and N = {x = {x,) e l°° \ x, = 0} .

Define F:l°°-+Ru {̂ } by

F(aj) = liminf{/(2/)|||i/-ίc|| < ε}
£-•0

where, for y = {y^ e ί°°,
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for each i and Vi — Q for almost all i (n is the smallest positive
integer such that i > n implies yi — 0); f(y) = °o otherwise. We have
using [11, p. 27] t h a t / i s convex and hence F is a l.s.c. proper convex
function. Also, F(0) = 0 and F(n) ^ 0 for each n e N. Let

¥ -k

and mk = yk — εke1 where e± = {1, 0 •}. Then F(yk) = — ε for each
Jc, and mk — yk—> 0. Thus 0 e cl (i?^ x { —ε} — epi F) and the discussion
preceding Theorem 1.5 shows that the conclusion of Theorem 1.5 does
not hold.

We remark that if / is continuous at some point of N, then as
has been noted by Ioffe [5, Theorem 1] df \N = Ύ°df on N where
7: E* —»E*/N1 is the canonical projection. Our example shows that
continuity cannot be weakened to lower semicontinuity even if one
supposes N has codimension one, where [1, Lemma 4] applies. Since
0edF\N(0), we have to show that if y*edF(0), then y*$N1. Sup-
pose y* G dF(0) i.e., (x, y*} ^ F{x) for each xeE. Take k large enough
so that I (mk — ykf y*} \ < ε/2; then for large enough k,

<mkί τ/*> < ε/2 + <yk, y*}

£ ε/2 + F{yk)

- -ε/2

and so y* g N1.
We now give a sufficient condition for w* in Corollary 1.4 (2) to

be contained in N1 i.e. ||w*||jy = 0. This result (Proposition 1.8) fol-
lows (in the same way Proposition 1.2 was a consequence of Lemma
1.1) from a lemma which extends to Lemma 1.1. We need the fol-
lowing proposition of Dieudonne [3] for the proof of the lemma.

PROPOSITION 1.6. Let E be a topologίcal vector space and A, B
two closed convex and nonempty subsets of E. Suppose A is locally
compact and that 0+A Π 0+B = {0}. Then B-A is closed in E.

LEMMA 1.7. Let C be a closed convex subset of a Banach space
E and N a finite dimensional subspace of E. Suppose 0+C Π N — {0}
and that x* e ΛΓ1, x e C and ε > 0 are such that

supa;*(C) ^ {x, x*) + ε .

Then for any k > 0, there exist w eC and w* e N1 such that

(w9 w*} — sup w*(C), \\x — W\\NL ̂  ε/k and \\w* — x* \\ ^ k .
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Proof. By Proposition 1.6, the set C + N is closed in E. Let
Q: E -* E/N be the quotient map. Since Q-'iQiC)) = C + iV, it follows
from the definition of the quotient topology that Q(C) is closed. We
identify (E/N)* with N1 and apply Lemma 1.1 to Q(C) in #/JV. Then
for any k > 0 there exist z + NeC + N and w* eiV1 such that

(z + N,w*) = suvw*(C+N),\\x-z + N\\^e/k and | | s * - a > * | | ^ & .

Since z + NeC + N, there exist ΪUGC and neN ίor which z = w + n.
Because w*eNλ, we have

<w9 w*) = (z + N, w*} = sup w*(C + ΛΓ) = sup w*(C) .

Also, we have

\\x - w|Ui = ||α? — w + JSΓII = H* - z + N\\ ̂  e/k ,

and the proof is complete.

PROPOSITION 1.8. Let f be a l.s.c. proper convex function on a
Banach space E and let N be a finite dimensional subspace of E.
Suppose that z* e S(f, ε, N), that 0+ epi/ Π (N x {0}) = {0}, that (0, 0) e
epi/ and that z* e N1. Then for each k e (0,1) there exist w eE and
w* eNL such that

w*edf(w), | |w|μ. S e/k, \f(w)\ ^ e/k

and

1 - k

Proof. By hypothesis, sup (2*, — l)(epi/) ^ ε and (2*, — 1) e
(Nx {0})1 = N1 xR and Lemma 1.7 applies with a? = (0, 0). Thus for
any k > 0 there exist (w,f(w)) eepi/ and GeNL x R such that

G(w,f(w)) - sup G(C), | |(w,/(w))|Uix s ^ ε/fc

and

Thus |G(0, -1) - 1| ^ k and since Jk < 1 we have 0 < 1 - k < G(0, -1).
Hence there is an element w* eE* such that for each y eE

Since GeN1 x R, we have w* eN1; the verifications that w* edf(w)
and that
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1 - k

are the same as in Proposition 1.3.

It is a trivial consequence of Lemma 1.1 that if C is a closed
convex subset of a Banach space E, then the support functionals of
C are norm dense in the set of linear functionals bounded above on
C The following corollary to Proposition 1.8 shows that the support
functionals of C which are bounded above on C and positive at some
point of C have a norm dense intersection with any finite codimen-
sional linear variety M satisfying 0+C Γ) 0+M° = {0}.

COROLLARY 1.9. Let C be a closed convex and nonempty subset
of a Banach space E and let N be a finite dimensional subspace of
E with 0+CΓ\N= {0}. Let x*eE* be such that 0 < S0(x*) < <*>.
Then for each ε > 0 there exist z* eE* and zeC satisfying

(z, z*y = sup2*(C), z* eN1 + x* , \\z* — x* || ^ ε

and

\S0(x*)-S0(z*)\£ε.

Proof. Choose δ e (0, Sc(x*)) such that 2δ1/2/(l - 2δ1/2) < ε and y e C
so that

( 1 ) Sc(x*) ^ (y, x*> + δ .

Define the function h: E-~* R (j {co} by h(x) = ψc(x) — <^, x*} + (v, x*}
Clearly (1) implies 0eS(h,δ,N). We check that

0+epi hf]((N x R{y}) x {0}) = {0} .

Suppose (n, 0) e 0+epi h for n e N; then since h(y) — 0, we have for any
λ Ξ> 0 that (?/ + λw, 0) G epi /̂  i.e., h(y + λ^) ^ 0. Hence ψc{y + λ%) ^
<λw, a?*> < oo and therefore y + XneC. Thus % e 0+C Π iV = {0}.
Suppose (]/, 0) G 0+epi h; then we have ((1 + X)y, 0) G epi h for each
λ ^ 0 and hence y + Xy eC for each λ ^ 0; but since (y, x*} > 0 this
contradicts Sc(x*) < °° Finally suppose (—#, 0) e 0+epi fe; then
((1 — X)y, 0) G epi h for each λ ^ 0, so (Xy, x*} ^ 0 for each X ^ 0
which contradicts <?/, x*> > 0.

We can apply Proposition 1.8 with k = 2δ1/2 to obtain w* e (NxR{y})λ

and zeC satisfying w*edh(z) and \\w* \\ ^ 2δ1/2/(l - 2δ1/2) < ε and
|fe(«) I ^ δ1/2/2 and ||2|UX Λ { 1, },± ̂  δ/2. Let ^* - w* + α;*; then ||^* - a?* || ^ 6
and it is easy to check that w* edh(z) implies (z9 z*} — Sc(z*). Since
h(z) = (y — z, x*} we have
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0 ^ SO(Z*) - (y, Z*)

= Sΰ(z*) - (y, x*)

= <z - v, z*)

= <a, w*> + <z- y, x*)

£ δlβ < s ,

and combining this inequality with

-d^(y,z*y- Sc(x*)^0

we obtain

\Sc(z*)-Sc(x*)\^ε

which completes the proof.

2* In this section we obtain dual results for most of those in
§ 1. The key is the following lemma which is a dual version of Lemma
1.1. It was essentially proved in [8, Theorem 1] and can be easily
obtained from the Brondsted-Rockafellar lemma.

LEMMA 2.1. Let C be a weak*closed convex subset of the dual
E* of the Banach space E. Suppose x* e C and xeE and ε > 0 satisfy

sup C(x) ^ {x, x*} + ε .

Then for any k > 0 there exist w* eC and w eE satisfying

(w, w*} = sup C(w), \\x — w\\ ^ k and \\x* — w* \\ ^ ε/k .

This lemma can be used to prove the following dual version of
Proposition 1.3, by much the same method.

PROPOSITION 2.2. Let f be a l.s.c. proper convex function on a
Banach space E and N a subspace of E. Suppose /*(0) = 0 and
z e S(f*, ε, N1) where ε > 0. Then for each k e (0,1) there exist weE
and w* G E* satisfying:

wedf*(w*)

1 - J f c
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Proof. Since z G S ( / * , ε, JV1) and (0, 0 ) e e p i / * , it follows that
0 ^ sup(z, — l)(epi/*) <; — \\Z\\NL + ε and hence that

sup(z, - l ) (ep i/*) £e and \\z\\N± ̂  ε .

By Lemma 2.1, for any k> 0 there exist GeE x R and (w*, /*(w*)) e
epi / * satisfying

sup G(epi /*) = G(w*, f*(w*)), \\(w*, f*(w*)) \\ ύ e/k

and

\\(z,-l)-G\\^k.

Thus I G(0, -1) -11 ̂  k and since k < 1, we have 0 < 1 - k < G(0, - 1 ) .
Hence there is an element w eE such that for each y* eE*

, - 1 )

The rest of the proof is obtained by interchanging the roles of w,
and w* in the proof of Proposition 1.3.

We have seen that Theorem 1.5 requires some restriction in the
subspace N. This is not the case with the following dual version
which uses the weak* compactness of the unit ball of the weak*
closed subspace JV1.

THEOREM 2-3. Suppose f is a Ls.c. proper convex function on a
Banach space E and that N is a subspace of E. Suppose also that
y eE and y* edom / * satisfy

f*(y* + n*) ̂  f*(y*) + (y, w*> for each n*eNL .

Then for each ε > 0 there exist z eE and z* eE* satisfying

zedf*(z*), \\z - 2/IUi ^ ε, \\y* -z*\\^ε

and

Proof. Let h = f*(y* + •)-/*(!/*) - <V, •>; then h is w*-l.s.c.
proper and convex. Also h(0) — 0 and h ^ 0 on JV1. Hence the weak*
closed convex set epi h is disjoint from the weak* compact convex set
BNi x { — δ} for every 3 > 0. By the separation theorem, there exists
GeE x R satisfying

sup G(epi h) < inf G(BN± x {-ε}) .

Since (0, 0) e epi h, we have G(0, -1) > 0. Thus for any δ > 0, the
set E Π S(h, δ, N1) is nonempty. Choose δ > 0 so that
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δ1'2 + δ ^ ε

1-δ 1 ' 2 l+\y\ '

and apply Proposition 2.2 with δ in place of ε and k — δ1'2, to obtain
w eE and w* eE* satisfying

wed/*(w*), \(w, w*>| ^ <?, ||w|U± ^ 5 and ||w*|| £ δ .

Let z* = w* + i/* and 2 = w + y; it is easy to check that z* and s
satisfy the conclusions of the theorem.

If one considers E as a subspace of E**9 then grdf is a subset
of E** x #*, as is gr{df*)~ι where ^(δ/*)- 1 = {(#**, a?*) |a;** e3/*(#*)}
Since x*edf(x) if and only if #ed/*(α;*) if is evident that grdf a
grid/*)"1 and it is natural to ask if there is any other relationship
between these two sets. Rockafellar [11] (cf. Gossez [4]) has answered
this question: gr df = gr(df*)~\ where the closure is taken with
respect to the product of the 21 topology on E** and the norm topology
on E*. The 21 topology on £7** is the weakest topology on £7** con-
taining the weak** topology and for which the norm on £7** is a
continuous function. In general, it is not a vector topology.

We will give a short proof of this result of Rockafellar using
Theorem 2.3, after first proving an easy lemma.

LEMMA 2.4. Letf be a l.s.c. proper convex function on the Banach
space E. Suppose /*(0) = 0 and x**edf*(0) and δ > 0. Then
x**ed(f + <fo)*(0), where B = J3(0; ||a?**|| + δ).

Proof. Let K = dom/and let Kγ be the weak** closure of K in
#**. By [6, p. 62], we have (fκ + | | . | |)** = ψKl + | | . ||; hence
inf {||a?|||fljeJS:} = inf {||z** |||z** e l Q and it follows that Kf]B^ 0 .
By [6, p. 62], (/ + φj** = /** + ψB**; hence

0 - inf/** (since /*(0) - 0)

= /**(x**) (since x** e3/*(0))

^ ) * * ; so 0 e (/

THEOREM 2.5. [Rockafellar]. Let f be a l.s.c. proper convex
function on the Banach space E. Consider (df*)"1: i?** —>2?*.
gr (3/*)"1 — gr f where the closure is taken with respect to the product
of the 2t topology on i?** cmd ί/ie norm topology on E*

Proof. The bilinear function < , •>: E**xE* —>R is continuous
for the 21 x norm topology, hence gr df is monotone. Since we already
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know gr (d/*)"1 is maximal monotone, it suffices to show that

gr (3/*)"1 czgrdf .

Let (a?**, x*) e gr (3/*)"1 and suppose we are given δ e (0,1) and {#*}£=1

in the unit sphere of E*. By considering g*( ) = /(( ) + x*) — /*(&*),
if necessary, we can assume #* = 0 and /*(0) = 0. Thus Oedf**(x**)
and by Lemma 2.4 we have 0 e 3 ( / + τ/r5) **(#**), where

B = B(0; \\x**\\ + 3) .

Choose y e E such that <y, #*> = <#**, #*> for n = 1, , k and apply
Theorem 2.3 to / + ψB with y* = 0 and N1 = span {»*}*=i and ε =
ε'/(l + ||a?**||) where 0 < ε' < δ2. We then obtain z* eE* and ^ e ί ?
satisfying z* ed(f + f^(^), p - y\\Nl £ ε, |<«,«*>l ^ £ and | | ^ | | ^ e.
Thus, z* = t6* + t* where ^* e 3/(s) and t* G 3ψs(2). Clearly z e α;** +
<?(K}t=i)° and p l l ^ ||α?**|| + δ and ||w*|| ^ δ + | | t * | | . We will show
| | t* || ^ δ and this will conclude the proof. Suppose | | t * | | > δ, then
because u*edf(z) and Oe3/**(#**) we have

Hence

so | |« | | < ||a?** || + δ2/||έ*|| < ||aj**|| + 3 and since ί* edψB(z), we have
the contradiction t* — 0.

Finally we prove a dual version of Proposition 1.8. We require
a lemma which is a consequence of Proposition 1.6 and Lemma 2.1.

LEMMA 2.6. Let C be a weak* closed convex subset of the dual
of a Banach space E and N a closed finite codimensional subspace of
E. Suppose 0+C Π N1 = {0}, and that x* e C, xeN and ε > 0 satisfy

sup C(x) ^ <x, x*} + ε .

Then for any k > 0 there exist zeN and z* eC satisfying

<z,z*} = supC(z), | |x - 21| ^ fc, ||x* - z*|U ^ ε/k .

Proof. By Proposition 1.6, the set C + NL is weak* closed in
E*. Let Q:E*-»E*/N1 be the quotient map. Since Q^(Q(C)) =
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C + N1, it follows from the definition of the quotient topology that
Q(C) is weak* closed. We identify E*/NL with JV* and apply Lemma
2.1 to Q(C) in E*/Nλ. Then for any k > 0 there exist w* + N1 c
C + AΓL and 2 e N satisfying <s, w* + ΛΓ1) = sup C(z), \\z — x\\ ̂  k
and 11 a?* - w* + N1 || ^ ε/fc. Let n* e N1 be such that w* + n* eC
and set z* = w* + w*, so that <z, 2;*) = sup C(z). Finally, we have

||α>* - ^ * | U = l l » * - ^* + -ZVΊI = l l « * - ^* + AT 1 II ^ ε / A : .

PROPOSITION 2.7. Lβί f be a l.s.c. proper convex function on a
Banach space E. Let N be a closed subspace of E of finite codimen-
sion. Suppose that 0+epi /* Π (N1 x {0}) = {0}, that (0, 0) eepi /* and
that zeNf] S(f*, ε, N1), where e > 0. Then for any k e (0,1) there
exist w e N and w* e E* satisfying

i ι* ι i )
JL A/

U ^ e/fc

Proof. By hypothesis, sup (z, — l)(epi /*) ^ ε and (z, — 1) e Nx R.
We can apply Lemma 2.6 with * = (0, 0) and obtain, for any Jc > 0,
GeNx R and (w*, /*(«;*)) eepi/* satisfying

G((w*, f*(w*)) = sup G(epi/*), ||G - («, - 1 ) | | ^ fc

and

Thus I G(0, -1) - 11 ^ k and since k < 1 we have 0 < 1 - k < G(0, -1).
Hence there exists an element w eE such that

f o r e a c h y * G #* #

Cτ(0, —1)

Since GeNx R, we have w eN.
The verifications that w edf*(w*) and that

1 — A;

are the same as in Proposition 2.2.
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