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ON THE SINGULARITIES OF THE FUNCTION
GENERATED BY THE BERGMAN OPERATOR

OF THE SECOND KIND

P. ROSENTHAL

Let f(λ9 y) — P 2(/) be Bergman's integral operator of
the second kind with domain of definition

Let f(q) = (q-A)-1, AeW. In this paper it is shown
that f(λ, y) has singular points z = 2A, 2A(1 — w), where
w = A~xλ and z — λ + iy.

Let

dt
ψ(z9 z*) = P2(/) = [ E(z, z*9 t)f (± (1 -

be Bergman's integral operator of the second kind. P%{f) maps
functions / analytic in one variable in the neighborhood of the origin
into solutions of the linear partial differential equation

(Ψ. + Ψz*) = 0, z = \ + iy , z* = \-iy ,

N(X) = -(l/12λ)(l + δ i (-λ) 2 / 3 + •••) is analytic for -oo < λ < 0 and
singular at λ = 0. E(z, z*,t), called the generating function of the
operator, is analytic in the three variables z, z*, and t providing
I z + 2* I < I t2z |, I is some rectifiable Jordan curve in the upper com-
plex t-plane connecting the points —1 and 1, [1], [3]

In a previous paper [7] we obtained some results on the singu-
larities of P2(/) where / is meromorphic and z, z* were treated as
independent complx variables. In this paper we let z* — z (conjugate
of z) and N(X) — — l/12λ (Tricomi case). With these assumptions,

, y) = P E(u) f® - dt , where u = — ,
J-i V I - f 2λ

z — λ + iy ,

E(u) = H(\)(Fw(u) + Fm(u)), Fω(u) = C.u-^F^l/β, 2/3,1/3,
F™(u) = Ctu-+ι Ft(5/6, 4/3, 5/3; 1/u), Fj is the hypergeometric function
3 = 1, 2, Jϊ(λ) = C3λ-"6, C3 are constants, j = 1, 2, 3, (λ, y) e W =

{(λ, y) I 31'21 λ | < y, λ ^ 0, y > 0},
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I (the path of integration = {ί | ί = eiθ, 0 ^ θ ^ π), [4, p. 107] .

THEOREM. Let f(q) = (-4 — g)"1, A = λ0 + i#0 € W, X/A = w =

8 + iσ, z = X + iy, S, = {{w, z)\z = 2A, ττ/2 ^ arg w ^ α ,̂ π/2 > ^ x > ττ/3,
0 < δ, ^ I w I ^ 1/4 - <?2, 1/4 > δ,, δ2 > 0, 1/4 > δ, + δ2},

S2 = {(w, z) I z = 2A(1 — w), same conditions on w as in SJ ,

Sz = {(0, 2y0)}. Let T — Sγ U Sz U S3. T&ew T is a singular set for
at least one of the branches of ψ(w, z) defined in (1).

Proof. We consider first the case where E(u) = H(X)F{1)(u).

Domain considerations. (3), (4) imply ψ(w, z) is analytic function
of the two complex variables w, z for disc neighborhoods satisfying
0 < I w I < 1/4, I A/2 I < I z \ < \ A |, where we have extended λ to the
complex variable Aw. Note (1) implies we must specify branch cuts
in our definition of ψ(w, z). Since z — λ + iy (see (1)), we must also
consider the extension of λ, y to complex values subject to the above
inequalities. Thus we can also obtain nonempty neighborhoods Nδ(X),
Nδ(y) such that ψ(\ y) is an analytic function in λ, y, where λ, y
now have been extended to complex values.

In what follows we treat ψ(w, z) as an analytic function in z for
fixed w.

Consider the function obtained from (1) where we have used the
series definition for Fx(u),

TJ \L ~~ τ)

ap = (Γ(p + l/6)Γ(p + 2/S)/Γ(p + lβ)Γ(p + 1)), Γ is the Gamma
function, | z \ < A, | 2 λ | < \z\. From (2) we obtain two series,

I « | < I A I , I 2 λ | < I 2 I .

We will limit ourselves to the first series in (3) for our analysis of
t h e s i n g u l a r i t i e s o f P2(f). W h e n \ X \ ^ \ A / 2 \ - δ, \ z \ < ί \ A \ - δ,
I A/21 > δ > 0, the operations of summation and integration (with
respect to t) can be interchanged in the first series of (3), our inte-
grals are in the improper Riemann sense. Integrating the first part
of (3) by parts, then using the formula,
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fy+llβ d t ( 1 e 2 = i 'fy (1 e )

[2, p. 33], we obtain the function

(4) Uw, z) = Σ βA™

where

p + 1/2)

Γ ( A ; + m r ( k + 1 ) Γ ( p + 5 / 6 ) >

A

(5) can be rewritten as

/ 6 ) β(w)-ae(w) a - Γ(l/β)Γ(l/2 + p)
{b) β,{w) - α,Cp(W) , α, - Γ ( 1 / 3 ) Γ ( 6 / 6 + p ) '

, 1/2 + p, 1/3; w), F 8 a hypergeometric function. Using
the asymptotic formula for Fz for large p [6, pp. 235, 241 (23)], we
can write cp(w) as

cp(w) = a^vήe^R, + ap(w)(l -

a,(w) = ( r ( - l )

> sufficiently large, w e T, = {w \ 0 < δ, ̂  | w \ <: 1/4 - δ2, 1/4 > <?2,
^ > 0, 1/4 > δ, + δ2, ττ/2 ̂  arg w ^ α1? π/2 > αL > π/3},

Λyίp, w) = 1 + ^ } ( p , w) ,

ίp, w) = hj(w) Φ 0 uniformly for we Tlf j = 1, 2. Using
(6)> (7), we can rewrite (4) as

fι(w,z)= Σ a*Cp(w)\51u + Σ ci(P> w)zι + Σ c2(p,w)zξ,
(8) p=s0 P~Po+1 P~Po+1

— z — Π — \~γ z

and

( 9 ) cx(ί), w) = apap{w)ei1ΐlQRι , ca(j), w) = αpαp(w)(l —

see (6) for the definition of ap9 (7) for αp(w)
From (9) we obtain

(10) p =
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the radius of convergence of the second and third series in (8), and
— ε < arg c3(p, w) < ε, 0 < ε < π/2, p sufficiently large, w e Tu j = 1,
2.

Proof of (10). From (7) we obtain

1 + e ^ I Rd(p9 w) I ̂  1 - ε > 0 ,

1 > ε > 0, p sufficiently large, w e 2\. So we can take the pth. root
(say principle branch) of c3{p, w), j = 1, 2, cf (9).

Using the asymptotic formula (Γ(p + A)/Γ(p + B))~pA~B, we
conclude the first part of (10). Since l i m ^ (1 + Rίj)(p, w) = 1, w e Tlf

see (7), the second part of (10) follows.

(11) z = 2A and z = 2A(1 - w) , weT, ,

are singular points of (8).

Proof of (11). (10) satisfies the hypotheses of a theorem of
Dienes [5, p. 227]. From this theorem we conclude z = 2A and 2 =
2A(1 — w) are singular points respectively of the second and third
series in (8). Further, c3(p — ξ — pe*+, w) (see (9)) is an analytic
function in ζ in the half-plane xx ^ 1, ζ = χt + iyly and

I c3(l + pe*+, w) I < eΐp , ε > 0 ,

and arbitrarily small, p > 0 and sufficiently large, and —π/2 ίίψtί π/2,
w e TΊ, j — 1, 2. This follows from a definition of the remainder
term R{

o

j) (p, w) of (7), see [6, p. 235]. Hence by a theorem of Le Roy
and Lindelδf [5, p. 340], we conclude the only possible singular points
of the second series in (8) are the points on the ray φ = φo> φ0 =
arg2A, joining 2A to infinity and the only possible singular points
of the third series in (8) are the points on the ray φ — ΘQ,
θ0 — arg2A(l — w), weTly joining 2A(1 — w) to infinity. Further,
arg2A Φ arg(2A(1 — w)), we ϊ\. Hence the singular points z = 2A,
z = 2A{l — w), weT19 of the second and third series respectively
are not removed upon addition of these two series in (8). This com-
pletes the proof of (11).

(12) (0, 2yQ) is a singular point of ψ(w, z) .

Proof. Let w = λ/A = λ0 = 0. (3) then reduces to the first
series, and (4) reduces to the hypergeometric function F4(l, 1/2, 5/6;
(y/2y0)) times a constant. F4 is singular at the point y = 2y0, so (12)
holds.

From (11), (12) we conclude T is a singular set (see Theorem for
the definition of T) of φ(w, z) for the case F,.
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Proof. We note the second series in (3) when integrated with
respect to t gives rise to a function fz(w, z) which is regular at the
points in T.

For the case F2 (see (1)) we use the formula

r 5 ' 3 (Λ i*\»w d t - 1 (1 p-«*w\ /X

[2, p. 33].

Proceeding as above, we then conclude T — {(0, 2yQ)} is a singular
set for the case F%. (1) thus can be written as the sum of two
functions,

(13) ψ(w, z) = - L (g(w, z) = z^P^w, z) + P2(w, z)) ,

where P3 is singular at the points in T — {(0, 2yQ)}, j = 1, 2. This
follows from the linearity of the operator P2(/)

At least one of the branches of g(w, z) of (15) is

singular for points in T — {(0, 2y0)} .

Proof of (14). z2'3 can be one of the three branches,

We form the sum

Σ
i

We note Σ U «Λ(w, «) = 0, | w | < 1/4; \A/2\<\z\<\A\ (see (3)).
So if all the branches of ψ(w, z) in (13) were regular at the points
in T — {(0, 2y0)}, then P2(w, z) would be regular at the same points,
a contradiction. For w = X/A = λ0 = 0, P2(0, z) = 0, hence (0, 2̂ /0) is
a singular point for all branches (13) (see (12)). This completes the
proof of our Theorem.
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