GEOMETRIC PROPERTIES OF SOBOLEV MAPPINGS

RONALD GARIEPY

If f is a mapping from an open k-cube in \mathbb{R}^k into \mathbb{R}^n , $2 \leq k \leq n$, whose coordinate functions belong to appropriate Sobolev spaces, then the area of f is the integral with respect to k dimensional Hausdorff measure over \mathbb{R}^n of a nonnegative integer valued multiplicity function.

1. Introduction. If $f: Q \to R^n$, Q an open k-cube in R^k , $2 \leq k \leq n$, is a mapping whose coordinate functions belong to appropriate Sobolev classes, it was shown in [6] that f is k-1 continuous and that the area of f, as defined in [5], is equal to the classical Jacobian integral. The purpose of this paper is to investigate, using the theory of currents as in [2], the geometric-measure theoretic properties of such a surface and to show that the area is equal to the integral with respect to k dimensional Hausdorff measure in R^n of an integer valued multiplicity function.

2. Suppose k and n are integers with $2 \leq k \leq n$. Let

$$Q = R^k \cap \{x: \ 0 < x_i < 1 \ ext{for} \ 1 \leq i \leq k\}$$

and let $\Lambda(k, n)$ denote the set of all k-tuples $\lambda = (\lambda_1, \dots, \lambda_k)$ of integers such that $1 \leq \lambda_1 < \dots < \lambda_k \leq n$. Suppose $f: Q \to R^n$, $f = (f^1, \dots, f^n)$, $f^i \in W_{p_i}^1(Q)$, $p_i > k - 1$, and $\sum_{j=1}^k 1/p_{\lambda_j} \leq 1$ whenever $\lambda \in \Lambda(k, n)$. Here $W_p^1(Q)$ denotes those functions in $L^p(Q)$ whose distribution partial derivatives are functions in $L^p(Q)$.

Let e_1, \dots, e_n be the usual basis for \mathbb{R}^n and let

$$e_{\scriptscriptstyle\lambda} = e_{\scriptscriptstyle\lambda_1} \wedge \cdots \wedge e_{\scriptscriptstyle\lambda_k}$$
 ,

 $\lambda \in \Lambda(k, n)$, denote the corresponding basis for the space of k-vectors in \mathbb{R}^n . For $\lambda \in \Lambda(k, n)$ let p^{λ} denote the orthogonal projection of \mathbb{R}^n onto \mathbb{R}^k defined by letting

$$p^{\lambda}(y) = (y_{\lambda_1}, \dots, y_{\lambda_k})$$
 for $y = (y_1, \dots, y_n) \in \mathbb{R}^n$.

For almost every (in the sense of k dimensional Lebesgue measure \mathscr{L}_k) $x \in Q$, let $Jf(x) = \sum_{\lambda \in A(k,m)} Jf^{\lambda}(x)e_{\lambda}$ where Jf^{λ} denotes the determinant of the matrix of distribution partial derivatives of $f^{\lambda} = p^{\lambda} \circ f$. In [6] it was shown that the area of f, as defined in [5] is equal to $\int_Q |Jf(x)| dx$ where |Jf(x)| is the Euclidean norm of the k-vector Jf(x).

RONALD GARIEPY

Define a current valued measure T over Q by letting

$$T(B)(\phi) = \int_{B} \phi(f(x)) \cdot Jf(x) dx$$

whenever B is an \mathscr{L}_k measurable subset of Q and ϕ is an infinitely differentiable k-form on \mathbb{R}^n with compact support. Let σ denote the finite measure defined over \mathbb{R}^n by letting

$$\sigma(Y) = \int_{f^{-1}(Y)} |Jf(x)| dx$$

whenever Y is a Borel subset of R^n .

It will be shown in part 3 that T(B) is a locally rectifiable current whenever B is an \mathscr{L}_k measurable subset of Q and this fact will be used to define a nonnegative integer valued function N on \mathbb{R}^n which describes the multiplicity with which f assumes its values. The main results of the paper are summarized here.

THEOREM. Let H_n^k denote k dimensional Hausdorff measure in R^n and let $\alpha(k)$ denote the \mathscr{L}_k measure of the unit ball in R^k . 1. For H_n^k almost every $y \in R^n$

$$N(y) = \lim_{r o 0^+} rac{\sigma(B(y, r))}{lpha(k)r^k} \; .$$

Here B(y, r) denotes the open ball of radius r around y.

2.
$$\int_{\mathbb{R}^n} N(y) \ dH_n^k y = \int_Q |Jf(x)| \ dx \ .$$

3. There exists a countable family F of k dimensional C^1 submanifolds of R^n such that for σ almost every $y \in R^n$ there is an $M \in F$ with $y \in M$,

$$\lim_{r\to 0+}\frac{\sigma(B(y,r)-M)}{\alpha(k)r^k}=0$$

and

$$\lim_{r
ightarrow 0+}rac{\sigma(B(y,\,r)\,\cap\,M)}{lpha(k)r^k}=\,N(y)$$
 .

3. Definition of the function N and proof of the theorem. We follow a plan analogous to that of [2: 2.1]. For $1 \leq i \leq k$ and $r \in I = \{s: 0 < s < 1\}$ let $P_i(r) = Q \cap \{x: x_i = r\}$. Let $\{f_i\}$ be a sequence of mollifiers of f as in [6] and let \overline{f} denote the pointwise limit of $\{f_i\}$ wherever it exists. Then \overline{f} is a representative of f and according to [6], [7: Chap. 3], and [8: part 3] there exists a collection

428

P of the sets $P_i(r)$ such that for each *i*, $P_i(r) \in P$ for almost all (in the sense of 1 dimensional Lebesgue measure) $r \in I$ and if *q* is any *k*-cube in *Q* whose k - 1 faces all lie in elements of *P* then

(1) $f_j | \text{Bdry } q$ converges uniformly to $\overline{f} | \text{Bdry } q$,

(2) $H_n^k \left(\overline{f} \left(\text{Bdry } q \right) \right) = 0$

(3) $L_{k-1}(f | \operatorname{Bdry} q) = \lim_{j \to \infty} L_{k-1}(f_j | \operatorname{Bdry} q)$, where L_{k-1} denotes k-1 dimensional Lebesgue area.

Henceforth we will denote by f the pointwise limit of mollifiers $\{f_j\}$ as described above. A k-cube $q \subset Q$ whose k-1 faces all lie in elements of P will be called "special".

For the notation concerning currents we refer to [3].

LEMMA 1. If f is bounded then T(B) is a rectifiable current whenever B is an \mathscr{L}_k measurable subset of Q.

Proof. If $q \subset Q$ is a special k-cube then

$$\lim_{j\to\infty}\int_q|Jf_j(x)-Jf(x)|\,dx=0$$

and hence the sequence $\{f_{j\sharp}(q)\}\$ of currents converges weakly to T(q). The supports of the $f_{j\sharp}(q)$ and T(q) are all contained in a fixed compact set,

$$M(f_{j\sharp}(q)) \leq \int_{q} |Jf_{j}(x)| \, dx$$
 ,

and

$$M(\partial f_{j\sharp}(q)) \leq L_{k-1} \left(f_j \,|\, \mathrm{Bdry} \, q
ight)$$

where M denotes mass in the space of currents. Thus, by [4: 8.14, 8.13], T(q) is an integral current whenever q is special.

Since it is clear that

$$M(T(A)) \leq \int_{A} |Jf(x)| dx$$

whenever A is an \mathscr{L}_k measurable subset of Q, the lemma follows.

Let ||T|| denote the finite measure over Q defined by letting ||T|| (A) denote the supremum of the numbers $\sum_{j=1}^{\infty} M(T(B_j))$ taken over all countable disjoint collections of \mathscr{L}_k measurable subsets $B_j \subset A$ whenever A is an \mathscr{L}_k measurable subset of Q. Clearly

$$||T||(A) \leq \int_{A} |Jf(x)| dx$$

whenever A is an \mathscr{L}_k measurable subset of Q.

For \mathscr{L}_k almost every $x \in Q$ there is a k-covector ω in \mathbb{R}^n with

 $|\omega| = 1$ such that $\omega \cdot Jf(x) = |Jf(x)|$ and

$$\overline{\lim_{r o 0+}} \, rac{||\,T||\,(B(x,\,r))}{lpha(k)r^k} \geq \lim_{r o 0+} rac{T(B(x,\,r))(\omega)}{lpha(k)r^k} = |\,Jf(x)\,|$$
 .

It follows that $||T||(A) = \int_{A} |Jf(x)| dx$ whenever A is an \mathscr{L}_{k} measurable subset of Q.

For each positive integer N let $f_N = (f_N^1, \dots, f_N^n)$ where

$$f^i_{\scriptscriptstyle N}(x) = egin{cases} N & ext{if} \;\; f^i(x) \geqq N \ f^i(x) & ext{if} \;\; |\; f^i(x) \;| < N \ -N & ext{if} \;\; |\; f^i(x) \leqq -N \;. \end{cases}$$

Then f_N is bounded and $f_N^i \in W_{p_i}^1(Q)$ for $1 \leq i \leq n$. For any measurable set $B \subset Q$ let

$$T_{\scriptscriptstyle N}(B)(\phi) = \int_{\scriptscriptstyle B} \phi(f_{\scriptscriptstyle N}(x)) \, \cdot \, Jf_{\scriptscriptstyle N}(x) dx$$

whenever ϕ is an infinitely differentiable k-form on \mathbb{R}^n . Note that, if Y is a bounded Borel set in \mathbb{R}^n , then, for sufficiently large N, $T_N(B) \sqcup Y = T(B) \sqcup Y$ whenever B is an \mathscr{L}_k measurable subset of Q. Consequently, if Y is a bounded open subset of \mathbb{R}^n then $T(B) \sqcup Y$ is rectifiable whenever B is a measurable subset of Q.

Analogous to [2: 2.1 part 3] we have

LEMMA 2. There exists a countable collection F of k dimensional C^1 submanifolds of R^n such that $\sigma(R^n - \bigcup F) = 0$.

Proof. Suppose r and ε are positive real numbers and let

$$B(0, r) = R^n \cap \{y: |y| < r\}$$
 .

Let $\{A_1, \dots, A_m\}$ denote a finite collection of disjoint measurable subsets of $f^{-1}(B(0, r))$ such that \mathscr{L}_k $(f^{-1}(B(0, r)) - \bigcup_{j=1}^m A_j) = 0$ and $\sigma(B(0, r)) - \varepsilon < \sum_{j=1}^m M(T(A_j))$. Note that $T(A_j) = T(A_j) \sqcup B(0, r)$ is rectifiable for $j = 1, \dots, m$. Thus, by [4:8.16], there exists for each j a countable collection G_j of k-dimensional C^1 submanifolds of \mathbb{R}^n such that $|| T(A_j) || (\mathbb{R}^n - \bigcup G_j) = 0$. Letting $G = \bigcup_{j=1}^m G_j$, we have

$$\begin{split} \varepsilon &\geq \sigma \left(B(0, r) \right) - \sum_{j=1}^{m} M(T(A_{j})) = \sum_{j=1}^{m} \left(|| \ T || \ (A_{j}) - M(T(A_{j})) \right) \\ &\geq \sum_{j=1}^{m} || \ T || \ (A_{j} \cap f^{-1} \ (R^{n} - \bigcup G_{j})) \\ &\geq \sum_{j=1}^{m} || \ T || \ (A_{j} \cap f^{-1} \ (R^{n} - \bigcup G)) = \sigma(B(0, r) - \bigcup G) \end{split}$$

430

and the lemma follows.

If μ is a measure over R^n , $y \in R^n$, and $A \subset R^n$ we let

$$heta^k(\mu,\,A,\,y) = \lim_{r o 0+} rac{\mu(A \cap B(y,\,r))}{lpha(k)r^k}$$

whenever the limit exists. In case $A = R^n$ we write $\theta^k(\mu, y)$.

Recall that, if S is a k dimensional rectifiable current in \mathbb{R}^n and Y is a Borel set in \mathbb{R}^n with $H_n^k(Y) = 0$, the $S \sqcup Y = 0$. Thus σ is absolutely continuous with respect to H_n^k . This fact together with Lemma 2 and the finiteness of σ allow us to conclude using [1: 3.1, 3.2] that:

1. $\theta^k(\sigma, y)$ exists for H_n^k almost every $y \in \mathbb{R}^n$.

2. For σ almost every $y \in R^n$ there exists an $M \in F$ such that $y \in M$, $\theta^k(\sigma, y) < \infty$, and $\theta^k(\sigma, R^n - M, y) = 0$.

3. $\int_{\mathbb{R}^n} \theta^k(\sigma, y) dH_n^k y \leq \sigma(R^n).$

A proof of the following statement concerning rectifiable currents can be found in [2: 2.1 part 7]: If S is a rectifiable k dimensional current in \mathbb{R}^n , M is a k dimensional \mathbb{C}^1 submanifold of \mathbb{R}^n ,

$$y\in M-\operatorname{spt}\partial S$$
 ,

 $\theta^k(||S||, y) < \infty$, $\theta^k(||S||, R^n - M, y) = 0$, and P is an oriented k plane tangent to M at y, then there exists a unique integer m such that

$$\lim_{r\to 0^+}\frac{1}{\alpha(k)r^k}F\left[S \, \lfloor \, B(y,\,r) \, - \, m(P \cap B\left(y,\,r\right))\right] = 0$$

where F denotes the flat norm [4: 3.2].

Now suppose q is a special k-cube in Q and $y \in \mathbb{R}^n$. If there is an $M \in F$ with $y \in M - f(Bdry q)$, $\theta^k(\sigma, y) < \infty$, and

$$\theta^k(\sigma, R^n - M, y) = 0,$$

let P denote an oriented k-plane tangent to M at y, let m(q, y) denote the integer such that

$$\lim_{r \to 0^+} \frac{1}{\alpha(k)r^k} F\left[T(q) \, \lfloor \, B(y, \, r) \, - \, m(q, \, y) \left(P \cap \, B(y, \, r)\right)\right] = 0$$

and set $\alpha(q, y) = m(q, y) \zeta(y)$ where $\zeta(y)$ is the simple unit k-vector orienting P. Otherwise set $\alpha(q, y) = 0$.

Then, for H_n^k almost every $y \in \mathbb{R}^n$,

$$heta^k(T(q) igsqcup \phi, y) = \lim_{r o 0} rac{[T(q) igsqcup B(y, r)](\phi)}{lpha(k)r^k} = \phi(y) \cdot lpha(q, y)$$

whenever ϕ is an infinitely differentiable k-form in \mathbb{R}^n . Consequently $T(q)(\phi) = \int_{\mathbb{R}^n} \phi(y) \cdot \alpha(q, y) dH_n^k y$ whenever ϕ is an infinitely differentiable k-form and hence

$$M(T(q)) \leq \int_{\mathbb{R}^n} |lpha(q, y)| \, dH_n^k y$$

whenever q is a special k-cube.

For $y \in \mathbb{R}^n$ let N(y) denote the supremum of the numbers $\sum_{q \in G} |\alpha(q, y)|$ taken over all finite collections G of nonoverlapping special k-cubes in Q.

Suppose $N(y) \neq 0$ and G is a finite collection of nonoverlapping special k-cubes such that $\alpha(q, y) \neq 0$ for $q \in G$. Let ω denote a k-covector with $|\omega| = 1$ and $\omega \cdot \zeta(y) = 1$. Then

$$egin{array}{ll} \sum\limits_{q \in G} \mid lpha(q, y) \mid &= \sum\limits_{q \in G} \mid heta^k(T(q) igstarrow oldsymbol{\omega}, y) \mid \ &= \lim\limits_{r o 0} \;\; \sum\limits_{q \in G} rac{\mid [T(q) igstarrow B(y, r)](oldsymbol{\omega}) \mid \ &lpha(k) r^k \ &\leq heta^k(\sigma, y) \;. \end{array}$$

Thus $N(y) \leq \theta^k(\sigma, y)$ for H_n^k almost every $y \in \mathbb{R}^n$.

On the other hand, if G is any finite collection of nonoverlapping special k-cubes,

$$\sum_{q \in G} M(T(q)) \leq \int_{\mathbb{R}^n} \sum_{q \in G} |\alpha(q, y)| dH_n^k y.$$

The supremum of the numbers $\sum_{q \in G} M(T(q))$ taken over all finite collections G of nonoverlapping special k-cubes is readily seen to be $\sigma(R^n)$ and hence

$$\sigma(R^n) \leq \int_{R^n} N(y) dH_n^k y \leq \int_{R^n} \theta^k(\sigma, y) dH_n^k y \leq \sigma(R^n)$$
.

Thus $N(y) = \theta^k(\sigma, y) H_n^k$ almost everywhere and

$$\int_{\mathbb{R}^n} N(y) \, dH_n^k y = \int_Q |Jf(x)| \, dx \, .$$

References

1. H. Federer, The (ϕ, k) rectifiable subsets of n space, Trans. Amer. Math. Soc., 62 (1947), 441-466.

2. ____, Currents and area, Trans. Amer. Math. Soc., 98 (1961), 204-233.

3. ____, Geometric Measure Theory, Springer-Verlag, New York, 1969.

4. H. Federer and W. Fleming, Normal and integral currents, Ann. of Math., 72 (1960), 458-520.

5. C. Goffman and F. C. Liu, *Discontinuous mappings and surface area*, Proc. London Math. Soc., **20** (1970), 237-248.

6. C. Goffman and W. P. Ziemer, *Higher dimensional mappings for which the area formula holds*, Ann. of Math., **92** (1970), 482-488.

7. C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.

8. Y. G. Reshetnyak, Space mappings with bounded distortion, Siberian Math. J., ${\bf 8}$ (1967), 446-487.

Received March 7, 1972.

UNIVERSITY OF KENTUCKY