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THE LATTICE OF CLOSED IDEALS AND a*-EXTENSIONS
OF AN ABELIAN /-GROUP

ROGER BLEIER AND PAuL CONRAD

An [-ideal A of an l-group G is closed if x€ A whenever
2=V a;,0<La;€A. The intersection of any collection of
closed [-ideals of G is again a closed l-ideal of G. Hence the
set 277 (G) of all closed [l-ideals of G is a complete lattice
under inclusion. In the present paper this lattice is studied,
as well as l-group extensions which preserve it. A common
generalization of the essential closure of an archimedean I[-
group and the Hahn closure of a totally-ordered abelian group
is obtained.

Unless otherwise specified all l-groups will be assumed abelian.
Set-theoretic union and intersection will be written U and N, respec-
tively. The lattice of all l-ideals of an Il-group G will be denoted
Z(G); the join operation in &2 (G) will be written \/ (to be differen-
tiated by context from the l-group operation). The join operation in
(@) will be written |J. A subset D of a partially ordered set S
will be called a dual ideal if € D whenever x > y for some ye D.

G(g) will denote the smallest I-ideal of G containing geG. A
will denote the smallest closed l-ideal of G containing A e &£ (G). We
have A" = {Va;|0 < a;e A}). ([5], Lemma 3.2).

Ae & (G) is a regular subgroup of G if it is maximal in Z(G)
without some g€ G; in this case A is also called a value of g. If A
is the only value of some ge G, then A is a special subgroup of G.
Each special subgroup of G is closed. ([4], Prop. 4.1). Ifeach ge G
has only finitely many values, then G is finite-valued. An [-ideal of
G is prime if it is the intersection of a chain of regular subgroups
of G. An l-ideal of G which contains a closed prime subgroup of G
is itself a closed prime subgroup. ([5], Lemma 3.3).

We conclude the introduction by reviewing the important results
in [10]. Let 4 be a root system (i.e., 4 is a partially ordered set
and no two noncomparable elements of 4 have a lower bound in 4).
Let V(4, R) denote the group of all real-valued functions on 4 whose
support satisfies the ACC. e d is a maximal component of ve V(4,
R) if A belongs to the support of v but no element of 4 exceeding )
belongs to the support of v. Define v > 0 if and only if v(\) > 0 for
each maximal component A of w. Then V(4, R) is an l-group. If
ned, then V, = {ve V(4, R) | v(a) = 0 for all @ > \} is a closed regular
subgroup of V(4, R); moreover, these are the only closed regular
subgroups of V{4, R).
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The set of all regular subgroups of an I-group G forms a root
system, to be denoted by I'(G). A subset 4 of I'(G) is plenary if 4
is a dual ideal in I(G) and N 4 = 0. It will sometimes be convenient
to identify 4 notationally with {G,, 6 € 4}; here the G, denote the
regular subgroups of G belonging to 4. If 4 is a plenary subset of
I'(@), then there exists a v-isomorphism ¢: G —-V(4, R) (i.e., 0 is an
l-isomorphism, and go has a maximal compenent at de 4 if and only
if 0 is a value of ge G).

Throughout this paper G and H will denote I-groups.

1. Lattice properties of Z£(G).

THEOREM 1.1. Z°(G) is complete Brouwerian lattice. If (K.} S
(G, then UK. = VK, and (UK)" = {Vz;]0< 2;€ U K,}.

Proof. We have noted that 27°(G) is a complete lattice. Since
U K, is an l-ideal it contains VK, and hence U K, = VK,. Let
ve(VEK,)*. Then x = Va; where 0 < x;€ VK, Each g; is the join
in G of (finitely many) positive elements of U K,. ([9], p. 519). Hence
@ is the join in G of positive elements of |J K,. Thus (VK.)*® &
{(Vx;]0 < w;€ U K,}. The converse containment is trivial.

Let Ke 27 (®) and {K,} & 2°(G). To show .2 (@) is Brouwerian
is to show KN (U K.)=U (KN K,). Clearly KN (UK.,)2U (K N K,).
Let 0= 2e KN (U K,). Write x = Vz; where 0 < x,¢ U K,. Since
0 <& =<2 and K is convex, ;€ K; thus #;¢ U (KN K,). Hencezely
(KN K,).

ExamMpLE. An [l-group for which 9%7(G) is not a sublattice of
Z(G). Let G be the l-group of all eventually constant sequences.
Let S, (resp. S.) be the set of sequences in G whose odd (resp. even)
entries are zero. Then S, S,e 22(G) but S, VvV S, is the set of even-
tually zero sequences and is not closed in G.

Let L be a complete Brouwerian lattice. For xe L let &’ denote
the largest element of L such that x A 2’ = 0. The collection P(L) =
{'|xe L} is a Boolean algebra (under the induced order). ([2], p. 130).
In particular, if x€ P(L) then x = (¢'). Hence L = P(L) if and only
if L is a Boolean algebra.

(@) is a complete Brouwerian lattice. If Ce &(G), then Ce
P(¥(G))ifandonly if C={ge G||g|A|a|=0forallae C}. Thus Ce
22°(G) whenever Ce P((G)). It follows that P( 277 (G)) = P(F(Q)).

THEOREM 1.2. (Bigard, [1], Thm. 5.6). G is archimedean if and
only if 22°(G) = P(F(G)).

COROLLARY 1.3. G 1is archimedean if and only if 57 (G) is a
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Boolean algebra.

REMARK. Whether or not G is archimedean is also determined
by £(G). This follows from the following observations. G is archi-
medean if and only if each principal l-ideal G(g) of G is archimedean.
The principal l-ideals of G are the compact elements of <~(G). (An
element z of a lattice L is compact if <<V {&.|ac A} for z,eL
implies & = V {z.|ac F} for some finite subset F of A.) An l-group
with a strong unit is archimedean if and only if the intersection of
its maximal l-ideals is 0 [14]. The maximal l-ideals of G(g) are just
those elements of &2(G) which are maximal with respect to being
properly contained in G(g).

DEFINITION. Let L be a lattice. An element xze L is called

(1) meet-irreducible if » = Awx, implies & = x, for some a.

(2) finite meet-irreducible if © = AZ.2x; (n finite) implies x = x;
for some 1.

The meet-irreducible elements of &#(G) are the regular subgroups
of G; the finite meet-irreducible elements of &°(G) are the prime
subgroups of G. ([9], pp. 1.18, 1.14.)

PRrRoOPOSITION 1.4. Let Ke 27 (GR). K s (finite) meet-irreducible in
7(G) if and only if K is (finite) meet-irreducible in £ (G). In parti-
cular, the closed regular subgroups of G are distinguishable in 227(G).

Proof. Suppose K = AN B, where A, Be ¥ (G), and that K is
finite meet-irreducible in .22 (G). Let e AN B. Write z = Va;, 0 <
a;€ A, and 2 = Vb;,0<< b,e B. Then = Va; A Vb, = V,;(a; A Db,
is the join of elements of AN B, and thus xe AN B. Hence K= A
or K = B, and therefore K = A or K = B.

Now suppose K is meet-irreducible in .2°(G). Then, in particular,
K is finite meet-irreducible in (@) by the previous paragraph. K is
thus a closed prime subgroup of G. Hence the members of <7 (G) that
contain K all belong to 2#°(G). Thus K is meet-irreducible in (G).

The converse implications are trivial.

We note that all the preceding arguments in this section, except
in the remark following Corollary 1.3, apply equally well to non-
abelian [-groups with 22(G)(27(G)) replaced by the lattice of all
(closed) convex [-subgroups of G.

PROPOSITION 1.5. The following are equivalent:
(1) =Z(G) = A (@.

(2) I'(G) has no proper plenary subset.

(3) Fach member of I'(G) is closed.
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Proof. An l-ideal A of G belongs to each plenary subset of I"(G)
if and only if A is a closed regular subgroup of G. ([10], Thm. 5.2,
[5], Cor. 8.12, and [4], Prop. 4.1). Thus (2) and (3) are equivalent.
(1) implies (8) since I'(G) & ¥ (G). (3) implies (1) since each member
of (@) is an intersection of members of 77(G).

It is shown in ([9], p. 2.44) that G is finite-valued if and only if
the elements of I"(G) are special subgroups of G. Since each special
subgroup is closed, these conditions imply the conditions of Proposition
1.5. That the converse fails is shown in the following example.

ExaMpPLE. Let X be an infinite compact Hausdorff space with a
base of closed open subsets. Let S(X) be the set of all continuous
real-valued functions on X having finite range. The maximal ideals
of S(X) are of the form M, = {f € S(X)| f(x) = 0}; there are infinitely
many of these. Since S(X) is hyper-archimedean ([9], p. 2.17) these
are the only prime ideals of S(X).

Now, let 4 = {(z,n)|xe X and » = 1, 2}. Define (x, 1) < (=, 2) for
all xe X, and let these be the only strict inequalities holding in 4.
Let G be the l-subgroup of V{4, R) consisting of those functions f: 4—
R such that f has finite range, f(x,1) = 0 for all but finitely many
xe X, and the restriction of f to X x 2 is continuous.

Let e X. The ideal A, = {fe G| f(x,1) = f(z,2) = 0} is the
polar of a totally-ordered ideal of G, and hence is a minimal prime
subgroup of G and is closed. Each l-ideal of G which contains some
A, is hence a closed prime subgroup of G. Let P be a prime ideal
of G. Then P2 A, for some z or P2 {f e G| f(x, 2) = 0 for all o} =
Y. @G/Y is l-isomorphic to S(X). Thus if P2 ¥ then P corresponds
to one of the prime ideals of S(X), say P= B, = {fe G| f(z, 2) = 0}.
But B, 2 A,. Hence each prime subgroup of G is closed, and thus
each member of I'(G) is closed.

On the other hand, the function g € G such that, forall z, g(x,1) =0
and g(z,2) = 1 has infinitely many values. (Each B, is a value of g.)

Note also that ¥ and G/X are both projectable, but G is not
even though each prime subgroup of G exceeds a unique minimal
prime.

2. a*-extensions. Let G be an l-subgroup ofNH. If Ae 2(G)
we write A = {we H| |#| < y for some y ¢ A}. Then A ¢ & (H); indeed,
it is the smallest l-ideal of H that contains A.

LemMA 2.1. Let G be an l-subgroup of H.
(a) If Ke 5#(G) then KNG = K.
(b) If Ke ¥ (H) then (KNG~ Kand ( KNG~*NG=KNG.
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Proof. (a). Clearly KNG 2 K. Let 0<geKNG. Then g=
V zh; where 0 < h; < k;e K. Note g A k; > h;. Suppose he H and
h>g Ak, for all . Then h > h; for all ¢ and hence i > g. Thus
9=Vxz(g Ak). Since Gis an l-subgroup of H and g, g A k; € G, we
have g = V(g A k;). Thus g is a join in G of elements of K, and
hence g e K.

(b). Let Ke 2 (H). Then KN G < K, whence (KN G)~ < K and
(KNGS K. Thus KNGS (KNG)*= Kand hence (KNG~ NG =
KnNnaG.

DErFINITION. Let G be an l-subgroup of H. H is an a*-extension
of G if the map K+ KN G is a one-to-one map of %" (H) onto .27 (G).

If H is an a*-extension of G and K e .% (H), then by Lemma 2.1
(b), (KN G)* = K; thus both the map K+~ KN G and its inverse
preserve order. Hence if H is an a*-extension of G the map K
KN G is a lattice isomorphism of 2" (H) onto .27 (G).

H is an a-extension of G if the map C— CN G is a one-to-one
map of ¥ (H) onto ¥ (G). Each a-extension of G is an a*-extension
of G. ([3], Thm. 3.9). H is an essential extension of Gif CN G+ 0
for all 0 = Ce &~ (H).

LEMMA 2.2. If H is an essential extension of G and Ke 27 (H),
then KN Ge 27 (G).

Proof. Suppose g = Vsk; where 0 < k;€ KN G. Then since H
is abelian and an essential extension of G,g9 = Vg k. ([7], Lemma
5.4). Thus ge K and so ge KN G. Hence KN Ge 2(G).

LEMmA 2.3. If G is an l-ideal of H and G is archimedean, then
G is archimedean.

Proof. Suppose (by way of contradiction) that there exist a, be G
with 0 < a < b. Then 0 < 2be G and thus 2b = V g; where 0 < g; ¢
G. Now b=(Vg)—b=V(:—b=V((g;:—b V0 and 0<a=
aNb=V({((g; — b V0)Aa). Hence ((g; — b) VvV 0) Aa>0 for some g,.

For totally ordered groups it is the case that 0 <a <« b and
0 < g; imply g;:> ((g: — b) V 0) A a. (Consider the cases g; — b < 0
and g; — b > 0.) Hence this implication holds in the abelian I-group G.

((g; — b) V 0) A @ is a join of positive elements of G. Hence there
exists 0 < ge G such that g € ¢;, contradicting the hypothesis that
G is archimedean.

We remark that Lemma 2.3 and its proof are valid more generally
when H is any l-group that can be represented as a subdirect product
of (possibly non-abelian) totally ordered groups.
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LEmmA 2.4. If Ke 277 (G) and Ae 2 (K), then Ae o (G). Con-
versely, if A, Ke 277 (G) and A S K, then Ae 27 (K).

Proof. Let Ke 27 (G) and Ae % (K). If g= Vsa; where 0 <
a;e A, then ge K and hence g = Y a;, whence ge A.

Conversely, let A, Ke % (G)and AS K. Ifke Kand k = Vxa,,
0 < a;€ A, then since K is convex in G,k = VY a;; hence ke A.

COROLLARY. Suppose H is an a*-extension of G, and Ke 2 (H).
Then K is an a*-extension of KN G.

THEOREM 2.5. If H is an a*-extension of G, then H is an essential
extension of G.

Proof. Let 0+ Ce ¥ (H). We prove CN G = 0.

Case 1. Suppose C is not archimedean. Then there exist 0 < z,
ye C such that # €« y. Then H(x) <y and hence H(x) < y. Thus
0= H(x)NG<E CnN G, and hence P(A(G)) = P(Z(G)).

Case 2. Suppose C is archimedean. Then C is archimedean by
Lemma 2.3, and C is an a*-extension of C N G by the corollary to
Lemma 2.4. Thus X — XN CNG is a one-to-one correspondence
between the polars in C and those in C N G. Thus, since C is archi-
medean, C is an essential extension of C N G. ([6], Thm. 3.7). Hence
0CN(ICNGE=CNG.

THEOREM 2.6. Let G be an l-subgroup of H. The following are
equivalent:

(1) H is an a*-extension of G.

(2) H 1is an essential extension of G, and (KN G)° = K for all
Ke o7 (H).

(8) H 1is an essential extension of G, and K, = K, whenever
KNG=KnNG for K,, K,e .27 (H).

Proof. (1) implies (2). Immediate from Theorem 2.5 and Lemma
2.1 (b).

(2) implies (3). If KNG = K,NG, then (K, NG =(K.NG)"
whence K, = K,.

(8) implies (1). This follows from Lemmas 2.2 and 2.1 (a).

McCleary ([12], Cor. 5) has proved that if G is completely distrib-
utive, then each Ke 277°(G) is the intersection of a set of closed regular
subgroups of G. On the other hand, Byrd and Lloyd ([5], Thm. 3.10)
proved that G is completely distributive if and only if the collection
of all closed regular subgroups of G has 0 intersection. These remarks
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are applicable, in particular, to V((4, R), where /4 is any root system,
since N {V,, ve 4} = 0.

THEOREM 2.7. Let 4 be a plenary subset of I'(G) and o:G —
V{4, R) a v-isomorphism. V(4, R) is an a*-extension of Go if and only
if each G;,0€ 4, 1s a special subgroup of G.

Proof. For convenience we identify G with Go.

Suppose each G, is special. If 0e 4 there exists g, € G such that
the only maximal component of g, is 6. It follows that V = V(4, R)
is an essential extension of G.

Let K,, K, € .22 (V) and suppose K, N G = K, N G. As noted above
there exist subsets A, B of 4 (which without loss of generality are
dual ideals of 4) such that K, = N{V.|aec A} and K, = N{V;:|B < B}.
Suppose o€ A\B and let g = g;. Suppose there exists g€ B such that
g¢ Vs Then g(v) # 0 for some ¥ > B, and since ¢ is the only maximal
component of g,6 >7v. Thus d > B and so de B, a contradiction.
Hence ge V, for all ge B, and therefore ge K; N G. But clearly g¢
K, N G. This contradicts K,NG = K, N G. Hence A & B, and similarly
B A. Thus K, = K,, and V is an a*-extension of G.

Conversely, suppose V is an a*-extension of G. For e 4 let M, =
N{V:|6 £ B and N;=N{V,|0 £ B}. Then M, N,e % (V). By
definition M,(resp., N;) is the set of all elements of V whose support
lies strictly below B (resp., on or below B). Thus there exists ge G
such that the only maximal component of gis 8. Gy, = VN G is the
only value of g in G. Thus G; is special for all ge 4.

REMARK. A lattice L is meet-generated by S & L if each element
of L is the meet of some subset of S. If, in addition, no two dual
ideals of S have the same meet, then S freely meet-generates L. It
can be shown that the equivalent conditions of Theorem 2.8 are in
turn equivalent to the condition: .2£7(G) is freely meet-generated by 4.

3. a*-closures.

DEFINITION. An [l-group H is a*-closed if it admits no proper
a*-extension. H is an a*-closure of G if H is an a*-extension of G
and H is a*-closed.

The arguments leading up to the first theorem of this section
need no commutativity hypothesis. Hence the a*-closure of an archi-
medean l-group would be that of the theorem even if this paper



336 ROGER BLEIER AND PAUL CONRAD

admitted non-abelian [-groups (with the lattice of closed convex I-
subgroups playing the role of 2#7(G)).

Suppose G is archimedean and H is an a*-extension of G. Then
by Corollary 1.3 H is archimedean, and, furthermore, by ([6], Thm.
3.7) H is an essential extension of G. Conversely, if H is archimedean
and an essential extension of G, then by Theorem 1.2 and ([8], Thm.
3.4) H is an a*-extension of G. Thus for archimedean [-groups the
a*-extensions are the archimedean essential extensions. It was proved
in [6] that each archimedean I-group G admits a unique essential
closure relative to the class of all archimedean Il-groups. Thus we
have

THEOREM 3.1. Each archimedean l-group G has an a*-closure.
Furthermore, if H, and H, are l-groups each of which is an a*-closure
of G, then there exists an l-isomorphism t of H, onto H, such that
Tle = 1g.

This closure is the I-group of all almost-finite extended real-valued
functions on the Stone space associated with the Boolean algebra
P(#(G)). ([6], Thm. 3.6). Since the members of P(<(G)) are closed
l-ideals of G, we conclude that if G is archimedean then |G| < |R®"‘® B
This fact will be useful later.

The proofs of the next two lemmas make repeated use of Theorem
2.6.

LEMMA 3.2. Suppose F is an l-subgroup of G and G is an I-
subgroup of H. If H is an a*-extension of G and G is an a*-extension
of F, then H 1s an a*-extension of F, and conversely.

Proof. Suppose H is an a*-extension of G and G is an a*-extension
of F. The map K— KN F where Ke 2% (H) is the composition K —
KNG— (KNG NF. Thus H is an a*-extension of F.

Conversely, let H be an a*-extension of . Then H is an essential
extension of F' and hence of G. Let K,, K,c 2 (H) be such that K, N
G=KNG. Then K, NF = K,NF and hence K, = K,. Thus H is
an a*-extension of G.

Let 0 < ge G. Then ge H, and since H is an essential extension
of F, there exists 0 < f € F such that f < ng for some positive integer
n. Thus fe G(g), and hence G is an essential extension of F.

Let K,, K, ¢ 27 (G) and suppose K,NF = K, N F. Weapply Lemma
(@. KNF=ENGONF=KNF=KnNF={&NGONF =

2.1
I?—Zﬂ F. Hence K, = K, and so K, = K,.
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LEmMMA 38.3. If {H,|a e A} is a chain of l-groups each of which
is an l-subgroup of the members of the chain that contain it, and each
of which is an a*-extension of G, then H = U H, is an a*-extension
of G.

Proof. Each H, is an essential extension of G. Let 0 < ze H.
Then xe H, for some a. Hence H.(x) N G = 0. But H(x) 2 H.(2).
Thus H(x) N G # 0, and hence H is an essential extension of G.

Suppose K., K,c % (H) and K, N G = K, N G. Then for each « e
A, we have K, N H,, K, N H,c 27 (H,) since H is an essential extension
of H,2 G. Moreover, ( K,NH)NG =K NG=KNG = (K,NH)NG.
Since H, is an a*-extension of G, we conclude K, N H, = K, N H,.
Thus K, = K.NH =K, N(UH,) = U (K, NH,) = U (K.NH,) = K,
Thus H is an a*-extension of G.

LEMMA 3.4. Let Ke % (G),Ac ¥(G) and A2 K. If A/Ke
¥ (G/K), then Ae 2 (G).

Proof. Suppose ge G and g = Va;, 0 < a;€ A. Then ([4], Lemma
4.4) since Ke % (G),9 + K= V(a; + K). Thus g+ Ke A/K and
hence ge A. Hence Aec 7 (G).

We note that the example at the end of §1 can be used to show
that the converse of Lemma 3.4 fails. Referring to that example,
we have B,, ¥ € 2 (G) and B,2 ¥, but B,/3 is not closed in G/¥ unless
2 is an isolated point of X. X can be chosen so that it has no isolated
points. R. Byrd has sent us a similar example illustrating the failure
of the converse for Lemma 3.4.

LEMMA 3.5. Let ge G with g =+ 0. There exist A, Be 27 (G) with
A & B such that ge B\A and B/A is archimedean.

Proof. Since g belongs to an [-ideal of G if and only if |g]| does,
we can assume g > 0.

Let S={2€G|0< 2« g}. Then S is a convex subsemigroup of
G and the subgroup A generated by S is an l-ideal of G. If xe G
and ¢ = Va,,0< a;€ A, then na; < g and hence nVa; = Vna; < g;
thus € A. Hence Ae 2 (G).

We show A is the intersection of the maximal l-ideals of G(g).
Let 0 <aecA and let M be a maximal [-ideal of G(g). Since a < ¢
we have n(M + a) = M + na < M + ¢ for all integers n. G(g)/M is
l-isomorphic to an l-subgroup of R. Hence ac M.

Now suppose x> 0 is an element of each maximal ideal M of
G(g). Let m be an integer. Then M + g > M + nz. The maximal
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ideals of G(g) are precisely the values of g-nx in G(g9). Thus M*tg —
wx > M for all values of g — nx in G(g), and hence g — nx > 0. Thus 2«
g and 2 ¢ A.

Since the intersection of all the maximal l-ideals of G(g)/A is zero,
G(9)/A is a subdirect product of copies of R, and hence is archimedean.
Let B be the l-ideal of G such that B2 A and B/A is the least
member of .977(G/A) containing G(g)/A. By Lemma 2.4 B/A is archi-
medean and by Lemma 3.4 Be .22 (G). Since ge B\A, the proof is
complete.

REMARK. The above argument contains a proof of the fact that
for abelian l-groups with strong unit the intersection of all maximal
l-ideals is a closed l-ideal.

THEOREM 3.6. Fach l-group G has an a*-closure.

Proof. The divisible hull of G is an a-extension of G and hence
an a*-extension of G. Thus without loss of generality G is a rational
vector space.

Let A index the set of ordered pairs (K*, K,) of elements of .27(G)
such that K* o K, and K*/ K, is archimedean. For each a € A choose
some fixed C, such that G is the group direct sum of K* and C,.
Define n: G —IIK*/K, by 7(9) = (++* go +++) where g = g, + ¢, with
g.€ K* and ¢,e€ C,. Then 7 is a group homomorphism, and by Lemma
3.5 Kern = 0. Thus 7 is injective.

By Lemma 2.4 | 27 (K%)| < | 2#7(G) | and by Lemma 3.4 | 22" (K% K,)| <
|22 (K*)|. Thus |[K*/K,| < IRZ}“G’] for all e A. (See the paragraph
following Theorem 3.1.) Now since 4 & 7% (@) x 2 (G) we conclude
that there is some cardinal number ¥ dependent only on | 227 (G)|
such that |G| < W. If His an a*-extension of G, then since | 227 (G)| =
|22 (H)|, we have [H| < W.

It follows now by Lemmas 3.2 and 3.3 and the usual transfinite
arguments that G has an a*-closure.

THEOREM 3.7. Suppose the closed regular subgroups of G form a
plenary subset 4 of I'(G). Then each a*-closure of G is l-isomorphic
to an l-subgroup of V(4, R). If each member of 4 is a special subgroup
of G, then each a*-closure of G 1is l-isomorphic to V(4, R).

Proof. Let H be an a*-closure of G. By Theorem 1.4 {G;, d € 4}
is the set of meet-irreducible elements of .2#°(G). Let H, be the
element of 27" (H) such that H,N G = G,. Then {H,, é € 4} is the set
of closed regular subgroups of H, and [} H; = 0 since [} G; = 0. Thus
{H,, 0 € 4} is a plenary subset of I"(H), and there exists a v-isomorphism
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0: H—V(4, R). Thus H is l-isomorphic to an l-subgroup of V(4, R).
The last assertion of the theorem follows from Theorem 2.7.

COROLLARY 3.8. V(4, R) is a*-closed for any root system A.

A stronger form of uniqueness than that given by Theorem 3.7
exists when the members of 4 are special, and we proceed to establish
this.

LEMMA 3.9. Let G and H be divisible l-groups with G an -
subgroup of H, and let {G;, 6 € 4} be a plenary subset of I'(G). Suppose
there exists a plenary subset {H;, 6 e 4} of I'(H) such that H; N G = G,
and H* NG = G° for all 6e€ 4. (Here H*(G’) denotes the intersection
of all l-ideals of H(G) which properly contain Hi(G;).) If o:G—
V(4, R) is a v-isomorphism then there exists a v-isomorphism t: H —
V(4, R) such that gr = go for all g€ G.

Proof. Note that under the hypothesis the natural map G°/G; —
H’/H, is a well-defined l-isomorphism into H’/H,. Now the proof of
([9], Lemma 4.11) applies.

THEOREM 3.10. Suppose the special subgroups of G form a plenary
subset 4 of I'(G). Then G has an a*-closure which is l-isomorphic to
V{4, R). Moreover, if H, and H, are a*-closures of G, there exists an
l-isomorphism t of H, onto H, such that pt|, = 1,

Proof. Let 0: G—V(4, R) be a v-isomorphism. H, and H, are
divisible since the divisible hull of an [-group is an a*-extension of
it. Moreover, since o extends uniquely to a wv-isomorphism of the
divisible hull of G into V(4, R), we can assume G is divisible. 4 is
the set of closed regular subgroups of G. The closed regular subgroups
of G and the l-ideals that cover them are distinguishable in 27°(G).
Thus, for ¢ = 1, 2, there exists by Lemma 3.9 a v-isomorphism 7;: H, —
V(4, R) such that gz, = go for all ge G. By Theorem 2.7 and Lemma
3.2 7; is surjective. Now p¢ = 7,7;* is an l-isomorphism of H, onto H,
and g¢ = g for all geG.

COROLLARY 3.11. If G is finite-valued, then V(I", R) is the unique
a*-closure of G.

COROLLARY 3.12. If G 1is totally ordered, then V(I', R) is the
unique a*-closure of G.

Thus the a*-closure of a totally-ordered abelian group coincides
with its Hahn closure.
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