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A CLASS OF INFINITE DIMENSIONAL SUBGROUPS
OF DIFF** (X) WHICH ARE BANACH LIE GROUPS

W. D. CURTIS, Y. L. LEE, AND F. R. MILLER

It is known that if X is a compact C°°-manifold then
Diffr(X) with the usual manifold structure is a Banach mani-
fold but not a Banach Lie group. In this paper we construct
a class of infinite dimensional subgroups of Diffr(X) which
are Banach Lie groups.

If X and Y are C°°-manifolds and X is compact the construction
of a Banach manifold structure on Cr(X, Y), the space of mappings
of class Cr, has been given in [1]. The elementary theory of abstract
Banach Lie groups has been given in [3]. In this paper we show
that if Y — G, a finite dimensional Lie group, then Cr(X, G) is a
Banach Lie group. Now suppose that π: X—>Z is a principal <?-bundle.
We show that the group of Cr-self-equivalences of π is a closed sub-
group of Cr(X, G) which inherits a natural Banach Lie group struc-
ture. This gives a class of examples of effective infinite dimensional
Banach Lie group actions on compact manifolds.

The Lie group structure* Let X be a compact connected C°°-
manifold and G be a finite dimensional Lie group. There is a canonical
right invariant C°° spray, s: TG —> TΓG, on G which is defined as
follows. If v e TXG let v be the unique right invariant vector field
which satisfies v(x) = v. Then Tv: TG —* TTG and we have s(v) =
Tv(v). Now s determines an exponential mapping whose domain is
all of TG, exp: TG->G, and which satisfies exp(TRg(v)) = Rg(exj>(v))
where Rg is right translation by g. If we define Exp: TG - > G x G by
Exp (v) = (π(v),exp(v))f where π: TG-+G is the natural projection,
then it is well known that Exp maps some open neighborhood of the
0-section in TG diffeomorphically onto an open neighborhood of D =
{{g,g)\geG} in G x G [2].

LEMMA 1. There is an open neighborhood S of the 0-section in
TG and an open neighborhood U of D such that

(a) Exp maps S diffeomorphically onto U
(b) for all ginGwe have that TRg(S) = S and {(hg, kg)\(h, k) e U) —

U.

Proof. Note that exp \TeG = expe is the classical exponential
mapping for the Lie group G. Choose an open set V in TeG which
contains 0e and which satisfies
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(1) there is a set M which is open in TG, which is mapped by
Exp diffeomorphically onto an open subset of GxG, and which satisfies

i n τβG= v.
(2) V is mapped diffeomorphically by expe onto an open set

W in G which contains e.
Let S= \J{TRg{V)\geG) and U= Uto x Wg\geG}. It is easily
checked that S and U have the desired properties.

The differential structure on Cr(X, G) is now constructed in the
usual way [1]. Let feCr(X, G). A manifold chart about / is con-
structed as follows. f*TG, the pull-back of TG under /, is a bundle
over X, and f*S = {(x, v) ef*TG\v e S) is an open subset of this
bundle. Let Nf={ge Cr(X, G) \ (f(x), g(x) e U for all xeX} and define
a/.Nf-+Γr(f*TG) by af(g)(x) = (x,Exp~ι(f(x), g(x))). af maps N,
bijectively onto an open subset of Γr(f* TG) and (Nf, af) gives a chart
at / .

The coordinate chart at e is particularly nice. We use e to denote
the identity in G and also to denote the constant map e: X—+ G, e(x) —
e for all x. Ne = {g eCr(X, G)\(e, g(x)) e U for all xeX} = {ge
Cr(X, G) I g(x) e W for all xeX}. Here W is the set used in the proof
of Lemma 1 to construct S and U. Now e*TG = X x TeG so we may
identify Γr{e*TG) with Cr(X, TeG). With this identification we see
that ae: Ne -> Cr(X, TeG) is given by ae{g){x) - expr1 (g{x)).

THEOREM 1. Cr(X, G) is a Banach Lie group with respect to
pointwise multiplication and inversion. If E: Cr(X, TeG) —• Cr{X, G)
is the exponential of this Lie group then we have E{f) = exp © / where
exp: jΓeG—> G is the exponential of G. The Lie bracket in Cr(X, TeG)
is the pointwise bracket; [/, g](x) = [f(x)9 g(x)].

Proof. Let g e Cr(X, G). We show that Rg: Cr(X, G) -* Cr(X, (?)
is smooth. Fix / 6 Cr{X, G) and consider the chart (Nf9 af). We will
show that Rg: Cr(X9 G) -^ Cr(X, G), Rg(f) = fg, is smooth. At fg there
is the chart (Nfgf afg) and we first note that Rg(Nf) = Nfa. This
follows from the definition of the coordinate neighborhoods and the
property of U which is given in (b) of Lemma 1. To show the
smoothness of Rg we need only show smoothness of the composite
afgRgaγ: af{Nf)-+Γ'{{fgy TG). Let f e Γ'(/* TG). Then ζ(x) = (x9 ξx(x))
where ί̂ α?—• TG is Cr and πζx = / . If ξeaf(Nf) then for each x
in X we have {afgRgaγ{ξ)){x) = (x, Exp-1 (f(x)g(x), (Rga^ffiHx))) and

= ay\ξ)(x)g(x) = exp fo(x))g(x) = exp (TR9{x)(Ux)))- Now
is in Tfix)9(x)G so that Ex^-1(f(x)g(x),ex^(TRg(x)(ξ1(^)))) =

TRg{x){^{x)). We thus have {afgRgaγ{ξ)){x) = («, Γ-R^fote)) which
shows that afgRgaγ is a continuous linear map, hence smooth.
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In a similar manner we can use the canonical left invariant spray
on G to show that left translation in Cr(X, G) is smooth. Here we
make use of the fact the Banach manifold structure on Cr(X, G) does
not depend upon the choice of spray [1]. Now to prove that multipli-
cation m: Cr(X, G) x Cr(X, G) —* Cr(X, G) is smooth we need only prove
smoothness in a neighborhood of (e, e) where e: X—> G is the constant
mapping which is the identity for Cr(X, G). The coordinate neighbor-
hood around e is given by Ne = {he Cr(X9 G)|h(X) c W}. Let W1 be a
neighborhood of e in G such that Wl<z W, and M= {h e Cr(X, G) \ h(X) c
TFJ, F ^ e x p - W O c F , M0 = {geC'(X, TeG)\g(X)czV1}. Then ae(M) =
Mo, and aem(a~x x a'1): Mox M0—>ae(Ne)9 Modae(Ne). We have {aem{a~ι x
aj^h, k))(x) = Exp"1^, a7ι{h){x)a-\k){x)) = exp"1 (exp (h(x)) exp (k(x))).
Now there is a C°°-map v: V1 x VΊ —• F given by V = exp-1rn(exp x exp)
where in denotes the group multiplication in G. A basic result of
[1] is that the mapping Ωυ\ C

r(X9 V, x Vx) -> Cr(X, V) which is given
by Ωv(h) = j Λ is C00. Let ^ : Mo x ikf0 — Cr(X, Γe^ x TeG) be defined
by -f (h, k){x) = (h(x), k{x)). Then ψ is continuous and linear so that
Ωvf: Mox Mo-> Cr(X, TeG) is smooth. But we get that (Ωuψ(h, k))(x) =
exp"1 (exp (h(x)) exp (k(x))) = (aem(a~ι x a~ι){h, k))(x) so that we have
the joint smoothness of multiplication in Cr(X, G).

We could prove directly that inversion is smooth but since
Cr(X, G) is a Banach manifold this can be deduced from the implicit
function theorem [4].

Now consider E: Cr{X, TeG) — Cr{X, G) given by E{f) = expo/.
Again, since exp is smooth we get that E is smooth. Let he
Cr(X, TeG). Now the mapping g: i2->Cr(X, (?) given by g(t) = E(th)
satisfies g(tt + t2)(x) — exp ((tt + t2)h(x)) = exp {tjι(x)) exp (ί2^(^)) =
^(^(^^fe)^) = g(ti)g(U)(%) for all cceX. Thus g is a one-parameter
subgroup of Cr(X, G). To show that E is the exponential map as
asserted it is enough to show, (d/dt)(aeE(th)) \t=0 = h. But for small
t, th e Cr(X, V) so that ae(th) = £/& and the result is immediate.

It remains to verify the Lie bracket formula as given in the
theorem. We leave this as an exercise for the reader.

The group of self-equivalences of a principal bundle* Let X
be as before, G be a compact Lie group, and suppose that (x, g) —>
xg is a free differentiate right action of G on X. Then the orbit
projection has the structure of a principal G-bundle. Thus XjG has
a differentiate structure making π: X-+X/G a smooth map and for
every π(x) e X/G there is an open set U in X/G, π(x) e U, and an
equi variant diffeomorphism φ:π~ι(U)—> Ux G such that the following
diagram commutes.
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2-> Ux G
/

U .

Here G acts on the right of U x G by (u, g)g' = (u, ggf). A self-
equivalence of this bundle is a G-equivariant diίfeomorphism /: X—>
X so that TΓ/ = π.

LEMMA 2. Lei /: X —• X 6β α Cr-self-equivalence of π. Then
there is a unique Cr-map φ\ X—+G such that f(x) = #£>(#) /or eαc/& a?
m X. Conversely, suppose that φ:X—>G is a Cr-map and define
f: X—> X by f(x) = xφ(χ). Then f is Cr and it is equivariant if and
only if φ{xg) = g~1φ(x)g for all x e X, g e G.

Proof. Given / : X—-»X a Cr-self-equivalence. The existence and
uniqueness of φ are immediate from the assumptions that πf = π
and that the action is free. Smoothness is easily verified using the
local triviality of π. Now suppose that we are given a Cr-map φ: X—>
G and we define /: X—*X by f{x) = xφ{x). Assume that / is equi-
variant. Then f(xg) = (xg)φ(xg) = x(gφ(xg)) and f(xg) = f(x)g = (xφ(x))g =
x{φ{x)g). Since the action is free we get the equation gφ(xg) = φ(x)g
which is the desired result. Conversely, if φ satisfies the stated condition
then we have f{xg) = (xg)φ(xg) = {xg){g~ιφ{%)g) = (x<P(x))g = f(x)g so
that / is equivariant.

We define &r = {/e Cr(X, G)\f(xg) = g~ιf{x)g for all x, g}, and
Sίf* = {he Cr(X, TeG)Ih{xg) = ad(g~ι)(h{x)) for all x, g). Here ad: G —
Aut (TeG) is the adjoint representation of G. Now Jg^* is a Lie
subalgebra of Cr(X, TeG) which is the Lie algebra of Cr(X, G).

THEOREM 2. ^ is a closed subgroup of Cr(X, G), In fact
is an imbedded submanifold, hence a Banach Lie group, with Lie
algebra Sίf*.

Proof. Clearly 3ίf is a subgroup of Cr(X, G) and since the mani-
fold topology on Cr(X, G) is finer than pointwise convergence it follows
that 3έ? is closed. Similarly ^ * is a closed subalgebra of Cr(X, TeG).
Consider the exponential E: Cr(X, TeG) — Cr(X, G). We will show
that there is a neighborhood ikf0* of 0 in Cr(X, TeG), and a neighbor-
hood Λf* of e in Cr(X, G) such that E maps ikf0* diffeomorphically
onto M* and ̂ (Λίo* Π ̂ * ) = M* Π ̂ Γ Using the sets constructed
in the proof of Theorem 1, we know that E maps Mo diffeomorphi-
cally onto M. If h is in Mo Π £ίf* then E(h) is in ΛfΠ^g^ since
E(h)(xg) = exp (/&(&£)) = exp (ad(g^)(h(x)) = g"1 exp (Λ(a?))flr = g"1E(h)(x)g.
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Now using the continuity of the adjoint representation and the com-
pactness of G there is a neighborhood F* of 0 in TeG such that F * c Vx

and if v e F*, g e G then ad(g)(v) e V,. Let Mo* = {he Cr(X, TeG) \ h{X) c
F*} and M* = E(M0*). Then E maps Λf0* diffeomorphically onto M*
and E(M? Π <^T*) c M* Π ̂  If, conversely, JE7(Λ) € Λf * Π 3tf, h e Mo*,
then for g in G, a? in X we have E(h)(xg) = exp (h(xg)) = g~ιexip(h(x))g =
exp (αdfer1)^))). Now /φ<?) e F* c F, ad{g~ι){h{x)) c F and since
exp is injective on F we can conclude that h(xg) = αe^-1) (&($))• Thus
h e <§ίf* which completes the proof

Now £ίf acts on X by f^x — xf(x). Since the evaluation map
Cr(X, G) x X—*G is smooth and the group action is smooth it follows
that *: £ίf x l - > l ί s smooth.

LEMMA 3. * is an effective action of the Banach Lie group έ%f
on X.

Proof. f*(h*x) - (h*x)f(h*x) = (xh(x))f(xh(x)) = x(h(x)f(xh(x))) -
x(f(x)h(x)) where the last equality follows from the assumption that
/ € £ίf. We have shown that f*(h*x) — x((fh)(x)) = (fh) * x so that *
is a group action. Suppose that f*x=x for all x in X. Then xf(x) =
x for all x and since the original action of G on X is free we get
that f(x) = e for all x. Thus / is the identity in Cr(X, G) and we
have shown that the action of * is effective.

This effective action of £έf on X allows us to identify £ίf with
a subgroup of Diffr(X). As noted before, this subgroup is precisely
the group of self-equivalences of the bundle π:X—> X/G We have
shown:

THEOREM 3. Let the compact Lie group G act freely and smoothly
on a compact C°°-manifold X. Let Er(X, G) be the group of ^self-
equivalences as defined above. Then Er(X, G) has the structure of a
Banach Lie group.

Concluding remarks* In addition to the assumptions made above
suppose that compact Lie group G is abelian. Then the condition
ψ{xg) = g~1(P(%)g simplifies to φ(xg) — φ{x) so that we get £ίf =
{f\fe Cr(X, G) and / is constant on the G-orbits}. Thus Sίf is iso-
morphic to Cr(X/G, G) and the Lie algebra of έ%f can be identified with
Cr(X/G, TeG). An example of this is given by the standard action of
S1 on S2n+1. The action is obtained by representing S2n+1 as {(z0, zl9

• • • ,* . )€ Cn+1\ \zo\
2 + | z j 2 + + K l 1 = 1} and defining (z0, zly * ,zjz =

β, * ,zΛz). This action satisfies all of our hypothesis and the
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orbit manifold is CPn, complex protective w-space. Thus Cr(CPn, S1)
acts on S2n+1 and the resulting subgroup of Diffr(S2w+1) consists of the
equivariant diffeomorphisms of S2n+1 which cover the identity map
on CPn.

If the Lie group P acts differentiably on the manifold X and p e
P is in the image of the exponential map then we know that the
diffeomorphism fp:X—>X by fp(x) = xp is imbeddable in a smooth
flow. Since we have the Banach Lie group έ%f acting on X we can
say that any self-equivalence which is of the form f(x) — xφ(x)9 ψ e
image(E), is imbeddable in a flow. More specifically we have

THEOREM 4. Let G be a compact, abelian, connected Lie group
(i.e., a torus). Let X be a compact, connected, simply connected, C°°-
manifold and suppose that G acts freely and differentiably on X.
Then every Cr-self-equivalence of the action is imbeddable in a Cr-flow.

Proof. Cr(X/G, G) acts on X \yγ φ*x = xφ{π{x)) where π:X->
XjG is the projection. Let f:X-+X be a Cr-self-equivalence of the
action of G. Choose φ such that f(x) — φ*x for all x. It is enough
to show that there is an h in Cr(X/G, TeG) such that E{h) = φ. But
this is just the lifting problem for φ. Since exp: TeG—>G is a covering
and X is 1-connected it follows that given φ e Cr(X/G, G) there is h
in Cr(X/G, TeG) so that exp h = φ i.e., E(h) = φ.

We now comment on our assumption that G acts on the right of
X. If G acts on the left we still get a subgroup of Cr(X, G) acting
as a group of diffeomorphisms of X. The appropriate subgroup is
.Hi = {/ e Cr(X, G) I f(gx) = f(x) for all geG,xe X}. However, the
diffeomorphism x-+f*x,feH19 is G-equivariant if and only if f(X)
is contained in the center of G. Thus Hx does not act as group of
equivariant diffeomorphisms and, conversely, not every equivariant
diffeomorphism which covers the identity of X/G is representable as
x —> f*χ for some / e fli Letting G act on the right and Cr(X, G)
act on the left obviates these difficulties.

Finally let us note a comparison between our results and those
in N. Kopell's paper, "Commuting Diffeomorphisms". Assume G is
a compact, connected Lie group acting smoothly and freely on the
compact connected [manifold X with dim (G) < dim (X). Suppose a
diffeomorphism / is imbedded in this action, that is, there exists
geG such that f(x) — xg. Then there is a whole Banach manifold
of diffeomorphisms which commute with / . To see this choose a torus
TdG with ge T. Then for heCr(X/T, T) the diffeomorphism x->
h*x commutes with / . (Of course we need dim (T) > 0 in order that
Cr(X/T9 T) be infinite dimensional.) Since dim (X/T) > 0 we can
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easily define heCr(X/T, T) so that h(V) = {e} for a nonvoid open
Vc X/T but /& is not globally constant. Then x —> Λ*# is the identity
on an open set but not globally. In contrast if / is a special M. -S.
diffeomorphism and h: X —• X is a diffeomorphism which commutes
with / then if h\V — id. for some open set VΦ 0 then Kopell shows
that h is the identity diffeomorphism. It follows for example that no
special M. -S. diffeomorphism is imbeddable in a group action of the
type we have considered. The authors wish to thank the referee for
directing our attention to Kopell's paper.
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