ON A GENERALIZATION OF MARTINGALES DUE TO BLAKE

$R. \cdot SUBRAMANIAN$

It is shown that any uniformly integrable fairer with time game (stochastic process) converges in L_1 .

1. Introduction. Let (Ω, \mathcal{U}, P) be a probability space and $\{\mathcal{U}_n\}_{n\geq 1}$ an increasing family of sub σ -algebras of \mathcal{U} . Let $\{X_n\}_{n\geq 1}$ be a stochastic process adapted to $\{\mathcal{U}_n\}_{n\geq 1}$ (see, [2, p. 65]). Following Blake [1] we refer to $\{X_n\}_{n\geq 1}$ as a game and define

DEFINITION. The game $\{X_n\}_{n\geq 1}$ will be said to become fairer with time if for every $\varepsilon > 0$

$$P[\mid E(X_n/\mathscr{U}_m) - X_m \mid > \varepsilon] \to 0$$

as $n, m \to \infty$ with $n \ge m$. Any martingale is, trivially, a fairer with time game and thus this concept generalizes that of martingales. Blake, in [1], gave a set of sufficient conditions under which any uniformly integrable fairer with time game $\{X_n\}_{n\ge 1}$ is convergent in L_1 . We show that these sufficient conditions are not needed; in fact, we show that any uniformly integrable, fairer with time game converges in L_1 .

2. THEOREM 2.1. Any uniformly integrable fairer with time game $\{X_n\}_{n\geq 1}$ converges in L_1 .

Proof. To facilitate understanding, we break up the proof into a few important steps numbered (S1) through (S5). For every m and $n \ge m$ define $Y_{m,n} = E(X_n/\mathcal{U}_m)$. Let Γ stand for the family $\{Y_{m,n}, for all m \text{ and } n \ge m\}$.

(S1) Γ is uniformly integrable.

Since $\{X_n\}_{n\geq 1}$ is uniformly integrable there exists a function f defined on the nonnegative real axis which is positive, increasing and convex, such that

$$\lim_{t\to\infty}\frac{f(t)}{t}=+\infty$$

and $\sup_n E[f \circ |X_n|] < \infty$. (See [2, II T 22].) Now,

$$\begin{split} E[f \circ \mid Y_{m,n} \mid] &= E[f \circ \mid E(X_n / \mathscr{U}_m) \mid] \\ &\leq E[f \circ E(\mid X_n \mid / \mathscr{U}_m)] \text{ (since } f \text{ is nondecreasing)} \\ &\leq E[E(f \circ \mid X_n \mid / \mathscr{U}_m)] \\ &= E[f \circ \mid X_n \mid] . \end{split}$$

Therefore,

$$\sup_{Y_{m,n}\in\Gamma}E[f\circ\mid Y_{m,n}\mid]\leq \sup_{n}E[f\circ\mid X_{n}\mid]<\infty.$$

Another application of II T 22 of [2] ensures that Γ is uniformly integrable. Hence (S1).

(S2) Given $\varepsilon > 0$, there exists M such that for all $m \ge M$, one has

$$E(|X_m - Y_{m,n}|) \leq 2\varepsilon$$
 for all $n \geq m$.

Since Γ is uniformly integrable given $\varepsilon > 0$ there exists $\delta > 0$ such that $P(A) < \delta$ implies $\int_{A} |Y_{m,n}| dP \leq \varepsilon/2$, for all $Y_{m,n} \in \Gamma$. Choose M so large that $m \geq M$ and $n \geq m$ implies $P[|X_m - E(X_n/U_m)| > \varepsilon] < \delta$. Then, it is not difficult to see that

 $E[|X_m - Y_{m,n}|] \leq 2\varepsilon$ for all $m \geq M$ and $n \geq m$.

(S3) For every fixed m, the sequence $\{Y_{m,n}\}$ converges in L_1 to an \mathcal{U}_m measurable random variable Z_m .

Let
$$m \leq n < n'$$
.

$$\begin{split} E[|Y_{m,n} - Y_{m,n'}|] &= E[|E(X_n/\mathscr{U}_m) - E(X_{n'}/\mathscr{U}_m)|] \\ &= E[|E(X_n - X_{n'}/\mathscr{U}_m)|] \\ &= E[|E(\{E(X_n - X_{n'}/\mathscr{U}_n)\}/\mathscr{U}_m)|] \\ &\leq E[E(\{|E(X_n - X_{n'}/\mathscr{U}_n)|\}/\mathscr{U}_m)] \\ &= E[|E(X_n - X_{n'}/\mathscr{U}_n)|] \\ &= E[|X_n - Y_{n,n'}|] . \end{split}$$

Now from (S2) it follows that given $\varepsilon > 0$ for all sufficiently large n and n'

$$E[|Y_{m,n} - Y_{m,n'}|] \leq E[|(X_n - Y_{n,n'})|] \leq 2\varepsilon$$
.

Hence, for *m* fixed, the sequence $\{Y_{m,n}\}$ is Cauchy in the L_1 -norm. So, there exists, an integrable random variable Z_m , such that, $Y_{m,n} \xrightarrow{L_1} Z_m$. Without loss of generality we can take Z_m to be \mathscr{U}_m measurable. (Note that each $Y_{m,n}$ is \mathscr{U}_m measurable and there is a subsequence $\{Y_{m,n'}\}$ converging almost surely to Z_m .)

(S4) $\{Z_m, \mathcal{U}_m\}_{m \ge 1}$ is a uniformly integrable martingale.

The fact that $\{Z_m\}_{m\geq 1}$ is uniformly integrable follows trivially because the closure in L_1 of a uniformly integrable collection is uniformly integrable. (See, [2, II T20].) To show $\{Z_m, \mathcal{U}_m\}$ is a martingale it is enough to show that for every m, $E(Z_{m+1}/\mathcal{U}_m) = Z_m$ a.s. Since

276

$$\begin{split} E[|E(Y_{m+1,n}/\mathscr{U}_m) - E(Z_{m+1}/\mathscr{U}_m)|] \\ &= E[|E\{(Y_{m+1,n} - Z_{m+1})/\mathscr{U}_m\}|] \\ &\leq E[E\{|(Y_{m+1,n} - Z_{m+1})|/\mathscr{U}_m\}] \\ &= E[|Y_{m+1,n} - Z_{m+1}|] \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty \text{,} \end{split}$$

there exists a subsequence n' of $\{n: n \ge m\}$ such that

$$E(Y_{m+1,n'}/\mathscr{U}_m) \xrightarrow{\text{a.s.}} E(Z_{m+1}/\mathscr{U}_m)$$
 .

We can assume (- if necessary, by choosing a further subsequence, -) that $Y_{m,n'} \xrightarrow{a.s.} Z_{m'}$. Now,

$$\begin{split} E(Z_{m+1}/\mathscr{U}_m) &= \lim_{n' \to \infty} E(Y_{m+1,n'}/\mathscr{U}_m) \quad \text{a.s.} \\ &= \lim_{n' \to \infty} E(\{E(X_{n'}/\mathscr{U}_{m+1})\}/\mathscr{U}_m) \quad \text{a.s.} \\ &= \lim_{n' \to \infty} E(X_{n'}/\mathscr{U}_m) \quad \text{a.s.} \\ &= \lim_{n' \to \infty} Y_{m,n'} \quad \text{a.s.} \\ &= Z_m \qquad \text{a.s.} \end{split}$$

Hence (S4). (S5) $\{X_n\}_{n\geq 1}$ converges in L_1 .

Since $\{Z_n, \mathscr{U}_n\}_{n\geq 1}$ is an uniformly integrable martingale, there exists an integrable random variable Z_{∞} such that $Z_n \xrightarrow{L_1} Z_{\infty}$. We shall show that $X_n \xrightarrow{L_1} Z_{\infty}$. From (S3) and (S2) it is easy to check that given $\varepsilon > 0$ there exists M such that for all $m \geq M$

$$\int |X_m-Z_m|\,dP \leq 2arepsilon$$
 .

Therefore, for sufficiently large m,

$$\int |X_m - Z_\infty| dP \leq \int |X_m - Z_m| dP + \int |Z_m - Z_\infty| dP \leq 3\varepsilon$$
,

say. Hence (S5) and the theorem.

Since any game (stochastic process) $\{X_n\}_{n\geq 1}$ converging in L_1 can be taken to be a game fairer with time, by setting $\mathcal{U}_n \equiv \mathcal{U}$ in n, we get the following corollary.

COROLLARY 2.1. Let $\{X_n\}_{n\geq 1}$ be a game. It converges in L_1 if and only if it is uniformly integrable and fairer with time with respect to some increasing family of sub σ -algebras $\{\mathscr{U}_n\}_{n\geq 1}$ to which it is adapted.

Let p > 1.

THEOREM 2.2. Let $\{X_n\}_{n\geq 1}$ be a fairer with time game with $\{|X_n|^p\}_{n\geq 1}$ uniformly integrable. Then $\{X_n\}_{n\geq 1}$ converges in Lp.

Proof. Noting that the function f defined on the nonnegative real axis by $f(t) = t^p$ is positive, increasing and convex and $\lim_{t\to\infty} (f(t)/t) = +\infty$, in view of II T 22 of [2], it is clear that $\{X_n\}_{n\geq 1}$ is uniformly integrable. Hence by Theorem 2.1 it converges in L_1 ; in particular, $\{X_n\}_{n\geq 1}$ converges in probability. Therefore, $\{X_n\}_{n\geq 1}$ converges in L_p . (See Proposition II 6.1 of [3].)

COROLLARY 2.2. The game $\{X_n\}_{n\geq 1}$ converges in L_p if and only if $\{|X_n|^p\}_{n\geq 1}$ is uniformly integrable and $\{X_n\}_{n\geq 1}$ is fairer with time with respect to some increasing family of sub σ -algebras $\{\mathcal{U}_n\}_{n\geq 1}$ to which it is adapted.

REMARK. In view of our Theorem 2.1, the second convergence theorem of Blake in [1] becomes redundant.

References

1. L. H. Blake, A generalization of martingales and two consequent convergence theorems, Pacific J. Math., 35 (1970), 279-283.

2. P. A. Meyer, *Probability and Potentials*, Blaisdell Publishing Company, Waltham, Massachusetts, 1966.

3. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, Inc., 1965.

Received March 10, 1972.

INDIAN STATISTICAL INSTITUTE CALCUTTA-35, INDIA