COMMON FIXED POINTS OF TWO MAPPINGS

Chi Song Wong

Let S, T be functions on a nonempty complete metric space (X, d). The main result of this paper is the following. S or T has a fixed point if there exist decreasing functions $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ of ($0, \infty$) into $\left[0,1\right.$) such that (a) $\sum_{i=1}^{5} \alpha_{i}<1$; (b) $\alpha_{1}=\alpha_{2}$ or $\alpha_{3}=\alpha_{4}$, (c) $\lim _{t \downarrow 0}\left(\alpha_{1}+\alpha_{2}\right)<1$ and $\lim _{t \downarrow 0}\left(\alpha_{3}+\alpha_{4}\right)<1$ and (d) for any distinct x, y in X,

$$
\begin{aligned}
d(S(x), T(y)) \leqq & a_{1} d(x, S(x))+a_{2} d(y, T(y))+a_{3} d(x, T(y)) \\
& +a_{4} d(y, S(x))+a_{5} d(x, y)
\end{aligned}
$$

where $a_{i}=\alpha_{i}(d(x, y))$. A number of related results are obtained.

1. Introduction. Let (X, d) be a nonempty complete metric space and let S, T be mappings of X into itself which are not necessarily continuous nor commuting. Suppose that there are nonnegative real numbers $a_{1}, a_{2}, a_{3}, \alpha_{4}, a_{5}$ such that

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+a_{4}+a_{5}<1 \tag{a}
\end{equation*}
$$

(b)

$$
a_{1}=a_{2} \quad \text { or } \quad a_{3}=a_{4}
$$

and for any x, y in X,

$$
\begin{align*}
d(S(x), T(y)) \leqq & a_{1} d(x, S(x))+a_{2} d(y, T(y))+a_{3} d(x, T(y)) \tag{c}\\
& +a_{4} d(y, S(x))+a_{5} d(x, y)
\end{align*}
$$

It is proved in this paper that each of S, T has a unique fixed point and these two fixed points coincide. Among others, a generalization is obtained by replacing $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ with nonnegative real-valued functions on $(0, \infty)$. This result generalizes the Banach contraction mapping theorem and some results of G. Hardy and T. Rogers [5], R. Kannan [7], E. Rakotch [8], S. Reich [9], P. Srivastava, and V. K. Gupta [10]. It also gives a different proof for these special cases. Note that even if $X=[0,1]$ and if T_{1}, T_{2} are commuting continuous functions of X into itself, T_{1}, T_{2} need not have a common fixed point [1], [2], and [6].

2. Basic results.

THEOREM 1. Let S, T be mappings of a complete metric space (X, d) into itself. Suppose that there exist nonnegative real numbers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ which satisfy (a), (b), and (c). Then each of S, T
has a unique fixed point and these two fixed points coincide.
Proof. Let $x_{0} \in X$. Define

$$
x_{2 n+1}=S\left(x_{2 n}\right), x_{2 n+2}=T\left(x_{2 n+1}\right), \quad n=0,1,2, \cdots
$$

From (c),

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & =d\left(S\left(x_{0}\right), T\left(x_{1}\right)\right) \\
& \leqq\left(a_{1}+a_{5}\right) d\left(x_{0}, x_{1}\right)+a_{2} d\left(x_{1}, x_{2}\right)+a_{3} d\left(x_{0}, x_{2}\right) \\
& \leqq\left(a_{1}+a_{5}\right) d\left(x_{0}, x_{1}\right)+a_{2} d\left(x_{1}, x_{2}\right)+a_{3}\left(d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

So

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right) \leqq \frac{a_{1}+a_{3}+a_{5}}{1-a_{2}-a_{3}} d\left(x_{0}, x_{1}\right) \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
d\left(x_{2}, x_{3}\right) \leqq \frac{a_{2}+a_{4}+a_{5}}{1-a_{1}-a_{4}} d\left(x_{1}, x_{2}\right) \tag{2}
\end{equation*}
$$

Let

$$
r=\frac{a_{1}+a_{3}+a_{5}}{1-a_{2}-a_{3}}, \quad s=\frac{a_{2}+a_{4}+a_{5}}{1-a_{1}-a_{4}} .
$$

Repeating the above argument, we obtain, for each $n=0,1,2, \cdots$,

$$
\begin{align*}
& d\left(x_{2 n+1}, x_{2 n+2}\right) \leqq r d\left(x_{2 n+1}, x_{2 n}\right) \tag{3}\\
& d\left(x_{2 n+3}, x_{2 n+2}\right) \leqq s d\left(x_{2 n+2}, x_{2 n+1}\right) \tag{4}
\end{align*}
$$

By (3), (4), and induction, we have, for each $n=0,1,2, \cdots$,

$$
\begin{align*}
& d\left(x_{2 n+1}, x_{2 n+2}\right) \leqq r(r s)^{n} d\left(x_{0}, x_{1}\right) \tag{5}\\
& d\left(x_{2 n+2}, x_{2 n+3}\right) \leqq(r s)^{n+1} d\left(x_{0}, x_{1}\right) \tag{6}
\end{align*}
$$

Since $r s<1$ and

$$
\sum_{n=0}^{\infty} d\left(x_{n}, x_{n+1}\right) \leqq(1+r) \sum_{n=0}^{\infty}(r s)^{n} d\left(x_{0}, x_{1}\right),
$$

$\left\{x_{n}\right\}$ is Cauchy. By completeness of $(X, d),\left\{x_{n}\right\}$ converges to some point x in X. We shall now prove that x is a fixed point of S and T. Let n be given. Then

$$
\begin{align*}
d(x, S(x)) & \leqq d\left(x, x_{2 n+2}\right)+d\left(S(x), x_{2 n+2}\right) \\
& =d\left(x, x_{2 n+2}\right)+d\left(S(x), T\left(x_{2 n+1}\right)\right) \tag{7}
\end{align*}
$$

By (c),

$$
\begin{align*}
d\left(S(x), T\left(x_{2 n+1}\right)\right) \leqq & a_{1} d(x, S(x))+a_{2} d\left(x_{2 n+1}, x_{2 n+2}\right)+a_{3} d\left(x, x_{2 n+2}\right) \tag{8}\\
& +a_{4} d\left(x_{2 n+1}, S(x)\right)+a_{5} d\left(x, x_{2 n+1}\right) .
\end{align*}
$$

Combining (7) and (8) and letting n tend to infinity, we obtain

$$
d(x, S(x)) \leqq\left(a_{1}+a_{4}\right) d(x, S(x))
$$

Since $a_{1}+a_{4}<1, S(x)=x$. Similarly $T(x)=x$. Let y be a fixed point of T. Then from $d(x, y)=d(S(x), T(y))$ and (c), we obtain

$$
d(x, y) \leqq\left(a_{3}+a_{4}+a_{5}\right) d(x, y)
$$

Since $a_{3}+a_{4}+a_{5}<1, d(x, y)=0$. So T has a unique fixed point. Similarly, S has a unque fixed point.

When $a_{3}=a_{4}=a_{5}=0, S=T$ and T is continuous (or even $x \rightarrow d(x, T(x))$ is lower semicontinuous) on X, Theorem 1 can be obtained by an earlier result of the author [11, Theorem 1].

From the proof of Theorem 1, we know that S, T still have a common fixed point if conditions (a), (b) are replaced by the following conditions:

$$
\begin{gather*}
\left(a_{1}+a_{3}+a_{5}\right)\left(a_{2}+a_{4}+a_{5}\right)<\left(1-a_{2}-a_{3}\right)\left(1-a_{1}-a_{4}\right) \tag{9}\\
a_{1}+a_{4}<1 \tag{10}
\end{gather*}
$$

If in addition,

$$
\begin{equation*}
a_{3}+a_{4}+a_{5}<1 \tag{11}
\end{equation*}
$$

then the common fixed point of S, T is the unique fixed point of S (and T). Note that conditions (a) and (b) imply (9), but (a) alone does not. Indeed, for any a_{1}, a_{2}, a_{5} in $[0, \infty)$ with $a_{1} \neq a_{2}$ and $a_{1}+a_{2}+a_{5}<1$, we can always find a_{3}, a_{4} in $[0, \infty)$ such that (a) holds but (9) does not. This can be seen by considering the affine function f :

$$
f(x, y)=\left(1-a_{2}-x\right)\left(1-a_{1}-y\right)-\left(a_{1}+x+a_{5}\right)\left(a_{2}+y+a_{5}\right)
$$

defined on the compact convex set

$$
K=\left\{(x, y) \in[0,1] \times[0,1]: a_{1}+a_{2}+x+y+a_{5} \leqq 1\right\}
$$

f takes its minimum value at one of the extreme points of K. With some computation, we conclude that

$$
\min f(K)=-\left|a_{1}-a_{2}\right|\left(1-a_{1}-a_{2}-a_{5}\right)
$$

Since $a_{1}+a_{2}+a_{5}>1, \min f(K)<0$ if and only if $a_{1} \neq a_{2}$. Thus if $a_{1} \neq a_{2}$, then by continuity of f, there exists a point (a_{3}, a_{4}) in

$$
K \backslash\left\{(x, y) \in K: a_{1}+a_{2}+x+y+a_{5}=1\right\}
$$

such that $f\left(a_{3}, a_{4}\right)<0$.
Corollary 1. R. Kannan [7, Theorem 1]. Let S be a mapping of a complete metric space (X, d) into itself. Suppose that there exists a number r in $[0,1 / 2)$ such that

$$
d(S(x), S(y)) \leqq r(d(x+S(x))+d(y, S(y)))
$$

for all x, y in X. Then S has a unique fixed point.
Corollary 2. P. Srivastava and V. K. Gupta [10, Theorem 1]. Let S, T be mappings of a complete metric space (X, d) into itself. Suppose that there exists nonnegative real numbers a_{1}, a_{2} such that
(a)

$$
a_{1}+a_{2}<1
$$

and

$$
\begin{align*}
d(S(x), T(y)) \leqq a_{1} d(x, S(x))+a_{2} d(y, & T(y)) \tag{b}\\
& \text { for all } x, y \text { in } X .
\end{align*}
$$

Then S, T have a unique common fixed point.
Srivastava and Gupta stated the above result in a more general form with S, T replaced by S^{p}, T^{q} for some positive integers p, q. Since the unique fixed point of S^{p} (similarly T^{q}) is the unique fixed point of S, this result is equivalent to Corollary 2.

For Corollaries 1 and 2, we have the following related result.
Proposition. Let S, T be self-maps of a nonempty complete metric space (X, d). Suppose that there exist nonnegative real numbers a_{1}, a_{2} such that $a_{1}+a_{2}<1$ and

$$
\begin{equation*}
d(S(x), T(y)) \leqq a_{1} d(x, S(x))+a_{2} d(y, T(y)), \quad x, y \in X \tag{}
\end{equation*}
$$

Then either (${ }^{*}$) is true when all of its S are replaced by T or (*) is true when all of its T are replaced by S.

The following example proves that our result is actually more general than that of Srivastava and Gupta.

Example. Let $X=\{1,2,3\}$. Let d be the metric for X determined by

$$
d(1,2)=1, d(2,3)=\frac{4}{7}, \quad d(1,3)=\frac{5}{7}
$$

Let S, T be the function on X such that

$$
\begin{aligned}
& S(1)=S(2)=S(3)=1 \\
& T(1)=T(3)=1, \quad T(2)=3
\end{aligned}
$$

Let $a_{1}=0, a_{2}=0, a_{3}=0, a_{4}=5 / 7, a_{5}=0$. Then the conditions of Theorem 1 are satisfied. However, no nonnegative real numbers $a_{1}, a_{2}, a_{3}, a_{5}$ can be chosen such that $a_{1}+a_{2}+a_{3}+a_{5}<1$ and for $x, y \in X$,

$$
d(S(x), T(y)) \leqq a_{1} d(x, S(x))+a_{2} d(y, T(y))+a_{3} d(x, T(y))+a_{5} d(x, y)
$$

For if there exist such $a_{1}, a_{2}, a_{3}, a_{5}$, then

$$
d(S(3), T(2)) \leqq a_{1} d(3, S(3))+a_{2} d(2, T(2))+a_{3} d(3, T(2))+a_{5} d(3,2)
$$

So

$$
\frac{5}{7} \leqq \frac{5 a_{1}}{7}+\frac{4 a_{2}}{7}+\frac{4 a_{5}}{7} \leqq \frac{5}{7}\left(a_{1}+a_{2}+a_{5}\right)<\frac{5}{7}
$$

a contradiction.
Corollary 3. G. Hardy and T. Rogers [5, Theorem 1]. Let S be a mapping of a nonempty complete metric space (X, d) into itself. Suppose that there exist nonnegative real numbers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ such that

$$
\begin{equation*}
a_{1}+a_{2}+a_{3}+a_{4}+a_{5}<1 \tag{a}
\end{equation*}
$$

and
(b) $\quad d(S(x), S(y)) \leqq a_{1} d\left(x, S(x)+a_{2} d(y, S(y))+a_{3} d(x, S(y))\right.$

$$
\begin{aligned}
& +a_{4} d(y, S(x))+a_{5} d(x, y) \\
& \text { for all } x, y \text { in } X .
\end{aligned}
$$

Then S has a unique fixed point.
Note that in the above case, we may without loss of generality assume that $a_{1}=a_{2}, a_{3}=a_{4}$ (replace $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ respectively by

$$
\frac{a_{1}+a_{2}}{2}, \frac{a_{1}+a_{2}}{2}, \frac{a_{3}+a_{4}}{2}, \frac{a_{3}+a_{4}}{2}, a_{5}
$$

if necessary). So the above result follows from Theorem 1. The above example shows that there is no such symmetry ($a_{1}=a_{2}, a_{3}=a_{4}$) for the general case. Indeed, we cannot even assume $a_{3}=a_{4}$. For if $a_{3}=a_{4}$, then for the above example, we have

$$
\begin{aligned}
\frac{5}{7}=d(S(3), T(3)) & \leqq \frac{5}{7} a_{1}+\frac{4}{7} a_{2}+a_{4}+\frac{4}{7} a_{5} \\
& =\frac{5}{7} a_{1}+\frac{4}{7} a_{2}+\frac{1}{2} a_{3}+\frac{1}{2} a_{4}+\frac{4}{7} a_{5} \\
& <\frac{5}{7}\left(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\right)<\frac{5}{7}
\end{aligned}
$$

a contradiction.
2. Extensions and some ralated results. The following result generalizes Theorem 1. Its proof is different from the one we gave for Theorem 1.

Theorem 2. Let S, T be functions on a nonempty complete metric space (X, d). Suppose that there exist decreasing functions $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ of ($0, \infty$) into $[0,1)$ such that
(a) $\sum_{i=1}^{5} \alpha_{i}<1$;
(b) $\alpha_{1}=\alpha_{2}$ or $\alpha_{3}=\alpha_{4}$;
(c) $\lim _{t!0}\left(\alpha_{2}+\alpha_{3}\right)<1$ and $\lim _{t \downarrow 0}\left(\alpha_{1}+\alpha_{4}\right)<1$;
(d) for any distinct x, y in X,

$$
\begin{aligned}
d(S(x), T(y)) \leqq & a_{1} d(x, S(x))+a_{2} d(y, T(y))+a_{3} d(x, T(y)) \\
& +a_{4} d(y, S(x))+a_{5} d(x, y)
\end{aligned}
$$

where $a_{i}=\alpha_{i}(d(x, y))$.
Then at least one of S, T has a fixed point. If both S and T have fixed points, then each of S, T has a unique fixed point and these two fixed points coincide.

Proof. Let $x_{0} \in X$. Define for each $n=0,1,2, \cdots$,

$$
x_{2 n+1}=S\left(x_{2 n}\right), \quad x_{2 n+2}=T\left(x_{2 n+1}\right), \quad b_{n}=d\left(x_{n}, x_{n+1}\right)
$$

We may assume that $b_{n}>0$ for each n, for otherwise some x_{n} is a fixed point of S or T. Let

$$
\begin{array}{ll}
r(t)=\frac{\alpha_{1}(t)+\alpha_{3}(t)+\alpha_{5}(t)}{1-\alpha_{2}(t)-\alpha_{3}(t)}, & t>0 \\
s(t)=\frac{\alpha_{2}(t)+\alpha_{4}(t)+\alpha_{5}(t)}{1-\alpha_{1}(t)-\alpha_{4}(t)}, & t>0
\end{array}
$$

Then r, s are decreasing. From (a) and (c), the limits

$$
r_{0}=\lim _{t \downarrow 0} r(t), \quad s_{0}=\lim _{t \downarrow 0} s(t)
$$

are nonnegative real numbers. Let

$$
f(t)=r(t) s(t), \quad t>0
$$

Then f is decreasing and $f(t)<1$ for each $t>0$. As in the proof of Theorem 1 , we have for each $n=0,1,2, \cdots$,

$$
\begin{align*}
& b_{2 n+1} \leqq r\left(b_{2 n}\right) b_{2 n} \tag{12}\\
& b_{2 n+2} \leqq s\left(b_{2 n+1}\right) b_{2 n+1} \tag{13}
\end{align*}
$$

Let n be given. Then

$$
\begin{align*}
& b_{2 n+3} \leqq r\left(b_{2 n+2}\right) s\left(b_{2 n+1}\right) b_{2 n+1} \tag{14}\\
& b_{2 n+2} \leqq s\left(b_{2 n+1}\right) r\left(b_{2 n}\right) b_{2 n} \tag{15}
\end{align*}
$$

Since r, s are decreasing,

$$
\begin{align*}
& b_{2 n+3} \leqq f\left(\min \left\{b_{2 n+2}, b_{2 n+1}\right\}\right) b_{2 n+1} \tag{16}\\
& b_{2 n+2} \leqq f\left(\min \left\{b_{2 n+1}, b_{2 n}\right\}\right) b_{2 n} . \tag{17}
\end{align*}
$$

Since $f(t)<1$ for each $t>0,\left\{b_{2 n+1}\right\},\left\{b_{2 n}\right\}$ are decreasing sequences. So $\left\{b_{2 n+1}\right\},\left\{b_{2 n}\right\}$ converge respectively to some points c_{1}, c_{2}. We shall prove that $c_{1}=0, c_{2}=0$. From (12) and (13),

$$
c_{1} \leqq r_{0} c_{2}, \quad c_{2} \leqq s_{0} c_{1}
$$

So either both c_{1}, c_{2} are zero or both c_{1}, c_{2} are not zero. Suppose to the contrary that $c_{1} \neq 0, c_{2} \neq 0$. Then from (16) and (17),

$$
\begin{equation*}
b_{n+2} \leqq f\left(\min \left\{c_{1}, c_{2}\right\}\right) b_{n}, \quad n=0,1,2, \cdots \tag{18}
\end{equation*}
$$

By induction,

$$
\begin{equation*}
b_{2 n} \leqq\left(f\left(\min \left\{c_{1}, c_{2}\right\}\right)\right)^{n} b_{0} \quad n=0,1,2, \cdots \tag{19}
\end{equation*}
$$

So $c_{2}=0$, a contradiction. Therefore, $c_{1}=c_{2}=0$. This proves that $\left\{b_{n}\right\}$ converges to 0 .

Now we shall prove that $\left\{x_{n}\right\}$ is Cauchy. Suppose not. Then there exist $\varepsilon \in(0, \infty)$ and sequences $\{p(n)\},\{q(n)\}$ such that for each $n \geqq 0$,

$$
\begin{align*}
& p(n)>q(n)>n, \tag{20}\\
& d\left(x_{p(n)}, x_{q(n)}\right) \geqq \varepsilon, \tag{21}
\end{align*}
$$

and (by the well-ordering principle),

$$
\begin{equation*}
d\left(x_{p(n)-1}, x_{q(n)}\right)<\varepsilon \tag{22}
\end{equation*}
$$

Let $n \geqq 0$ be given, $c_{n}=d\left(x_{p(n)}, x_{q(n)}\right)$. Then

$$
\begin{align*}
\varepsilon & \leqq c_{n} \tag{23}\\
& \leqq d\left(x_{p(n)}, x_{p(n)-1}\right)+d\left(x_{p(n)-1}, x_{q(n)}\right)<b_{p(n)-1}+\varepsilon .
\end{align*}
$$

From $c_{1}=c_{2}=0$, we conclude that $\left\{c_{n}\right\}$ converges to ε from the right. Let

$$
\begin{aligned}
& I_{1}=\{n: p(n), q(n) \text { are odd }\} \\
& I_{2}=\{n: p(n) \text { is odd, } q(n) \text { is even }\} . \\
& I_{3}=\{n: p(n) \text { is even, } q(n) \text { is odd }\}, \\
& I_{4}=\{n: p(n), q(n) \text { are even }\} .
\end{aligned}
$$

Then at least one of $I_{1}, I_{2}, I_{3}, I_{4}$ is infinite. Suppose first that I_{1} is infinite. Let

$$
d_{n}=d\left(x_{p(n)-1}, x_{q(n)}\right), \quad n=0,1,2, \cdots
$$

Since $\left\{c_{n}\right\}$ converges to ε and $\left\{b_{n}\right\}$ converges to 0 , we conclude from (22) that $\left\{d_{n}\right\}$ converges to ε from the left. Thus

$$
J_{1}=\left\{n \in I_{1}: x_{p(n)-1} \neq x_{q(n)}\right\}
$$

is infinite. Let $n \in J_{1}, u_{n}=d\left(x_{p(n)-1}, x_{q(n)+1}\right)$. Then

$$
\begin{align*}
c_{n}=d\left(x_{p(n)}, x_{q(n)}\right) & \leqq d\left(x_{p(n)}, x_{q(n)+1}\right)+d\left(x_{q(n)+1}, x_{q(n)}\right) \\
& \leqq d\left(S\left(x_{p(n)-1}\right), T\left(x_{q(n)}\right)\right)+b_{q(n)} \tag{24}
\end{align*}
$$

From (d),

$$
\begin{align*}
d\left(S\left(x_{p(n)-1}\right), T\left(x_{q(n)}\right)\right) \leqq & \alpha_{1}\left(d_{n}\right) b_{p(n)-1}+\alpha_{2}\left(d_{n}\right) b_{q(n)}+\alpha_{3}\left(d_{n}\right) u_{n} \\
& +\alpha_{4}\left(d_{n}\right) c_{n}+\alpha_{5}\left(d_{n}\right) d_{n} . \tag{25}
\end{align*}
$$

From (24) and (25),

$$
\begin{align*}
c_{n} \leqq & \alpha_{1}\left(d_{n}\right) b_{p(n)-1}+\alpha_{2}\left(d_{n}\right) b_{q(n)}+\alpha_{3}\left(d_{n}\right) u_{n}+\alpha_{4}\left(d_{n}\right) c_{n} \\
& +\alpha_{5}\left(d_{n}\right) d_{n}+b_{q(n)} . \tag{26}
\end{align*}
$$

Without loss of generality, we may assume that each α_{i} is continuous from the left, for we can replace the α_{i} 's by

$$
\beta_{i}(t)=\lim _{s \not t t} \alpha_{i}(s), \quad t>0, \quad i=1,2,3,4,5
$$

and conditions (a), (b), (c), and (d) still hold. Thus

$$
\lim _{n \rightarrow \infty} \alpha_{i}\left(d_{n}\right)=\alpha_{i}(\varepsilon), \quad i=1,2,3,4,5
$$

So from (26),

$$
\varepsilon \leqq\left(\alpha_{3}(\varepsilon)+\alpha_{4}(\varepsilon)+\alpha_{5}(\varepsilon)\right) \varepsilon<\varepsilon
$$

a contradiction. Now suppose that I_{2} is infinite. By a similar argument, $J_{2}=\left\{n \in I_{2}: x_{p(n)-1} \neq x_{q(n)-1}\right\}$ is infinite. Let $n \in J_{2}$,

$$
v_{n}=d\left(x_{p(n)-1}, x_{q(n)-1}\right), \quad w_{n}=d\left(x_{p(n)}, x_{q(n)-1}\right)
$$

Then

$$
\begin{align*}
c_{n} & =d\left(S\left(x_{p(n)-1}\right), T\left(x_{q(n)-1}\right)\right) \\
& \leqq \alpha_{1}\left(v_{n}\right) b_{p(n)-1}+\alpha_{2}\left(v_{n}\right) b_{q(n)-1}+\alpha_{3}\left(v_{n}\right) d_{n}+\alpha_{4}\left(v_{n}\right) w_{n}+\alpha_{5}\left(v_{n}\right) v_{n} \tag{27}
\end{align*}
$$

Since $\left\{v_{n}\right\}$ converges to ε (not necessarily from the left or right), we obtain the same contradiction from (27). The other two cases are similar to the above two except the roles of S, T interchange. Hence $\left\{x_{n}\right\}$ is Cauchy. By completeness, $\left\{x_{n}\right\}$ converges to a point x in X. Since $b_{n}>0$ for each $n, J=\left\{n: x \neq x_{2 n+1}\right\}$ or $K=\left\{n: x \neq x_{2 n}\right\}$ is infinite. Suppose that K is infinite. Let $n \in K$,

$$
l_{n}=d\left(x, x_{2 n}\right), \quad h_{n}=d\left(x, x_{2 n+1}\right)
$$

Then

$$
\begin{aligned}
d(x, T(x)) \leqq & d\left(x, x_{2 n+1}\right)+d\left(x_{2 n+1}, T(x)\right) \\
= & h_{n}+d\left(S\left(x_{2 n}\right), T(x)\right) \\
\leqq & h_{n}+\alpha_{1}\left(l_{n}\right) b_{2 n}+\alpha_{2}\left(l_{n}\right) d(x, T(x))+\alpha_{3}\left(l_{n}\right) d\left(x_{2 n}, T(x)\right) \\
& +\alpha_{4}\left(l_{n}\right) h_{n}+\alpha_{5}\left(l_{n}\right) l_{n} \\
\leqq & h_{n}+\alpha_{1}\left(l_{n}\right) b_{2 n}+\alpha_{2}\left(l_{n}\right) d(x, T(x))+\alpha_{3}\left(l_{n}\right)\left[l_{n}+d(x, T(x))\right] \\
& +\alpha_{4}\left(l_{n}\right) h_{n}+\alpha_{5}\left(l_{n}\right) l_{n} .
\end{aligned}
$$

So

$$
\begin{align*}
d(x, T(x)) \leqq \frac{1+\alpha_{4}\left(l_{n}\right)}{1-\alpha_{2}\left(l_{n}\right)-\alpha_{3}\left(l_{n}\right)} h_{n} & +\frac{\alpha_{3}\left(l_{n}\right)+\alpha_{5}\left(l_{n}\right)}{1-\alpha_{2}\left(l_{n}\right)-\alpha_{3}\left(l_{n}\right)} l_{n} \\
& +\frac{\alpha_{1}\left(l_{n}\right)}{1-\alpha_{2}\left(l_{n}\right)-\alpha_{3}\left(l_{n}\right)} b_{2 n} \tag{28}
\end{align*}
$$

From (a) and (c), the sequences

$$
\frac{1+\alpha_{4}\left(l_{n}\right)}{1-\alpha_{2}\left(l_{n}\right)-\alpha_{3}\left(l_{n}\right)}, \frac{\alpha_{3}\left(l_{n}\right)+\alpha_{5}\left(l_{n}\right)}{1-\alpha_{2}\left(l_{n}\right)-\alpha_{3}\left(l_{n}\right)}, \frac{\alpha_{1}\left(l_{n}\right)}{1-\alpha_{2}\left(l_{n}\right)-\alpha_{3}\left(l_{n}\right)}
$$

are bounded. So from (28), $T(x)=x$. Similarly, $S(x)=x$ if J is infinite. Hence S or T has a fixed point.

The following result follows easily from Theorem 2.
Theorem 3. With the conditions of Theorem 2, if further,

$$
d(S(x), T(x)) \leqq \alpha[d(x, S(x))+d(x, T(x))], \quad x \in X
$$

for some $\alpha \in[0,1)$, then each of S, T has a unique fixed point and these two fixed points coincide.

We remark that the conditions of Theorem 1 imply the conditions of Theorem 3. Also, G. Hardy and T. Rogers [5, Theorem 2] gave a different proof for the case $S=T$. Their proof cannot be modified for the general case. To see that the conclusion of Theorem 2 is best possible, we note that if $X=\{0,1\}$ with the usual distance and if S, T are two distinct functions of X onto X, then S, T satisfy the conditions of Theorem 2 (and Theorem 3 with $\alpha=1$), but one has two fixed points and the other has none.

THEOREM 4. Let (X, d) be a nonempty compact metric space. Let S, T be functions of X into itself. Suppose that S or T is continuous. Suppose further that there exist nonnegative real-valued decreasing functions $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ on $(0, \infty)$ such that
(a) $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5} \leqq 1$,
(b) $\alpha_{1}=\alpha_{2}$ and $\alpha_{3}=\alpha_{4}$,
(c) for any distinct x, y in X,

$$
\begin{aligned}
& d(S(x), T(y))< a_{1} d(x, S(x))+a_{2} d(y, T(y))+a_{3} d(x, T(y))+ \\
& a_{4} d(y, S(x))+a_{5} d(x, y)
\end{aligned}
$$

where $\alpha_{i}=\alpha_{i}(d(x, y))$.
Then S or T has a fixed point. If both S and T have fixed points, then each of S and T has a unique fixed point and these two fixed points coincide.

Proof. By symmetry, we may assume that S is continuous. Let f be the function on X such that

$$
f(x)=d(x, S(x)), \quad x \in X
$$

Then f is continuous (we merely need the fact that f is lower semicontinuous) on X. So f takes its minimum value at some x_{0} in X. We claim that x_{0} is a fixed point of S or $S\left(x_{0}\right)$ is a fixed point of T. Suppose not. Let

$$
\left.\begin{array}{ll}
x_{1}=S\left(x_{0}\right), & x_{2}=T\left(x_{1}\right), \\
b_{0}=d\left(x_{0}, x_{1}\right), & b_{1}=d\left(x_{2}, x_{3}\right),
\end{array} b_{2}=d\left(x_{2}\right), x_{3}\right) .
$$

Then $b_{0}>0, b_{1}>0$. From (c), we can prove that

$$
\begin{equation*}
\left(1-\alpha_{2}\left(b_{0}\right)-\alpha_{3}\left(b_{0}\right)\right) b_{1}<\left(\alpha_{1}\left(b_{0}\right)+\alpha_{3}\left(b_{0}\right)+\alpha_{5}\left(b_{0}\right)\right) b_{0} \tag{29}
\end{equation*}
$$

Let

$$
p(t)=1-\alpha_{2}(t)-\alpha_{3}(t), \quad q(t)=\alpha_{1}(t)+\alpha_{3}(t)+\alpha_{5}(t), \quad t>0
$$

From (a) and (b), $p\left(b_{0}\right)>0$. So

$$
\begin{equation*}
b_{1}<\frac{q\left(b_{0}\right)}{p\left(b_{0}\right)} b_{0} \tag{30}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
b_{2}<\frac{v\left(b_{1}\right)}{u\left(b_{1}\right)} b_{1} \tag{31}
\end{equation*}
$$

where

$$
u(t)=1-\alpha_{1}(t)-\alpha_{4}(t), v(t)=\alpha_{2}(t)+\alpha_{4}(t)+\alpha_{5}(t), \quad t>0
$$

From (30) and (31),

$$
\begin{equation*}
b_{2}<\frac{v\left(b_{1}\right)}{u\left(b_{1}\right)} \frac{q\left(b_{0}\right)}{p\left(b_{0}\right)} b_{0} \tag{32}
\end{equation*}
$$

It suffices to prove that $\left(v\left(b_{1}\right) q\left(b_{0}\right) / u\left(b_{1}\right) p\left(b_{0}\right)\right)<1$, for then, $b_{2}<b_{0}$, a contradiction to the minimality of b_{0}. Let $b=\min \left\{b_{0}, b_{1}\right\}$. Then

$$
v\left(b_{1}\right) q\left(b_{0}\right)-u\left(b_{1}\right) p\left(b_{0}\right) \leqq v(b) q(b)-u(b) p(b)<0
$$

if $\alpha_{1}=\alpha_{2}$ and $\alpha_{3}=\alpha_{4}$. So S or T has a fixed point. Now suppose that x is a fixed point of S and y is a fixed point of T. Then $x=y$, otherwise, from (c),

$$
d(x, y)=d(S(x), T(y))<d(x, y)
$$

a contradiction.

The following result is stated without proof.
Theorem 5. Let (X, d) be complete metric space. Let $\left\{S_{n}\right\},\left\{T_{n}\right\}$ be sequence of functions of X into X which converge pointwise to S, T respectively. Suppose that the pairs $\left(S_{n}, T_{n}\right)$ satisfy the conditions of Theorem 3 with the same $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$. Then S, T have a unique common fixed point x and x is the limit of the sequence $\left\{x_{n}\right\}$ of the fixed points x_{n} of S_{n}.

THEOREM 6. Let (X, d) be a nonempty compact metric space. Let $\left\{S_{n}\right\},\left\{T_{n}\right\}$ be sequences of functions of X into itself which converge pointwise to the functions S, T on X respectively. Suppose that for each n, there exist decreasing functions $\alpha_{1}^{n}, \alpha_{2}^{n}, \alpha_{3}^{n}, \alpha_{1}^{n}, \alpha_{5}^{n}$ of $(0, \infty)$ into $[0, \infty)$ such that
(a) $\alpha_{1}^{n}+\alpha_{2}^{n}+\alpha_{3}^{n}+\alpha_{4}^{n}+\alpha_{3}^{n} \leqq 1$,
(b) $\alpha_{1}^{n}=\alpha_{2}^{n}$ and $\alpha_{3}^{n}=\alpha_{i}^{n}$,
(c) for any distinct x, y in X,

$$
\begin{aligned}
d\left(S_{n}(x), T_{n}(y)\right)< & a_{1}^{n} d\left(x, S_{n}(x)\right)+a_{2}^{n} d\left(y, T_{n}(y)\right)+a_{3}^{n} d\left(x, T_{n}(y)\right) \\
& +a_{4}^{n} d\left(y, S_{n}(x)\right)+a_{5}^{n} d(x, y),
\end{aligned}
$$

where

$$
a_{i}^{n}=\alpha_{i}^{n}(d(x, y)) .
$$

Then S or T has a fixed point. Indeed, every cluster point of a sequence $\left\{x_{n}\right\}$ of fixed points x_{n} of S_{n} or T_{n} is a fixed point of S or T.

Proof. By Theorem 4, for each n, either S_{n} or T_{n} has a fixed point. By symmetry, we may assume that S_{n} has a fixed point for infinitely many of n 's. So there is a subsequence $\left\{S_{n(k)}\right\}$ of $\left\{S_{n}\right\}$ such that each $S_{n(k)}$ has a fixed point, say x_{k}. By compactness, we may (by taking a subsequence) assume that $\left\{x_{k}\right\}$ converges to some x in X. We shall prove that x is a fixed point of S or T. If $x_{k} \neq x$ for only finitely many of k 's, then

$$
\begin{aligned}
S(x) & =\lim _{k \rightarrow \infty} S_{n(k)}(x) \\
& =\lim _{k \rightarrow \infty} S_{n(k)}\left(x_{k}\right) \\
& =\lim _{k \rightarrow \infty} x_{k} \\
& =x .
\end{aligned}
$$

So we may assume that $x_{k} \neq x$ for infinitely many of k 's. By taking a subsequence, we may assume that $x_{k} \neq x$ for each k. Let $k \geqq 1$ and $b_{k}=d\left(x, x_{k}\right)$. Then

$$
\begin{align*}
d(x, T(x)) & \leqq d\left(x, x_{k}\right)+d\left(x_{k}, T_{n(k)}(x)\right)+d\left(T_{n(k)}(x), T(x)\right) \\
& =d\left(x, x_{k}\right)+d\left(S_{n(k)}\left(x_{k}\right), T_{n(k)}(x)\right)+d\left(T_{n(k)}(x), T(x)\right) . \tag{33}
\end{align*}
$$

From (c),

$$
\begin{gather*}
d\left(S_{n(k)}\left(x_{k}\right), T_{n(k)}(x)\right)<\alpha_{2}^{k}\left(b_{k}\right) d\left(x, T_{n(k)}(x)\right)+\alpha_{3}^{k}\left(b_{k}\right) d\left(x_{k}, T_{n(k)}(x)\right) \tag{34}\\
+\alpha_{3}^{k}\left(b_{k}\right) d\left(x, x_{k}\right)+\alpha_{5}^{k}\left(b_{k}\right) b_{k} .
\end{gather*}
$$

Combining (33) and (34) and letting k tend to the infinity, we have

$$
\begin{align*}
d(x, T(x)) & \leqq \lim _{k \rightarrow \infty} \sup \left(\alpha_{2}^{k}\left(b_{k}\right)+\alpha_{3}^{k}\left(b_{k}\right)\right) d(x, T(x)) \tag{35}\\
& \leqq \lim _{k \rightarrow \infty} \sup _{t \leq 0} \lim _{t \leq 0}\left(\alpha_{2}^{k}(t)+\alpha_{3}^{k}(t)\right) d(x, T(x)) .
\end{align*}
$$

From (b), $\alpha_{2}^{k}(t)+\alpha_{3}^{k}(t) \leqq 1 / 2$ for each $t>0, k=1,2, \cdots$. So

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sup _{t \downarrow 0} \lim _{t}\left(\alpha_{2}^{k}(t)+\alpha_{3}^{k}(t)\right) \leqq \frac{1}{2} \tag{36}
\end{equation*}
$$

From (35) and (36), we conclude that $T(x)=x$.
From the proof, we know that the same conclusion holds if in Theorem 6, we replace (b) by the following weaker conditions:

$$
\begin{gathered}
\alpha_{1}^{n}=\alpha_{2}^{n} \quad \text { or } \quad \alpha_{3}^{n}=\alpha_{4}^{n} \\
\limsup _{k \rightarrow \infty} \lim _{t \downarrow 0}\left(\alpha_{2}^{k}(t)+\alpha_{3}^{k}(t)\right)<1
\end{gathered}
$$

and

$$
\limsup _{k \rightarrow \infty} \lim _{t \downarrow 0}\left(\alpha_{i}^{n}(t)+\alpha_{4}^{n}(t)\right)<1
$$

We note that, unlike Theorem 5, S, T in Theorem 6 need not satisfy the condition required for the pairs $\left(S_{n}, T_{n}\right)$.

Theorem 7. Let (X, d) be a nonempty compact metric space. Let $\left\{S_{n}\right\}$ be a sequence of functions of X into itself which converges pointwise to some function S on X. Suppose that for each n, there exist decreasing functions $\alpha_{1}^{n}, \alpha_{2}^{n}, \alpha_{3}^{n}, \alpha_{4}^{n}, \alpha_{5}^{n}$ of ($0, \infty$) into $[0, \infty)$ such that
(a) $\alpha_{1}^{n}+\alpha_{2}^{n}+\alpha_{3}^{n}+\alpha_{4}^{n}+\alpha_{5}^{n} \leqq 1$,
(b) for any distinct x, y in X,

$$
\begin{aligned}
d\left(S_{n}(x), S_{n}(y)\right)< & a_{1} d\left(x, S_{n}(x)\right)+a_{2} d\left(y, S_{n}(y)\right)+a_{3} d\left(x, S_{n}(y)\right) \\
& +a_{4} d\left(y, S_{n}(x)\right)+a_{5} d(x, y)
\end{aligned}
$$

where

$$
a_{i}=\alpha_{i}(d(x, y))
$$

Then S has a fixed point. Indeed, every cluster point of the sequence of fixed points of S_{n} is a fixed point of S.

The above result follows from Theorem 6 by averaging two applications of condition (b).

We shall now give a simple example to show that the conclusion of Theorem 7 is best possible. Let X be a star-shaped [4] compact subset of a normed linear space B. Then there exists a point z in X such that for any y in X, the line segment

$$
\{t z+(1-t) y: t \in[0,1]\}
$$

is contained in X. For each n, let

$$
S_{n}(x)=\frac{1}{n} z+\left(1-\frac{1}{n}\right) x, \quad x \in X
$$

Then $\left\{S_{n}\right\}$ is a sequence of mappings of X into X which satisfy the conditions of Theorem 7. $\left\{S_{n}\right\}$ converges pointwise to the identity function S on X. Every point of X is a fixed point of S. So unlike Theorem 5, it is too much to ask that S in Theorem 7 has a unique fixed point.

References

1. W. M. Boyce, Commuting functions with no common fixed point, Trans. Amer. Math. Soc., 137 (1969), 77-92.
2. - Γ-compact mappings on an interval and fixed points, Trans. Amer. Math. Soc., 160 (1971), 87-102.
3. M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79.
4. B. Halpern, The kernel of a starshaped subset of the plane, Proc. Amer. Math. Soc., 23 (1969), 692-696.
5. G. Hardy and T. Rogers, A generalization of a fixed point theorem of Reich, (to appear).
6. J. P. Huneke, On common fixed point of commuting continuous functions on an interval, Trans. Amer. Math. Soc., 139 (1969), 371-381.
7. R. Kannan, Some results on fixed points-II, Amer. Math. Monthly, 76 (1969), 405408.
8. E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 469-465.
9. S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1971), 121-124.
10. P. Srivastava and V. K. Gupta, A note on common fixed points, Yokohama Math. J., XIX (1971), 91-95.
11. Chi Song Wong, Fixed point theorems for nonexpansive mappings, J. Math. Anal. Appl., 37 (1972), 142-150.

Received June 13, 1972. This research was partially supported by the National Research Council of Canada Grant A8518 and a grant from the Canadian Mathematical Congress. It was prepared while the author was at the Summer Research Institute, University of Alberta.

University of Windsor

