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DECOMPOSITION OF PLANE CONVEX SETS,

PART I.

RUTH SILVERMAN

The class K of plane convex bodies has the property that
the sum of any two members of the class is again a member
of the class. This paper characterizes I(K)9 the subclass con-
sisting of all indecomposable members of K, as the class of
all triangles and line segments.

This was stated by Gale several years ago, but a proof was never
published.

A compact convex set in ^-dimensional real linear space Rn will
be called a convex body. Let Kx and K2 be two convex bodies in Rn.
Their vector sum, Kγ + K2, is the convex body given by:

Kx + K2 = {x + y I x e Kx and yeK2} .

If C — Kx + K2y where C, Kιy and K2 are convex bodies, then Kx and
K2 are called summands of C. If λ > 0 then any translate of λC is
said to be homothetic to C

A convex body C is said to be written as a sum in a nontrίvίal
way if neither summand is homothetic to C nor a one-pointed set.
We remark that every convex body can be expressed trivially as a
sum, for, if C is a convex subset of Rn, xeR%, and λe(0,1), then

C = (x + λC) + (-x + (1 - λ)C) .

A convex body is said to be decomposable if it admits a summand
which is neither homothetic to it nor a one-pointed set; otherwise, the
set is called indecomposable. Thus a decomposable set is one that
can be expressed as a sum of two convex sets in a nontrivial way.
The results of this paper will be concerned with the decomposition
of convex bodies.

This paper contains a proof that the only indecomposable plane
convex bodies are triangles and line segments. This result was con-
jectured by Gale in 1954 [4], but a proof was never published, although
the partial result that the only indecomposable plane convex polygons
are triangles and line segments appears as an exercise in Yaglom and
Boltyanskii [9]. The author proved this result in 1964. Independently
of the author Meyer [7] proved this result in 1969.

1* Preliminary definitions and results* Consider the class Fn

of all functions / on Rn such that
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(1) / i s nonnegative; for every x in Rn,f(x) ^ 0
(2) / i s subadditive; for every x, y in Rn,f(x + y) ^ f{x) + f(y)
(3 ) / i s positively homogeneous; for every x in Rn, t ^ 0,/(ta) =

tf(x).
The set F" is a convex cone whose apex is the 0 function. If

/ , / , and /> are all members of F%, and / = / + /2, we will call fx a
summand of/. We will use the word homothetic to describe functions
in a manner analogous to its previous use for sets. If fe Fn, λ > 0,
and h is a linear function on Rn, then Ft = \f + h will be called
homothetic to /. A function / in Fn will be called irreducible if it
admits only homothetic and linear summands. Linear functions thus
play a role with respect to functions analogous to the role of one-
pointed sets with respect to sets.

Any feFn has the property that for some compact convex set
B in Rn, and all zeRn,f(z) == supz,eB (z, #'>• / is called the support
function of the set B. Let K be the unit ball of /, i.e., the set in
Rn defined by K = {x\f(x) ^ 1}. We define the polar of K to be
{z|supz,eir <2, z') ^ 1}. Clearly, if / is the support function of B, and
K is the unit ball of /, then B is the polar of K. If B is a compact
convex set in Rn, B has a translate Br with support function fB, e F Λ .

The set B' is homothetic to 5 exactly when the corresponding
support functions have the property that fB, is homothetic to fB. B
is indecomposable as a set exactly when / is irreducible as a function.
(See well-known material on polar bodies in, for example, Fenchel
[2].)

In this paper we will obtain results about decomposition of sets
by studying their support functions and making use of the preceding
remark, as well as, in some cases, by studying the sets directly.

The elementary result that a set K is polygonal exactly when P,
its polar, is polygonal, will be repeatedly used in the sequel.

2. Decomposition of general convex sets* In the special case
of functions on R2, the properties of support functions enable us to
reduce the problem in dimension by one; i.e., to study certain func-
tions on the real line.

Let L+ - {(t, 1)111 real)} and L_ - {(ί, -1)\t real} .

Suppose {φu φ2} is an (unordered) pair of real-valued functions on the
real line. We will call this pair admissible if there is a function /
in F2 with the property that f\L+ = φ2 and F\L__ = φ,. If fe F2 is
the support function of the set B, and {φl9 φ2} is the admissible pair
consisting of the restrictions to !•_, L+ of /, then {φί9 φ2} is called the
supporting admissible pair of B.
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We remark that the one-sided derivatives of a convex function
Ψi exist everywhere, and the two-sided derivatives exist everywhere
except on a countable set. Defining, where necessary, φ\{x) = <Pi+(x) =
D+<Pi(x) (right derivate), φ\ is defined everywhere and is nondecreasing
This definition of the "derivative" of a convex function will be used
throughout this paper without making explicit reference to the
convention as stated above.

The following characterization of admissible functions is the basis
for our results on decomposability.

THEOREM 1. The function pair {φl9 φ2) is admissible if and only
if it satisfies all three of the following conditions:

(1) ψi(t) is a nonnegative convex function of the real variable
t, i = 1, 2.

(4) There are nonnegative numbers m^ and mL such that raL =
sup φ\ and — m^x = inf φ\.

(5) There are nonnegative numbers a and β such that

lim [φλ(x) + φ2(x) — 2mxx] = a ,

and

lim [φ^x) + <p2(x) + 2m_1x] = β .

The proof of Theorem 1 depends on the following lemma, whose
proof will be referred to the appendix for clarity of the exposition.

LEMMA 1. The function pair φl9 φ2 is admissible if and only if
it satisfies the following three conditions:

(1) Ψi{t) is a nonnegative convex function of the real variable
ί, i = 1, 2.

(2) There are nonnegative numbers mx and m^ such that

^ίί?) = m i and lim
*--«» —

(3) For all nonzero tγ and t2, and i = 1,2.

<Pι(tι + t2) - <Pt(td ^ \t2\mάSn h ^ φ,(t + t2) + φά-tj) ,

where sgn t2 is defined to be 1 if t2 > 0, —1 if t2 < 0.

Proof of Theorem. We note that the numbers mι and m_x will
be shown equal to the similarly designated numbers in condition (2)
of Lemma 1. We prove first that if {φl9 φ2) satisfies (1), (4), and (5),
it is an admissible pair. It suffices to show that conditions (2) and
(3) of Lemma 1 are satisfied. Since φ\{x) is nondecreasing, if x > 0,
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Ψi{x)lx S Φi(O)/x + Φi(x) Let t ing x —> oo9 Π ϊ n ^ <Pi(x)/x ^ m x .

On the other hand, since lim^^ φ\{x) = mlf for any Λ > 0, there
exists C such that when x > C, then φj(aj) > m1 ~ h. Pick y > C.
Then for a? > 7/ > C, ^(a) ^ ^(7/) + (x - y)(mt - h). l i m ^ Φi(x)/x ^
Wi — h, for every Λ > 0. Therefore, lim^^ ψi{x)lx — mui = 1, 2. Thus
{φj satisfies (2).

For all ί1? ί2, ί2 ^ 0, - m ^ ^ 9^^ + ί2) - φ&ύlU ^ mx. Therefore,
{̂ 1, Ψ2} satisfies the left-hand inequality of (3) for t2 Φ 0, and trivially
for t2 — 0.

To show the pair {φly φ2} satisfies the right-hand inequality of
(3) is equivalent to showing that

F ( x , y) - φx{x) + φ2{y) - \ x + y \ m s g n ( x + y ) ^ 0

for all real x and y. Suppose, first, that x + y ^ 0. Then

F(x, y) =

Each of the two functions in brackets has a nonpositive derivative,
and therefore is a nonincreasing function.

If x ^ y, then

F(x, y) ^ [φ^x) - mλx\ + [φ2(x) - mλx] = ^i(«) +

] = α: ̂  0 .

Similarly, iί x + y <L 0, then F(&, 1/) ^ /S ̂  0. It follows that {φu φ2}
satisfies (3) and hence is an admissible pair.

To prove the converse, it suffices to show that admissibility of
{Φu Φ2} implies (4) and (5). Since {φly φ2] is admissible, by the left-
hand side of condition (3) of Lemma 1 for Ax > 0, every x, i = 1, 2,

<Pi(x + Ax) ^ {Δx)m1 + <Pi(x) ,

and

<Pi(x) ίg (Δx)m_λ + φt(x + Ax) ,

so

9?< is convex, and has a nondecreasing derivative almost everywhere,
therefore, whenever it exists, — m_: ^ 9>J(ί) ^ m lβ Since φ[(t) is
bounded from below and above, it has a gib and a lub. That these
are actually equal to — m_x and mx is seen easily; by convexity of <p,

z

so



DECOMPOSITION OF PLANE CONVEX SETS, PART I 525

^ lim φ\(t) ^ lim ?>J(ί) .
t-* oo t-*oo

Therefore, lim^^ φ\(t) actually equals mx. The proof is similar for the
greatest lower bound; so (5) is satisfied.

By the right-hand inequality of condition (3), letting y = x9

9i{%) + 9>i(a?) — 2 |^ |m ε g n 2 x ^ 0 for every x. If x > 0, G(a?) = 9>2(») +
φλ(x) — 2#m1 is a nonincreasing function, so lim^^ G(x) ~ oc exists
and is nonnegative.

Similarly, for x < 0, G(x) ~ φ^x) + ψx{x) + 2xm_x is a nondecreasing
function, so lima.__00 G(x) — β exists and is nonnegative.

We next prove a useful lemma.

LEMMA 2. A pair of nonnegative convex functions, differing from
a pair of admissible functions on at most a bounded interval, is itself
an admissible pair.

Proof. Suppose {φu φ2} an admissible pair, {σu σ2} a pair of non-
negative convex functions, such that σ^t) — <Pi(t) if t £ [α, δ] Condi-
tion (1) of Theorem 1 is satisfied by hypothesis. For any t > δ, a'^t) =
Φi(t) ^ m19 so by convexity of σif for any V < ί, σί(ί') ^ mx. So for all
t, σfi(t) ^ m lβ Similarly <7 (£) ^ — m_ie Therefore, condition (4) is
satisfied. Since condition (5) depends on limiting values only, it is
clearly satisfied. Therefore, by Theorem 1, {σl9 σ2} is an admissible pair.

We are now ready to prove the key theorem on admissible pairs.

THEOREM 2. An admissible function pair which is the restriction
to lines L_ and L+ of the support function of a nonpolygonal plane
convex set is the sum in a nontrivial manner of two other admissible
pairs.

For clarity of exposition, this proof is postponed to the appendix.
We can now characterize the indecomposable plane convex bodies.
We first state the well-know result (see, for example, Yaglom and

Boltyanskii, [9]; Problem 4-12):

THEOREM 3. Every convex polygon can be written as the sum of
triangles and lines segments. Triangles and line segments are inde-
composable.

We therefore have our characterization:
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THEOREM 4. The only indecomposable plane convex bodies are
triangles and line segments.

Proof. Immediate from Theorems 2 and 3.

APPENDIX 1

Proof of Lemma 1. We prove first that if {φu φ2] is admissible,
conditions (1), (2), and (3) are satisfied. Let / be a member of F2

such that f\L+ = φjt and f\L_ = φx.
(1) This is immediate from the nonnegativity and convexity

of/.
(2) / is continuous.

Therefore,

iim.ML = Km fh, S=pL] = /(l, o) a o.

Similarly,

/ ( l , 0 ) ^ 0
— t

Thus the numbers /(I, 0) and /( — I, 0) play the roles of mt and
respectively.

(3) For all nonzero ix and t2,

« ^ f[tl9 (-1)1 + /(ί2, 0) = q>t{td + \t2\msgn

and

\t2\msgnt2 = / ( ί a , 0)

This proves that all three conditions are satisfied when {φlf φ2} is
admissible.

To prove the converse, assume φλ on L_ and φ2 on L+ satisfy all
three of the above conditions. We extend the functions {φu <p2) to a
function / on R2, in the obvious fashion. If ax Φ 0, define Taι(t) =
Ψ2{t) if a, > 0, and Γβl(t) = ψ^-t) if αx < 0. Then, letting v be a
unit vector in the horizontal direction, and u a unit vector in the
vertical direction,

f(alU + a,v) = \ai\'Tj^).
\ai /

If ^ = 0, but α2 =̂  0,f(a2v) = |α 2 |m s g n α 2 . (Of course, /(0) is defined to
be 0.)

The function / is clearly nonnegative and positively homogeneous.
The proof that / is subadditive is quite long, and is achieved by
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considering subcases, according to whether the vectors x = aγu + oc2v,
V = βλu + A^J a n d their sum, x + y, in and v as above), fall on,
above, or below the v axis.

Case 1. All three vectors are multiples of v, i.e., ax — A = 0
Subadditivity is immediate if α2 and β2 are of the same sign. If not,
suppose mι >̂ m_γ. We need check only the case where a2 ^ 0, A = 0,
and a2 + A ^ 0. In this case |α2 + AI = \aΔ> s o

/(a? + 2/) = m, \a2 + AI ^ m i 1^ I + m-i IAI = /(«) + /(?/)

Case 2. Neither x nor y is a multiple of v, but their sum is, i.e.,

Without loss of generality, assume a2+ β2> 0 and aγ > 0. Then
f{x) - /32

By the right side of inequality (3), letting t2 = ia2 + A)M a n ( * tL =

fix

Case 3. One of the two vectors is a multiple of v; say ^ = 0
and A — 0. Without loss of generality, assume α:2 > 0, βι > 0. By
the left side of inequality (3),

a2

Case 4. All three vectors are on the same side of the line
through v; say ax > 0 and β1 > 0. Since 0 < aJi^ + /3X) < 1, by con-
vexity of φ2,

fix f(v)

Case 5. Finally, we consider the case where two vectors are on
one side of the line through v, the third on the other. Without loss
of generality, assume at < 0, A > 0, \at\ < β,. By the left side of
inequality (3), letting t, = (A/A) and t2 - ia2βx - a^J/fa + A)A

fix
IA

Then applying the right hand side of inequality (3), the right hand
side of the preceding is not greater than
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Proof of Theorem 2. We do not need the full strength of the
nonpolygonality; we need merely that φ[{x) or φ'2(x) assumes at least
four different positive values, or four different negative values. This
clearly is implied by the hypothesis. Without loss of generality, as-
sume φ[(χ) assumes at least four different positive values. Pick
xl9 x2, x3y and x4 such that

o < φ[{χd < φ[{χ2) < <p[(χz) < <p[(χύ ^ mi

Let σ^x) = l/2[<Pi(x) + y^x)], and ψ^x) = l/2[<Pi(x) - Vi(x)], where y^x)
will be defined so that σ^x) and ψi(x) are both admissible. Let y2(x) = 0
for every x. Let y[(x) — 0 if x < x1 or if x ^ x4. For xe [xlf #J, y[(x)
is defined as follows:

_ \
(a[φ[{x) - φ[(xd], if x, ^ x < x2

\a[φ[(x2) - φ'άxj)] - b[φ[(x) - <p[(x2)], if

k
, if x3

y[(t)dt. The numbers α, 6, and c, are se-

lected to satisfy conditions that Djy^x^ = 0, I y[(t)dt — 0, and y[(t)

neither increases nor decreases faster than φ[(t) increases.
As a result of these conditions, 0 < a ^ φ[(Xi)//mί ^ 1, 0 < b ^

φ[(xι)/mι ^ 1 and 0 < c ^ Ψι{x^\m1 ̂  1.
We now check that {OΊ, σ2} and {T/Γ!, ψ2} are admissible pairs.
Functions σ2 and ψ2 certainly satisfy the conditions of Lemma 2

For σγ and ψ1 we must check that the two functions are nonnegative
convex functions on [xl9 x4], and that σ[ — (x^ ^ σ[ + (^), ψ[ — (xt) ^
^ί + Oi), 9̂ 1 - (a?0 ̂  ^ί + (»*)» and ψ[ - (a?4) ̂  ^ί + (^) If ^ ^ α? < a?4,

_ xx)φ[{x) ^ ? ί ί ^ (α? - x

so, σ ̂ aj) and ψt{x) are nonnegative.
Since α, 5, and c are positive, σ[ is clearly nondecreasing on [xί9 x2] U

[α?3, X4] and α̂ J is nondecreasing on [x2, xz]. The inequalities 6 ^ 1 ,
a ^ 1, and c ^ 1 imply that σj, α/rj and ψ[ are nondecreasing on [x2, xz],
[xl9x2]f and [x3, x4] respectively.
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Since σ[ and ψ[ are nondecreasing on each interval [Xj,x3+1],j =
1, 2, 3, the functions σ1 and ψλ are convex on each of these intervals.
To prove the two functions are convex on the entire line, it suffices
to show that the left-hand derivative does not exceed the right-hand
derivative for each function at each of the four points xjy j = 1, 2, 3, 4.
By definition of y^x),

σ[ + (x2) -σ[- (x2) = 1/2(1 + a)[φ[ + (x2) - Ψ\ - (x2)] ^ 0 .

The rest follow similarly.
Therefore, by Lemma 2, {σί9 σ2} and {ψl9 ψ^ are admissible pairs.

It is clear that σx and ψλ are not multiples of φ19 so the decomposi-
tion is nontrivial.

APPENDIX 2

The results and methods preceding were also used to characterize
I(K) when K consists of all planar compact sets with a given sym-
metry property. As the results are all easily obtainable, they are
presented in summary only, without proofs. The interested reader
can communicate with the author for the proofs.

A support function will be called centrally symmetric if it is the
support function for a centrally symmetric compact convex set. A
centrally symmetric support function with nonpolygonal unit ball is
the sum in a nontrivial manner of two other centrally symmetric
support functions. Since every centrally symmetric plane convex
polygon can be written as the sum of line segments, we have:

THEOREM lA. Let K be the family of all centrally symmetric
compact convex sets in the plane. Then I(K) is exactly the family of
all line segments.

COROLLARY lA. A seminorm on R2 is extreme if and only if it
is the absolute value of a linear function on R2. Corollary 1A was
proved in a different manner by E. K. McLachlan.

Generalizing Theorem 1A, we have:

THEOREM 2A. Let K be the family of all planar compact convex
sets with n-fold rotational symmetry. Then I(K) is exactly the family
of all regular n-gons.

We also obtain:

THEOREM 3A. Let K be the family of planar compact convex sets
with an axis of symmetry parallel to the x axis. Then I{K) is exactly
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the family of all quadrilaterals with diagonals parallel to the x and
y axis (and degenerate forms of these quadrilaterals, i.e., horizontal
line segments, vertical line segments, and isosceles triangles with
vertical base).

We also obtain:

THEOREM 4A. Let K be the family of all planar compact convex
sets with two axes of symmetry, parallel to the x and y axes. Then
I(K) is exactly the set of all rhombi with diagonals parallel to the
x and y axes (and degenerate rhombi, i.e., horizontal and vertical line
segments).

The following corollary to Theorem 3A holds in Rh

COROLLARY 2A. Let K be the family of compact convex sets in
R3 with an axis of rotation. The K-indecomposable sets are exactly
double cones and degenerate double cones, which include single cones,
disks, and line segments.
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