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ON THE SEMISIMPLICITY OF GROUP RINGS
OF LINEAR GROUPS 1II

D. S. PASSMAN

In this paper we continue the study of the semisimplicity
problem for group rings of linear groups. We consider the
case in which the characteristics of the two fields involved
are both equal to » > 0 and we obtain appropriate necessary
and sufficient conditions in terms of the abstract structure
of the group.

Let K[G] denote the group ring of G over the field K. In this
paper we study the semisimplicity problem for K[G] with G a linear
group. If char K = 0 and if G is a linear group over any field, then
it is trivial to see that JK[G] = 0. Thus the only case of interest
occurs when char K = p > 0. A study of this situation was initiated
by A. E. Zalesskii in [4] and continued somewhat in [3]. Here we
solve the problem in case G is a linear group over a field L and
char L = char K. Before we can properly state the result it is neces-
sary to describe a certain characteristic subgroup <(G) of G. There-
fore, we postpone the statement until the next section. We follow
the notation of [2] and [3].

1. Normal p-subgroups. Let G be a linear group over a field
L of characteristic p>0. That is, G is a subgroup of the group of
units of L,, the ring of w X % matrices over L. Of course G is also
contained in [,, where L is the algebraic closure of L and thus
without loss of generality we may assume that L is algebraically
closed. Thus for the remainder of this work L will denote a fixed
algebraically closed field of char» > 0 and any subgroup of L, for
any w will be called an L-linear group.

It is apparent from [4] that a necessary ingredient here must be
a consideration of the normal p-subgroups of G. We start with a few
elementary observations. If G is any group let 0,(G) denote its
maximal normal p-subgroup. It is clear that 0,(G) always exists.
If G < L, we let LG donote its L-linear span. Thus certainly LG is
an L-subalgebra of L,.

LemMMA 1.1. Let G be an L-linear group. Then

(i) O0,(G) is a nilpotent group.

(ii) G/0,(G) is an L-linear group.

(iii) If 0,(GQ) = (1), then G can be represented as am L-linear
group in such a way that LG is semisimple.
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216 D. S. PASSMAN
(iv) If LG s semisimple and H < G then LH is semisimple.

Proof. Observe that LG is a finite dimensional L-algebra so JLG,
its Jacobson radical, is nilpotent. We start by proving (iv). If xe G
then since H<|@G, = normalizes H and hence clearly = acts as an algebra
automorphism on LH. Since JLH is characteristic in LH we have
2 'JLH)x = JLH so (JLH)x = «(JLH). Thus since LG is spanned
by all such x we obtain easily (JLH)(LG) = (LG)JLH). Now JLH
is nilpotent and therefore by the above so is the ideal (JLH)(LG).
Thus JLH)(LG) & JLG = 0 and JLH = 0. This yields (iv).

Now let ¢: LG— LG/JLG be the natural map and let P={g ¢ G|1(9) =
1}. Since G & LG, P is a subgroup of U= {1 + a|aecJLG} < LG.
Now JLG is nilpotent and char L = p > 0 so we see easily that U is
a nilpotent p-group. Thus P is a nilpotent p-group and P = 0,(G).

Now p#(LG) = LG/JLG is a finite dimensional L-algebra so it is
contained in L, for some integer w. Furthermore, LG/JLG contains
the group G = G/P and is clearly spanned by it. This shows that G
is an L-linear group with LG semisimple. If 0,(G) = (1) then
certainly P = (1> so G = G and (iii) is proved.

Observe that if we show that P = 0,(G) then (i) and (ii) will
follow and to do this we need only show that @ = 0,(G) = {1).
Since LG is semisimple, part (iv) and @ <] G implies that LQ is also
semisimple. Let I be the subalgebra of LQ spanned by all 1 — 2
with e @. Then I is an ideal of LQ and I is a finite dimensional
algebra (without 1) spanned by the nilpotent elements 1 — x. As is
well known (see for example the proof of Lemma 10.1 (ii) of [2]) this
implies that I is nilpotent so IS JLQ = 0. IfscQ thenl —azel=0
so # = 1. Thus @ = (1) and the lemma is proved.

Let G be any group and let H be a subgroup of G. We set
Dy(H) = {ze G| [H: Cy(x)] < oo} .

Clearly D,(H) is a subgroup of G and if H is normal or characteristic
in G then so is D,(H). Furthermore,

Dy(G) = 4(G) = {we G |[G: C(2)] < oo}

is the F. C. subgroup of G. Finally 4°(G) is defined to be the sub-
group of 4(G) generated by all p-elements, that is elements whose
order is a power of p. We say that G is a 4-group if G = 4(G).

LeMMA 1.2. Let G be an L-linear group.
(i) If H]G and G = Dg(H) then [H: H N Z(G)] < o=
(ii) If O0,(G) = (1) then 4°(GQ) is finite.
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Proof. Since LG is finite dimensional we can choose some finite
number of group elements z,, «, «-+, , which span LG. By assump-
tion for each 4, [H:Cy(x;)] <  and thus by Lemma 1.1 of [2],
[H: Z] < « where Z = 7Cx(x;). Now Z < LG is centralized by a
spanning set so it is, therefore, centralized by all of LG and hence
by all of G. This shows that Z & Z(G) and thus (i) follows.

Suppose 0,(G) = (1) and set H = 4°(G). Then H = 4(H) so by
part (i) applied to H we conclude that [H: Z(H)] < «. Now 0,(G) =<1)
and Z(H) <] G so 0,(Z(H)) = <1) and since Z(H) is abelian this says
that Z(H) has no elements of order p. Thus 4°(Z(H)) = {1). On
the other hand, since [4°(G): Z(H)] < «, Lemma 19.3 (v) of [2] implies
that [Z(H): 47(Z(H))] < . Thus 47(Z(H)) = <{1) yields | Z(H)| < o
and hence | H| < «. This completes the proof.

Let G be any group. We define a characteristic subgroup #(G)
of G as follows. Let P = 0,(G) and set G* = Dy(P) so that G* N P =
D.(P) = 4(P). Then <~(G) is the subgroup of G* given by

G*2 2(G)24(P), £ (G)/4P) = 47(G*/4(P)) .

LemMMA 1.3. Let G be an L-linear group. Then with the above
notation [Z(G): A4(P)] is finite and F(G) is a characteristic A-sub-
group of G.

Proof. £(G) is clearly characteristic by its construction. Now
G* ] G so 0,(G*) < 0,(G) = P and thus 0,(G*) = 4(P). Therefore,
by Lemma 1.1 (ii), G*/4(P) is an L-linear group and -certainly
0,(G*/4(P)) = {1). Thus Lemma 1.2 (ii) implies that 4°(G*/4(P)) is
finite and we see that [(G): 4(P)] is finite. Furthermore, since
clearly G* = D,.(4(P)), Lemma 1.2 (ii) yields [4(P): 4(P) N Z(G*)] <
and this and the above show that .&°(G) has a center of finite index.
Therefore, <~ (G) is a 4-group.

We can now state our main result. If H is a subgroup of G we
say that H has locally finite index in G and write [G: H] = 1.f. if
for all finitely generated subgroups S of G we have [S: SN H] < .

THEOREM. Let K be a field of characteristic »p > 0 and let G be
a linear group over a field of the same characteristic p. Then JK[G]+#0
of and only if there exists an element he F (@) of order p with
[G: Cu(B)] = L.f.

Observe that the above necessary and sufficient conditions concern
the abstract structure of G and not how G is written as a linear
group.
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2. The case: 0,(G) = (1>. The linear groups with 0,(G) = (1)
were studied in [4] under the additional assumption that K = L,
that is the two fields are the same, and the semisimplicity problem
was solved in that case. Here we modify the original argument
slightly to handle the case in which K and L are different.

If S is a subset of any group G we say that S has finite index
in G and write [G:S] < « if G can be written as a finite union,
G = U? Sz;, of right translates of S.

LeEmMMA 2.1. Let G be an L-linear group and let T, T, +--, T;
be a finite number of L-subspaces of LG properly smaller than LG.
Let S be a subset of G and suppose that

G:SUQ@DEL

Then either [G:S] < o or G = Ui (GNT;) and G has a subgroup H
of finite index with LH =+ LG.

Proof. We assume that [G:S] is infinite and we consider all
ways of writing G as a finite union

G:Ls_JSxiuLiJ(GﬂMi)

where z;¢ G and the M; are L-subspaces of LG each contained in
some T;. By assumption such a decomposition exists. For each such
union we associate an ordered pair (d, ) where d = max dim M; and
7 is the number of M; of dimension d. We say (d,r) < (d, r,) if
d, <d, or d,=d, and r, <7, This then is a well ordering and
assume the above union is so chosen that (d,») is minimal. By
definition d < dim LG. We may assume that dim M;=d for
t=1,2,+-+, 7. Note that the M; terms must occur since [G: S] = .
Fix k <r and ge G. Then

GNM)gS 6 =USeuU(GEnM)
SO l 1
GN M S USng™ UU (G N Mg~
— USwg™ UU (G N Mig™)
and thus 1 l
GN M= USeg™ UU G0 (Mg~ N IL) -
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Thus replacing the term G N M, in the original union by the above
yields a new such union with the subspace M, replaced by the finitely
many subspaces M;g* N M, for ¢ =1,2, «--, ¢t. If dim (Mg~ N M,) <
dim M, for all 7, we then get a new decomposition with some smaller
parameter (d’, 7'). Since this cannot happen we conclude that for some
i Mg N M, = M, or M; 2 M,g. Since M, has the largest dimen-
sion of all the subspaces we therefore have M; = M,g for some 7 < 7.

We have therefore shown that G permutes by right multiplica-
tion the subspaces M,, M,, ---, M, and hence if H is the stabilizer of
M, then [G:H]< o. If LH = LG then MH = M, implies that
M(LH) = M, and then MG = M,. Again by the minimality of (d, r)
and [G:S] = we have GNM, # @ so let yeGN M. Then
MG = M, yields M,2yG = G. Thus M,2 LG, a contradiction.
This shows that LH # LG and therefore LH is a proper subalgebra
of LG.

Finally let 1 =g, 9., -+, 9. be a set of right coset representatives
for H in G. By renumbering the M;'s if necessary we may assume
that M,g; = M;. Let T; be chosen with M; < T;,. Now MH = M,
yields yH & M, so yHy; & M,9; = M;. Thus

G=yG=UyHusUMcUT.
so clearly G = Ui (G N T;) and the lemma is proved.

For the remainder of this work we let K denote a fixed field of
characteristic p. If G is a group and if z,ye G we use x ~ ¥ to
indicate that x and y are conjugate in G.

LEMMA 2.2. Let o= >k a,9,€ K[G],« =0 and suppose that
a is mnilpotent. Then for some © +J and some integer n we have

P p"
9; ~ ¢9; -

Proof. Let S denote the subspace of K[G] spanned by all Lie
products [gB, 7] = B — ¥B with B,7e K[G]. Then S is spanned by
all Lie products [z, y] = oy — yx with %, ye G. Now yx = a7 '(xy)x
S0 yx ~ ;oY and, therefore, we see that if de .S then the sum of the
coefficients of 6 over any conjugacy class of G is zero.

By assumption « is nilpotent so we can choose » = 0 with a* = 0.
Then Lemma 3.4 of [2] yields

k

0=a"=3Xa"gl" + 6

i=1

for some 6 S. If a; # 0 then since the sum of the coefficients in
the conjugacy class of ¢g?" must be zero in the above and since the
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contribution of 6 to this sum is zero, we conclude that some j = ¢
must exist with g7 ~ ;97".

LEMMA 2.3. Let G be an L-linear group with LG semisimple.
Since L is algebraically closed, LG 1is a finite direct sum of full
matriz rings over L and we embed LG in L, for some u by placing
the matrixz rings of LG in blocks along the diagonal of L,. Then
tr, the matrixz trace map on L,, yields a mondegenerate symmetric
bilinear form (a, B) = traB on LG.

Proof. The form (a, B8) = trap is certainly bilinear and sym-
metric. We need only show that it is nondegenerate on LG. Let
ae LG with (o, LG) = 0. Then

tr (LAa(LG) = tr a(LG)(LG) = tr a(LG) = 0

so every element of the ideal (LG)a(LG) has trace zero. But any
nonzero ideal of LG contains one of the full matrix ring and certainly
all its elements cannot have trace 0. Thus « must be zero and the
lemma is proved.

We now obtain our generalization of Zalesskii’s result by modify-
ing the proof of [4]. It is apparent that the proof could be greatly
simplified if we only knew that the radical was a nil ideal.

LEMMA 2.4. Let G be an L-linear group with 0,(G) = {1>. Then
G has a normal subgroup G, of finite index and a representation of

G, as an L-linear group in such a way that LG, is semisimple and
if [Gy H] < e then LG, = LH.

Proof. Since 0,(G) = (1>, Lemma 1.1 (iii) implies that G can be
represented as an L-linear group with LG semisimple. We now con-
sider all normal subgroups H of G of finite index and all ways in
which H can be represented as an L-linear group with LH semisimple
and we choose G, to give the minimum possible dimension of LG,.

Thus we have G, <| G, [G: G] < « and G, is an L-linear group
with LG, semisimple. Furthermore, let H be a subgroup of G, of
finite index. Then [G: H] < « so H,, the intersection of the finitely
many G-conjugates of H, is a normal subgroup of G of finite index.
Since H, <] G, we have LH, semisimple by Lemma 1.1 (iv) and thus
by the minimality of the dimension of LG, we have LG, = LH, and
hence LG, = LH.

PROPOSITION 2.5. Let G be an L-linear group with 0,(G) = (1.
Then JK[G] is nilpotent.
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Proof. Let G, be the normal subgroup of G of finite index given
in the preceding lemma and let us write LG, as described in Lemma
2.3. Thus LG, < L, and tr yields a nondegenerate bilinear form on
LG,. We show now that K[G,] is semisimple.

Suppose by way of contradiction that @ = 3%, a,9;€ JK[G,] with
a # 0 and with the group elements g; distinct. If xe G, then also
ax =3k a,9.0€ JK[G,]. Thus if G, is the finitely generated subgroup of
Go given by G, = <gu gzy ***y Gy x> then aerK[Gol N K[G1] & JK[GJ
by Lemma 16.9 of [2]. We show now that for some ¢ # j, tr (g;x) =
tr (g;2). N

Suppose this is not the case and let GF(p) denote the algebraic
closure of GF(p). Since G, is a finitely generated subgroup of L, we
can find, by the Extension Theorem for Places, a place @: L —
GF(p) U {0} such that @ is finite on all the matrix entries of the
generators of G, and their inverses and furthermore for all 7 % 7,
o(tr (9;x)) # P(tr (g;)). If < denotes the corresponding valuation
ring in L then clearly G, & <, and ® can be extended to a homo-
morphism @: 7, — GF(p), and therefore (G,) is finite.

Consider the natural map 7: K[G,] — K[®(G))]. Since 7 is an
epimorphism, n(JK|[G,]) & JK[9(G,)] and thus

7(@w) = 3 ap(g) € JK[P(G] -

Now @(G,) is finite so JK[®(G,)] is nilpotent and therefore >k, a;2(g:x)
is nilpotent. Thus Lemma 2.2 implies that for some ¢ % j and some

integer n, P(g:7)”" ~ o, P(g;4)”". Let tr denote the trace map in
GF(p),. Since similar matrices have the same trace and since the
fields have characteristic » > 0 we conclude that

[tr 2(g:0)]" = tr [P(9:0)™"] = Tr [P(9:0)™"] = [Er P(gs)]""
and thus tr P(9;%) = tr ®(g;x). But certainly tro@ = @otr so we obtain

P(tr (g:2) = tr P(g:w) = tr P(g,2) = P(tr (g,%))

a contradiction.

We have, therefore, shown that for each e G, there exists some
1 # j with tr g, = tr g;x. For each 7 # j let T;; be the L-subspace
of LG, given by

Ti; = {0e LG, | tr (9; — 9;)0 = 0} .

Since tr yields a nondegenerate bilinear form we see that T;; # LG,
and by the above we have
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G = U G n T,;J' .
5]
But then Lemma 2.1 with S = @ implies that G, has a subgroup H
of finite index with LH = LG, a contradiction. This shows that
K|[G,] is semisimple. Since [G: G;] < «, Lemma 16.8 of [2] implies
that JK[G] is nilpotent and result follows.

3. A local situation. We now study a group G with a rather
special structure. We say G has property (*) if G has a normal
series G 2 W 2 P 2 Z satisfying

1. G/W is infinite cyclic.

2. G = G/P is an L-linear group with 0,(G) = <{1).

3. P is an abelian p-group.

4. [P:Z] < « and W centralizes Z.

We say that G has property (**) if G satisfies all of the above and
in addition

5. PN 4(G) =<1).

Our aim is essentially to completely determine JK[G] if G satisfies
(*). We start by assuming that G satisfies (**) and prove that JK[G]
is nilpotent. For the remainder of this section we assume that G
satisfies (**) and is given as above. We start by introducing some
more notation.

LemMA 3.1. There exists a subgroup G, of G of finite index
with G 2 G, 2 P and such that

(i) G, = G,/P has a representation as an L-linear group with
LG, semisimple and with LG, = LH for all subgroups H< G, of
finite tndex.

(ii) G, centralizes the quotient P|Z.

(iii) If W, = G, NW then G,/W, is infinite cyclic.

Proof. The existence of a group G, satisfying (i) is an immediate
consequence of Lemma 2.4. Furthermore, it is clear that this same
property holds for any subgroup of G, of finite index which contains
P. Now G, acts on finite group P/Z and P centralizes this quotient.
Thus we may certainly replace G, by C,; (P/Z) if necessary and then
this new G, also satisfies (ii). Finally

G/ W, = G/(WNG) = GWW

is a subgroup of finite index in the infinite cyclic group G/W and the
result follows.

We will show that K[G,] is semisimple. Thus by way of con-
tradiction we assume now that G, is given as above and JK[G,] # 0.
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LEMMA 38.2. There exists a mnonzero element v = aBeJK[G,] N
K|[W,] satisfying

(i) a = Q, the sum of all the elements of Q, where Q is a finite
subgroup of P.

(ii) B = 31, a,9; where the g; are in distinct cosets of P in
W,

(iii) < centralizes K[P].

Proof. By assumption JK|[G,] # 0 and since G,/W, is infinite
cyclic Theorem 17.7 of [2] implies that

I =JK[G] N K[W,]

is a nonzero ideal of K[W,]. Choose Y€ I, 0 such that Supp 7 is
contained in the smallest number » of cosets of P. By multiplying
v by a group element if necessary we may assume that one of these
cosets is the identity coset. Thus

Y= a0;
i=1

where «;¢ K[P] and ¢, =1, g,, -+, g, are in distinct cosets of P.

Let Q be the subgroup of P generated by the support of all the
;. Then @ is a finitely generated and hence finite subgroup of the
abelian p-group P. Therefore, as is well known, the unique minimal
ideal of K[Q] consists of all K-multiples of Q and thus @ is a multiple
of a, in K[Q]. By multiplying v on the left by this suitable factor
we may clearly assume that @, = Q. Let he Q. Then (1 — h)a, = 0
so (1 — h)ve I has support contained in a smaller number of cosets.
This implies that (1 — k)Y = 0 for all e Q and thus we have for all
1, A = a,-@ for some a;€ K. This yields

T=ap = Q(g aiQi)

and (i) and (ii) are proved.

Finally let he P. Since P is abelian and g, = 1 we see A™'vh —ve I
has support in fewer cosets of P. By the minimality of » we con-
clude that h=vh — v = 0 for all ke P and (iii) follows.

We now define an even smaller subgroup of G. Again we fix
the above notation for the remainder of this section. Let

T={heQ|h=+1,Cqh) £ W} .

Now define the subgroup G, by
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G1 = }DT WOCGO(h)
with the understanding that G, = G, if T = @.

LEMMA 38.3. Let G, be as above. Then
(i) G 2G, 2 W, [Gy:G] < « and G,/W, is infinite cyclic.
(ii) If he T then G, = W,C,(h).

Proof. By definition we have G, 2 G, 2 W,. Moreover, G,/W, is
the intersection of finitely many nonidentity subgroups of the infinite
cyclic group G,/W,. Thus G,/W, is infinite cyclic and [G;: Gi] < .

Finally let he T. Then W, <& G, & W,C; () so

G, = WG, N Cao(h)) = WoCal(h)

and the lemma is proved.

The reason for working with G, rather than G, will be apparent
in the following result.

LeMMA 3.4. Let xe G, — W, and let o be as above. Suppose
that for infinitely many integers s (positive or mnegative) there exists
an integer r = r(s) = 1 with

aa{z-—-saxH%‘ e ax—rs — 0 .

Then for some he T we have % e Cg (h).

Proof. The assumption on « clearly implies that for each such
s the group QQ* 'Q*™™ «.. Q*™" is not a direct product of the indicated
factors. Since there are infinitely many such s there are certainly
infinitely many positive or infinitely many negative ones. Therefore,
by Lemmas 3 and 4 of [1], there exists he @, h == 1 and a positive
integer m with ™ or a™ in C,(h) and hence 2™e Cy(h). Now
ze G, — W, and G,/W, is infinite cyclic so ¥™¢ W, and by definition
of T we must have he T.

Since G, = W,C,,(h) by Lemma 3.3 (ii) we can write & = wy with
we W, and ye Cg(h). Therefore, ye Cs(h), 2™ = (wy)™ e Cy,(h) and
since W, centralizes P/Z we have h* = hz for some ze Z. It then
follows easily by induection on 7 that

R0V = havav? ... gyt
and therefore

h = h“™ = hava?® oo 2"
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so we have z'2"" ... 2" = 1. We now conjugate this last expression
by %™ and obtain

22V eee 2" =1 = 2% ee. V"
Thus since P is abelian we have z = z*".

Since G satisfies (**) we know that W centralizes Z and thus we
have C,(2) 2 (W, y™>. Furthermore, G,/W, is infinite cyclic and
y& W, since x¢ W, so clearly [G.: C;(2)] < co. Hence [G: Cs(2)] < oo
and we have ze PN 4(G). Again by assumption (**), PN 4(G) = (1)
so z=1. Finally h* = h** = h2* = h so xeC,(h) and the result
follows.

Let ~ denote the natural map G,— G, = G,/P and we extend this
to the map K[G,] — K[G,]. Thus for 8= 3\, a:g; as given before
we have B = 3%, a,;5;. We now represent G, as an L-linear group
as in Lemma 3.1 (i) so that LG, is semisimple.

LEMMA 3.5. We can embed LG, in the matrixz ring L, in such
a way that tr, the matrix trace map on L,, yields a nondegenerate
symmetric bilinear form LG, Futhermore, if for each i # j we define
Ti; by

Ty ={0e LG, | tr (§; — g0 = 0}
then T,; is a proper L-subspace of LG, = LG..

Proof. The first part follows immediately from Lemma 3.1 (i)
and Lemma 2.3. The second part about T;; follows from the nonde-
generacy of the bilinear form and the fact that g; + g, by Lemma
3.2 (ii). Finally LG, = LG, by Lemma 3.1 (i).

LEMMA 8.6. Let xc G, — W, and let B be as above. Suppose
that B8z* e K[G,] is nilpotent for all integers s (positive or mnegative)
with possibly finitely many exceptions. Then for some i = j we have
re T;,.

Proof. Since ze G, — W, and G,/W, is infinite cyclic we see that
{Z) is infinite. We consider <{Z) as an L-linear subgroup of G..
Let V denote the finite set of exceptional integers in the above and let

S={&|veV}.

Then S is a finite subset of <{Z) so clearly [{Z):S] = co. Now let s
be an integer not in V. Since

— n
Bx* = Z @;9:%;
=1
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is nilpotent we conclude from Lemma 2.2 that for some % % j and
some integer t = 0

(3" ~ 7,(3,8)" .

Thus since similar matrices have the same trace and since char
L = p >0 we have

(tr gz’ = tr (g.2°)" = tr (g, = (tr g;z°)*" .

Hence trg,z° = tr g;#° and " e T;,.
We have therefore shown that

@) =SU EJJ (&> N Tyy)
and since [(Z): S] = c, Lemma 2.1 implies that
@ =y nTy .
This shows that Z e T;; for some ¢ > j and the lemma is proved.

We now come to the main result of this section.

PROPOSITION 3.7. Let G be a group satisfying (**). Then JK|[G]
18 nilpotent.

Proof. We use all the above notation and show first that
JK[G,] = 0. If this is not the case then all of the above lemmas
and notation apply.

Let e G, — W, and let s = 0 be an integer (positive or negative).
Since G./W, is infinite cyclic, the element 2~ has infinite order
modulo W, Since veJKI[G] N K[W,], Lemma 21.3 of [2] implies
that for some integer r = r(s) = 1 we have

VYT e =0
Now v = ag so this yields
ape i B T cea @ TR = ()
By Lemma 3.2 (iii) ¥ centralizes K[P] and hence since P <] G, 7" %
also centralizes K[P].

We use this latter fact to rearrange the terms in the above
product. First since the product is

,Y,Yx—s e ,\/w—~('r—l)sax—rslgx—rs

—is

we can shift the a*™"° factor past all the v and obtain

—_ — —p—2) —{pe—1) — —1) —_
e 73771 L 'Yz (r 2;saa, {r LSBZ (r l;sBI rs .
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We next shift the >~ term all the way to the left and continu-
ing this process we clearly obtain

(aax——sa{z—zs e ag;——m)(lglgz-—slgx—k e 'Bx"'rs) — 0 .

Let o denote the above first factor and ¢ the second. Suppose
that o # 0. Now P is an abelian p-group and char K = p so JK[P]
is the unique maximal ideal of K[P]. This implies that every element
of K[P] — JK[P] is a unit in K[P]. If we now write v as v = Xr;y;
with 7;€ K[P] and the y; in distinct cosets of P,ot =0 and 0+ 0
therefore implies that 7,€ JK[P] and hence ze (JK[P))K[G,]. But
this ideal is precisely the kernel of the homomorphism K[G,] — K|[G,]
and therefore 7 = 0. Thus

0 = f = EE;‘*SB;»QZS PRI E;”‘TS — (EES)T+1E—78

and (Bx°)" = 0.
We have therefore shown that for each s # 0 either

—2s

an” " a* ™ see @ =0
for some r = »(s) = 1 or B%° is nilpotent. If the first fact occurs for
infinitely many s then by Lemma 3.4, xc C,(h) for some he T. If
this first fact occurs for only finitely many s, then B%° is nilpotent
for all but finitely many s and Lemma 3.6 yields Z ¢ T; for some 7 = j.
Observe that the above holds for any xe G, — W,. Thus we see
that
él =S U U (GL N Tii)

i7=]
where

S=W,u UTeh .

We apply Lemma 2.1 and there are two possible conclusions. First
there exists a subgroup H of G, of finite index with LH = LG..
But [Gy:G,] < « so [Gy H] < = and Lemma 3.1 (i) then yields
LG, = LG, = LH, and contradiction. Secondly we have [G.: S] <
and this says that G, is a finite union of cosets of the subgroups
W, and C, (k) for all ke T. Then by Lemma 1.2 of [2] we see that
one of these subgroups must have finite index in G,. Since G,/W, is
infinite cyclic we, therefore, have for some he T, [G.: C’;—(T)] < oo,
Moreover, [G: G)] < « and Cy(h) 2 P so this yields [G: Cy (h)] < .
Thus » =1 and he PN 4(G), a contradiction since G satisfies (**).

We have therefore shown that JK[G,] = 0. Since [G: G,] < oo,
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Lemma 16.8 of [2] implies that JK[G] is nilpotent and the proposi-
tion is proved.

4. The main theorem. In this section we prove our result.
However, we first need a few additional facts about groups satisfying
condition (*).

LEMMA 4.1. Let G satisfy (*) and suppose that P 4(G) is
Sinite. Then JK[G] is wmilpotent.

Proof. Let @ = PN 4(G) <G and consider G/Q. Then G/Q has
a normal series

G/Q2 W/Q 2 P/Q 2 ZQ/Q

and it is trivial to see that G/Q has property (*). In addition G/@Q
satisfies (**) as follows. Let ke P with 2Q/Q € 4(G/Q). Then the G
conjugates of h are contained in only finitely many cosets of Q.
Since @ is finite this implies that he PN 4(G) = @ and hQ/Q = 1.
Thus P/Q N 4(G/Q) = {1> and Proposition 3.7 implies that JK[G/Q]
is nilpotent.

Consider the natural map K[G]— K[G/Q]. Since @ is a finite
p-group the kernel of this map is the nilpotent ideal (JK[Q])KI[G].
Moreover, we have

JK[G)/JK[QDKI[G] = JK[G/Q]

and since both JK[G/Q] and (JK[Q])K[G] are nilpotent, the lemma
is proved.

LEMMA 4.2. Let Q be a periodic normal subgroup of a group G
with Q S 4(G). Let g,yeG and suppose that gQ/Q e 4(G/Q). Then
there exists an integer m = 1 such that y™ centralizes g.

Proof. Since hQ/Q e 4(G/Q) it follows that some power y™ of y
with m’ = 1 centralizes ¢gQ/Q and thus (y™, g) € Q. Moreover, since
Q@ is a periodic normal subgroup of G contained in 4(G), there exists
a finite normal subgroup H of G with (y™, g) € H. This implies that
y™ normalizes the finite coset Hg and therefore some possibly bigger
power y™ of y centralizes g.

At this point we could completely determine the structure of
JK[G] if G satisfies (*). However, we will content ourselves with
observing the following key fact. If ae K[G] we let
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p-Supp @ = {heSupp « |k # 1 has order a power of p}.

PROPOSITION 4.3. Let G satisfy (*) and let xe€ G. Suppose that
acJK[G] with 1eSuppa. Then there exists he p-Suppa and an
integer n = 1 such that x* centralizes h and hP/P e 4°(W/P).

Proof. Let @ = PN 4(G) <{G and consider G/Q. Then G/Q has
a normal series

G/IQ 2 W/Q 2 P/IQ 2 ZQ/Q

and it is trivial to see that G/Q also satisfies (*). Suppose zeZ
with 2Q/Q € 4(G/Q) and choose y€ G with G = (W, y>. Then Lemma
4.2 applies and we conclude that y™ centralizes z for some m = 1.
Since ze Z we therefore have C,(z) 2 {W, y™> and hence

[G: Cy(2)] < 0, 2e PN 4(G) = Q and 2Q/Q@ =1.

We have shown that the group G/Q satisfies (*) and in addition
ZQ/Q N 4(G/Q) = {1). Since [P/Q: ZQ/Q] < « we therefore conclude
that P/Q N 4(G/Q) is finite and hence by Lemma 4.1, JK[G/Q] is
nilpotent.

Write «a as

t
a = Z‘imyz
&

with «; € K[Q] and with g, =1, g,, -+, ¢, in distinct cosets of Q in G.
Since 1eSuppa we can assume that 1e Suppc«; for all ¢ and hence
g; € Supp «.

Suppose first that «, e JK[Q]. Since 1leSuppa, it follows that
there exists heSuppa, & Suppa with A = 1. Then % has order a
power of » and he 4(G) so certainly x™ centralizes % for some n.
Finally hP/P = 1€ 4°(W/P).

Now assume that «,¢ JK[Q] and let ~ denote the natural map
K[G] — K[G/Q]. Since @ is an abelian p-group we see that the
kernel of ~is (JK[Q)K[G] and therefore for each i, & = a1 for
some a; € K and by assumption a, #+ 0. Then

@ = Z a:d; € JK[G/Q]

has 1 in its support. Furthermore, JK[G/Q] is nilpotent so Theorem
20.2 (i) and Lemma 3.5 of [2] imply that for some ¢ # 1, §; e 47(G/Q)
and §; has order a power of p. Since @ is a p-group we see that g,
has order a power of p and by Lemma 4.2, 2* centralizes g; for some
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n = 1. Now g; has finite order a power of p and G/W is infinite
cyclic so g;€ W. Moreover, g;Q/Q has only finitely many conjugates
in G/Q so certainly g,P/P has only finitely many conjugates in W/P.
Thus ¢,P/Pe 4°(W/P) and the proposition is proved.

The following is well known.

LEMMA 4.4. Let G be a group and let H be a normal 4-subgroup
of G. Suppose that there exists an element he H of order p with
[G: Cy(h)] = I.f. Then JK[G]N K[H] +# 0.

Proof. Let h and H be given as above and let H* = (h)? be
the normal closure of (k&) in H. Then H* is a finite normal subgroup
of H whose order is divisible by p. We show that JK[H*] = JK[G].
Since JK[H*] # 0 and JK[H*] < K[H] this will yield the result.

Since H* is finite, it clearly suffices by Lemma 17.6 of [2] to
show that if S is a finitely generated subgroup of G with S 2 H*
then JK[H*] S JK[S]. Now by definition [S:Cs(h)] < = so since
Cs(h) clearly normalizes H* we have [S: Ny(H*)] < «. Let N denote
the core of Ny (H*) in S, that is the intersection of all conjugates of
Ny(H*). Then [S: N] <  and N<]|S. Since H* = SN H<S and
SN HZ Ny(H*) we have H* = SN H< N and clearly H* <{ N. By
Lemma 19.4 of [2], JK[H*] S JK[N] and by Theorem 16.6 of [2],
JK[N] < JK[S]. Thus JK[H*] & JK[S] and the result follows.

We can now prove our main theorem.

Proof of the Theorem. Let G be an L-linear group. Suppose first
that there exists an element & € & (G) of order p with [G: Cy(h)] = L.f.
Then by Lemmas 1.3 and 4.4 we have JK[G]N K[ (G)] = 0 and

hence JK[G] # 0.
Conversely let us assume that JK[G] = 0. There are three cases

to consider.
Case 1. 0,(G) = 1.

By definition, &#(G) = 4°(G) here and by Proposition 2.3, JK[G]
is nilpotent. Thus by Theorem 20.2 there exists an element 4 € 4%(G)
of order p. Since he 4?(G) we have [G:C,(h)] < -~ and hence
[G: Cs(h)] = L1.

Case 2. G has a finite normal nonidentity p-subgroup.

Let this subgroup be Q. Then Q < 0,(G) so @ < 4(0,(G)) & ZF(G).
Let # be an element of order p in Q. Then again k€ 4(G) implies
that [G: C,(h)] < e and hence [G: Cy(h)] = 1.f.
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Case 3. P = 0,(G) # (1) and G has no finite normal nonidentity
p-subgroups.

Set G* = D,(P). Since JK|[G] = 0 and P is nilpotent by Lemma
1.1 (i), it follows from results of [5], that JK[G] N K[G*] == 0. Thus
we may choose acJK[G] N K[G*] with 1leSuppa. We set T =
p-Supp & N £ (G).

Since P is nilpotent and P = (1) we have 4(P) = (1) and hence
by assumption 4(P) is infinite. On the other hand, Lemma 1.2 (i)
implies that [4(P): (4(P) N Z(G*))] < . Thus we can choose #h, e
A(P) N Z(G*) to be an element of order p. We show now that in
the notation of [3]

G=VvCh)U U V' Colh)

Let ¢ G and suppose first that xG*/G* has infinite order. We
consider the group G = (G*, ) and show that it satisfies condition
(*). First we have the normal series

G2G*24P) 22

where Z = 4(P) N Z(G*). By assumption G/G* is generated by zG*/G*
and is therefore infinite cyclic. This yields condition (1). Now
G* N P = A(P), and since G/G* is infinite cyclic we have GNP =
G* N P = 4(P). Thus since G/P is an L-linear group by Lemma 1.1
(i) so is G/4(P) = GP/P < G/P. Again since G/G* is infinite cyclic,
0,(G) = 0,(G*) < G s0 0,(G) = P NG = 4(P) and therefore 0,(G/4(P)) =
{1) so condition (2) is satisfied. Moreover, Lemma 1.2 (i) clearly yields
(4). Finally 4(P) has a center of finite index so by Lemma 2.1 of [2],
A(P)" is finite. Then this is a finite normal p-subgroup of G so by
assumption 4(P) = (1), 4(P) is abelian and condition (3) holds.

Thus G satisfies (*). Now aeJK[G] N K[G] < JK[G] by Lemma
16.9 of [2] so Proposition 4.3 implies that there exists ke p-Supp«
and an integer = =1 such that «* centralizes 2 and h4(P)/4(P)e
4*(G*/4(P)). Note that the latter condition really says that 2 e &2 (G).
Thus e T and

TEe hLJT V' Cy(h) < V'Cy(hy) U hLJT Vm—) .

Now let xe G with £G*/G* of finite order. Then 2" € G* for some
n = 1 and hence by the choice of A, 2™ C,(h,). Therefore, in this
case also we have

© eV Colhy) SV Cylhy) U uv C,(n) .

Thus we have show that



232 D. S. PASSMAN
G = V' Cs(hy) Uhl:; V' Cs(h) .

Therefore, since G is a linear group, Proposition 7 of [3] implies that
for some ge{h}UT we have [G:C,(g)] =1.f. Now by definition
{h} U TS ££(G) and hence g = 1 is an element of <(G) of order
a power of p. Finally if 2 is an element of order p in {g), then
he (@) and C,(h) 2 Cy(g9) so [G: Cy(h)] = 1.f. and the theorem is
proved.

5. Comments. The preceding proof is complicated by having
to handle a number of small details. In each case if our knowledge
of the situation was only a little more complete, a simplification of
the proof would occur. For example, the unpleasantness of the place
argument in Proposition 2.5 could be avoided if we knew that JK[G]
was a nil ideal. In addition much of the work in § 3 would be sim-
pler if we could assume that P & 4(W) or in other words if we knew
that for an L-linear group G, 4(P) & 4(G*) where P = 0,(G) and
G* = Dy(P).

Actually even a greater simplification would occur if only we
could handle the equation

G¢=UvEUUGNT)

where the H; are centralizer subgroups of G and the 7, are proper
L-subspaces of LG where G is an L-linear group. We would of course
want to conclude from the above that either [G: H;] = 1.f. for some
1 or else that some subgroup of finite index has smaller linear span
than G. However, this does not appear to be true at least in this
generality. For example we have

ExamMpPLE 5.1. Consider the 2 x 2 linear group over the complex
numbers C given by

“=a o)

Then G has a normal subgroup H

o=l

isomorphic to C*, the additive group of C. ~Note that C* has no
proper subgroups of Einite index and thus if G is a sul)group of G
of finite index then G =2 H and it follows easily that CG = CG.

Let

a,beC and b is a root of unityf .

aeC}
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d 0

= {[a dJ

Then T is a proper C-subspace of CG and H< T. Now suppose
xeG— H. Then = [1 0] for some b =1 and thus clearly the
matrix « is similar to f (?] Since b is a root of unity, this implies
that « has finite orcgerband hence certainly x#e1/C,(g) where

o=[o _1]-
We have therefore shown that

G=VvVCuaGnT)

and certainly [G:C,(g)] is not locally finite since C,(g) N H = {1).
Thus we see that we cannot conclude from such a decomposition of
G what we would like to.

a,deC}.

Finally it would appear from the main result here and also the
result for solvable groups given in [5] (or see [3] for a description
of this fact) that JK[G] # 0 must imply in general that G has a
nonidentity normal 4-subgroup. However, this is unfortunately not
the case as we see below.

Let p be a prime and let 4 = Z, be the cyclic group of order p
if p>2and A= 727, if p=2.

LEMMA 5.2. Let H be an infinite p-group and let G be the
Wreath product G = A H. If N is a normal d-subgroup of G then
N 1is contained in the normal abelian subgroup of G which in Y A.

Proof. Write G = WH where W = YA is the direct sum of copies
of A, one for each element of H. If N&Z W choose xe¢ N — W with
xe W. Then N 2 (x, W) but we see easily since H is infinite that
[(x, W): C,,w(®)] = =, a contradiction.

ExAMPLE 5.3. Let G, be an infinite locally finite p-group and
define G, & G, S G, & +-- inductively by G.,, = A1 G,. Then G =
U=, G, is a locally finite p-group. If N = (1) is a normal 4-sub-
group of G choose n so that NNG, = <1>. Then NNG,,, is a
normal 4-subgroup of G,,, = Al G, not contained in YA, a con-
tradiction by the above lemma.

Thus G has no nonidentity normal A-subgroup. On the other
hand, if K is a field of characteristic p then JK[G] is the augmenta-
tion ideal of K[G], since G is a locally finite p-group. Therefore,
JK|[G] = 0.
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