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MAPPING SPACES AND CS-NETWORKS

J. A. GϋTHRIE

In this paper the space of maps from an ^0-space to a
space Y is studied by means of convergent sequence-networks.
The notion of a cs-σ-space, a simultaneous generalization of
metric spaces and ^o-spaces, is defined, and it is shown that
if Y is a (paracompact) cs-σ-space then the mapping space from
X to 7 is a (paracompact) cs-σ-space when equipped with
either the compact-open or the cs-open topology. It is proved
that the compact sets are the same in the two topologies.
The class of cs-σ-spaces and the class of yζ-spaces introduced
by O'Meara are shown to be identical in the presence of para-
compactness.

In this paper all maps are continuous and all spaces HausdorfL

1* CS-networks* We shall call a collection & of subsets of a
space X a k-network for X if whenever CaU, with C compact and
U open in X, there exist finitely many elements of 3? whose union
covers C and lies in U. This is a slight modification of what E.
Michael [2] called a pseudobase. We may define the )&Q-spaces of
Michael as regular spaces with a countable fc-network.

If X is a space with topology ^~ we shall denote by k(X) the
&-space obtained by retopologizing X so that a set is closed if its
intersection with every ^compact set is ^closed.

If {zl9z2, •••} is a sequence of points which converges to a point
zy then we call the set Z = {z,zuz2, •••} a convergent sequence and

denote by Zn the convergent sequence {z,zn,zn+u •••}.
A collection & of subsets of a space X is a convergent sequence-

network or, more conveniently, a cs-network for X if whenever
ZaUj with Z a convergent sequence and U open in X, then Znd
PaU for some n and some P e ^ . We call a collection & of
subsets of X a network for X if whenever x e U with U open in X,
then x e Pc U for some P e ^ .

The notion of cs-network was introduced in [1] where the following
theorem was proved.

THEOREM 1. For a topological space X the following are equivalent:
(1) X is an #0-space.
(2) X is a regular space with a countable cs-network.

We shall call a regular space with a σ-locally finite cs-network a
cs-σ-space. It is clear from Theorem 1 that every ^0-space is a cs-

465



466 J. A. GUTHRIE

, and from the Nagata-Smirnov Metrization Theorem that all
metric spaces are cs-σ-spaces.

2* Mapping spaces • We shall denote by ^ ( X , Y) the space of
all maps from X to Y with the compact-open topology, and by ^ ( X , Y)
the topology of pointwise convergence. The symbol ^CS(X, Y) will
denote the space of maps from X to Y with the convergent sequence-
open topology. This is the topology whose subbasic open sets are of
the form (Z, U) = {f\f: X-+Γand f(Z) a U) where Z is a convergent
sequence in X and U is open in Y.

The fact that many of the desirable properties of the compact-
open topology are also enjoyed by the cs-open topology was asserted
in [1]. Proofs may be found in [7] where 0. Wyler shows that a
category in which the cs-open topology appears naturally is convenient
(in the technical sense of Steenrod [6]) for algebraic topology.

The class of ^0-spaces appears to be especially suitable for the
study of mapping spaces. For example, at the time he introduced
^-spaces Michael [2] showed that if X and Y are ^-spaces, so is
^f(X, Y). It is also true in this case [1] that £f CS(X, Y) is an ̂ 0 -
space. These two results and an unsolved problem form the basis of
the present investigation. The problem, also stated by Michael [3],
asks whether X compact metric and Y a CΉF-complex implies that
^(X, Y) is paracompact. More generally one can ask what properties
added to the paracompactness of Y will insure the paracompactness
of <gf (X, Y).

LEMMA 1. If 3? is a collection of subsets of a space X, which
is closed under finite intersections, then & is a cs-network for X if
whenever ZaS, with Z a convergent sequence and S a subhasic open
set in X, then Zna Pa S for some n and some Pe &P.

Proof. Suppose ZaU with Z converging to z and U open in X.
Then there exists a basic open set B such that ze BaU. Now there
exist finitely many subbasic open sets Sl9 , Sk such that B — Sι Π
• Π Sk. Now ze Si for each ϊ, so there exist n(i) and P^e & such
that Znii) czPidSi for 1 < i < k. Now let Zn = Znω Π Π ZMk) and
P = P 1 Π n P t . Then Zn c Pa Bd [7 and & is a cs-network for X.

THEOREM 2. If X is an ^0-space and Y is a cs-σ-space, then
, Y) is a cs-σ-space.

Proof. By Theorem 11.4 (b) of [2] the ^0-space X is the image
of a separable metric space S under a compact-covering map. Thus
by Lemma 1 of [5] ^(X, Y) is homeomorphic to a subspace of
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Y). Since every subspace of a cs-cr-space is also a es-<j-space, it will
suffice to show that &(S, Y) is a cs-σ-space.

Let & — {P^ be a countable open base for S which is closed under
finite intersections, and let & = JJΓ=i &s be a σ-locally finite cs-
network for Y. Let [P,, &,] = {(P<, 22)|22e ^ , }, where (P, , 22) = {/e
^(S,Γ)|/(P 4)c22}, and let [^, ^ ] = U ^ I P ^ J .

We first show that [̂ * ^ ] is σ-locally finite. Clearly [^,
is the union of countably many [Pi9 &j]. To see that each [Pi9

is locally finite, let / e <έ?(S, Y) and x e Pt. Then f(x) e Y, and there
is a neighborhood V of /(#) which intersects at most finitely many
members of t ^ . Then (x, V) is a subbasic open neighborhood of /
which meets only those elements (Pi9 22) of [Pi9 &j] for which 22 inter-
sects V. It is the set of all finite intersections of elements of [&*, ^?],
which we will call [̂ * ^?]', which is a σ-locally finite cs-network for
&(S, Y).

By Lemma 1 we need consider only subbasic open sets in showing
that [^, &\ is a cs-network for ^ ( S , Γ). Let F = {/0, /x, /2, •}
be a sequence of maps converging to f0 in <^(S, F). Let (C, Z7) be
a subbasic open set containing 2̂ . Since F is compact, S is a fc-space,
and y is regular, we may conclude by Lemma 9.2 of [2] that F~\U) =
{a?eS|/ί(ίc)e 17 for some fiβF} is open in S. Clearly F~\U) DC.
Let ^ ' - { P e ^ l P c ί 7 - ^ ^ ) } . For every xeC, let ^(a;) = {Pe
&"\ x e P Π C}, and let ^ '(») - {P | P̂  - Uί=i Ph Pi e ^(a?)}. Also let
^?O) = { 2 2 G ^ | / 0 ( ^ ) 6 22C [/}. Clearly &(x) is countable.

There must exist integers N, i, and j such that F^ c (P , 225 ) c
(a;, U). To see this, suppose not. Then since for every N9 i, and j ,
xeP'i and RjCzU, we have (P , 225 ) c (a?, U). Therefore, it must be
true for every JV, i, and j that F^ ςί (Pr

i9 Rό). That is, there is some n >
i\Γ and some xi3- e P such that fn(Xij) £ R3 . We now extract a conver-
gent subsequence of F using these results.

Choose fn(1) such that fn{ι)(P[) ς£ Rγ. Then there is some n(2) >
n(l) such that /n(2)(P0 ζί 222. Similarly choose /Λ(3, such that n(S) >
n(2) and fnW(P'8) ςt Rl9 and / n ( 4 ) so that n(A) > ^(3) and fnW{P[) (£ 222.
Note that the P[ are being considered in order, but the Ro are being
considered so that their subscripts form the sequence 1, 2,1, 2, 3,1, 2,
3, 4,1, . That is, at any place in the sequence of Rj} we proceed
until we include the first R5 which had not been included before, and
then start over with 22lβ

Set f'i = fnH)9 and choose ^ e P J so that /*(#*) is not an ele-
ment of the 22,- which corresponds to fn[i) [μxiά P . Now {/•} is a
subsequence of F, and hence it must converge to /0. The collection
&*'(x) is a decreasing countable base for x in S. Thus {a?*} converges
to x.

Since convergence in the compact-open topology implies continuous
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convergence for sequences, {/{(#•)} converges to fo(x). Thus all but
finitely many elements of {/<(«*)} lie in U. Therefore, there exist an
integer N and an Rk e &(%) so that /{(»<) e i?& for all i^ N. But by
the construction of the sequences {/J and {xt} there is some m > N
such that f'm(xm) & Rk This contradiction means that there do exist
some N(x),i(x), and j(x) such that i*V(ίC) c (P'i{x), Rj{x)) c (α?, Z7). Now
{PJ(β) I a? G C) covers C; therefore, some finite number of the P'i{x) cover C,
say Pl(XQ), Pi(Xl)9 , P\{Xr). Take M - maxo^r{N(xt)}. Then ^ c f l U
(Pi(βί), J2i(βί>) c (C, 17), and ̂ ( S , F) has a tf-locally finite cs-network.
Since Y is regular, ^ ( S , F) is regular, and hence is a cs-σ-space.
Thus ^(X, F) is also a cs-σ-space.

Now note that we could have obtained the collection of sets which
forms the cs-network for ^ ( X , Y) in another way. Let / be the
compact-covering map such that f(S) = X. Then for every P e & and
.KG ^ , (P, R) (Ί £f (X, F) = (/(P), J?). Thus if we are interested in
actually exhibiting a σ-locally finite cs-network for ^{X, Y) we may
be assured one can be constructed from a countable fc-network & for
X and a σ-locally finite cs-network <% for F by forming [^, &\ as
above.

We now turn our attention to the cs-open topology. This topology
is compared to the compact-open topology in the following.

LEMMA 2. Let X be a space in which every compact set is sequen-
tially compact. Then ^{X, Y) and ̂ S (X, F) have the same convergent
sequences.

Proof. Clearly any sequence converging in the compact-open
topology converges in the coarser topology. Conversely, let {/»} be a
sequence converging to f0 in ^CS(X, F). We will show that every
subbasic open set in ^(X, Y) which contains f0 contains all but
finitely many fn. Let foe (C, U). Suppose there are infinitely many
fi(n) for which fi{n) £ (C, U). Then for every n there exists xneC such
that /<(»)(»») ί U. But C is sequentially compact, so {xn} has a convergent
subsequence Zcz C. Now f0 e (Z, U), but for infinitely many fn, fn(Z) ςt
U. Thus {/„} converges in <Sf (X, F).

THEOREM 3. // X is an ̂ 0-space and Y is a cs-σ-space, ^CS{X, Y)
is a cs-σ-space.

Proof. By Theorem 2 ^(X, Y) has a σ-locally finite cs-network
^. This same collection of sets forms a cs-network for ^CS{X, Y)
since ^(X, F) and ̂ S (X, F) have the same convergent sequences and
^ ( X , F) has at least as many open sets as ^CS(X, Y). The neigh-
borhoods used in Theorem 2 to show that the cs-network for ̂ ( S , F)
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was σ-locally finite were of the form (x, U). Thus the restrictions of
these open sets to the subspace ^(X, Y) will illustrate the σ-locally
finiteness of ^*. Sets of the form (x, U) are also open in ^CS(X, Γ").
Thus ^C8(X, Y) has a σ-locally finite cs-network, and since, by Pro-
position 1 of [1] ^CS(X, Y) is regular, ^CS{X, Y) is a cs-σ-space.

LEMMA 3. // X is separable and Y has each point a Gδ, then
, Y) has each point a Gδ.

Proof. Let {x{} be a countable dense subset of X and let / e
Y). For every i, let {Ui3) be a countable collection of open

sets whose intersection is /(#<). Define Vi3 = (xi9 Ui3). Clearly fe
ΓiZj=ιVij. Conversely, suppose g Φ f. Then there is some xk such
that f(xk) Φ g{xk) and some Vkj such that g(xk) £ Vkj. Thus g $ ΠΓ/=i
Vij and / is a Gδ.

THEOREM 4. If X is a separable space in which every compact
set is sequentially compact and Y has each point a Gδ, then ^(X, Y)
and ^ S (X, Y) have the same compact sets.

Proof. ^{X, Y) and k(^(X, Y)) have the same compact subsets.
Also ^CS(X, Y) has the same compact subsets as k{^C8{X, Y)). Now
points are Gδ-sets in ^(X, Y) and &C8(X, Y) and hence points are
Gδ's in the associated ft-spaees. But a &-space in which every point
is a Gδ is a sequential space [4]. Thus k($f(X, Y)) and k(<g>e8(X, Y))
are each sequential spaces, obtained by expanding the topologies of
spaces which had the same convergent sequences. Thus k(^(X9 Y))
and k(^cs(X, Y)) are homeomorphic under the identity map, and there-
fore have the same compact subsets. The conclusion of the theorem
now follows.

COROLLARY. If X is an )£0-space and Y is a cs-σ-space, then
X, Y) and ^CS(X, Y) have the same compact sets.

Another simultaneous generalization of ^-spaces and metric spaces
has been introduced by P. O'Meara [5]. He calls a regular space an
^-space if it has a σ-locally finite it-network. Because of Theorem 1
it may be expected that there be some relation between cs-σ-spaces
and ^-spaces. That this is, in fact, the case is established in the
following two theorems.

THEOREM 5. Every cs-σ-space is an ^-space.

Proof. A straightforward adaptation of the relevant part of the
proof of Theorem 1 in [1] suffices.
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THEOREM 6. In a paracompact space X the following are equi-
valent:

(1) X is a cs-σ-space.
( 2) X is an ^-space.

Proof. In light of Theorem 5 we need to show only that (2)
implies (1). Let & — JJΓ=i &i be a ^-locally finite /b-network for X
such that ^ c ^ + 1 and each Pe^ is closed. For every natural
number i and every xeX, let Vix = X\JJ {Pe ̂ \x g P). Set 5^ =
{FίJίce X}. Then 5^ is an open cover of X for every i, and hence it
has a precise locally finite open refinement ^ = {Gix \ x e X} with
GixaVix for every a?. Now for every P e ^ such that xeP, define
Pί:c = P Π Gix. For a fixed i and # there are at most finitely many
Pix. Denote the finite unions of these Pix by RixU " ,Rixk.

Now the collection ^ = {Rixn\xe X, 1 < n < oo} is locally finite.
For if y e X there exists an open neighborhood N{y) which intersects
at most finitely many Gix e g^. But each Gix intersects only those
finitely many Rixn which it contains, and hence N(y) intersects at most
finitely many Rixn for each ί.

It remains to be shown that & — (JΓ=i ̂  is a cs-network for X.
Suppose Z is a sequence converging to z and U is an open set such
that ZaU. Then since Z is compact there exists a natural number
j and finitely many Pe ^jy say Pjl9 , Pjm, such that Z c UΓ=i Pa c
Z7. We may assume that ^ e P^ for 1 < i < m.

Since ^ is an open cover of X there is some Gjx e S?3 such that
z e Gjx. Each Pάi must contain α;, for if x ί PH then z $ VJXZD Gjx. Thus
UJLi (Pϋ ίΊ GjX) G ̂  . But G, x Π U is an open neighborhood of z and
hence there exists an r such that ZraGjx Π £7. Therefore, Z r c (J£i (-P/< Π
G^) c 27, and & is a cs-network for X.

The following lemma and theorem were obtained by O'Meara [5].

LEMMA 4. Let X be a regular space with a a-locally finite network
^ = U?=i - ^ Suppose for every n there is a locally finite family
of neighborhoods {Vn(x)\xe X) such that Cl(Vn{x)) meets only finitely
many Te^~n. Then X is paracompact.

THEOREM 7. If X is an #Q-space and Y is a paracompact
then ^{X, Y) is a paracompact ^-space.

We have a similar result if the mapping space is equipped with
the cs-open topology.

THEOREM 8. Let X be an #Q-space and let Y be a paracompact
cs-σ-space. Then ^CS(X, Y) is a paracompact cs-σ-space.
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Proof. Let & — {PJ be a countable fc-network for X, and let
& = (jΓ=i &t be a σ-locally finite cs-network for Y. Let [Pi9 ̂ ] =
{(Pi, i ? ) | i 2 e ^ } , and let [&,£&] = \Jΐ.i=ΛP*f<&i]- % Theorem 3
and the remarks at the end of the proof of Theorem 2, it may be seen
that the set of all finite intersections of [&*9 &] forms a σ-locally
finite cs-network for ^ S (X, Y). We now show that Lemma 4 may
be applied to this family.

For every fe ^CS(X, Y), choose xePt and let Vi3 (f) be an open
neighborhood of f(x) which intersects at most finitely many R e ^ .
Consider the open cover {Vij{f)\fe ^ S (X, Y)} of Y. By the paracom-
pactness of Y there exists a locally finite open refinement W^j =
{WMI / € ίTC5(X, Y)} such that WiS(f) c Cl (Wiό(f)) c ViS(f) for every
/ . Then Cl (x, Wu{f)) c (a?, Cl (TFίy(/))) which intersects at most finitely
many (Pif R) e [Pi9 Rj\. Thus Cl (a?, Wa(f)) meets at most finitely many
of the finite intersections of [Pί? ^ ] and by Lemma 4, ^CS(X, Y) is
paracompact

It can be seen from Example 1 of [1] that despite Theorem 4 the
spaces ^{X, Y) and ^CS(X, Y) considered in Theorems 2, 3, 7, and 8
need not be homeomorphic even in the special case where both X and
Y are separable metric spaces.
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