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ON THE SEMISIMPLICITY OF GROUP RINGS
OF LINEAR GROUPS II

D. S. PASSMAN

In this paper we continue the study of the semisimplicity
problem for group rings of linear groups. We consider the
case in which the characteristics of the two fields involved
are both equal to p > 0 and we obtain appropriate necessary
and sufficient conditions in terms of the abstract structure
of the group.

Let K[G] denote the group ring of G over the field K. In this
paper we study the semisimplicity problem for K[G] with G a linear
group. If char K = 0 and if G is a linear group over any field, then
it is trivial to see that JK[G] = 0. Thus the only case of interest
occurs when char K = p > 0. A study of this situation was initiated
by A. E. Zalesskii in [4] and continued somewhat in [3]. Here we
solve the problem in case G is a linear group over a field L and
char L = char K. Before we can properly state the result it is neces-
sary to describe a certain characteristic subgroup <£f{G) of G. There-
fore, we postpone the statement until the next section. We follow
the notation of [2] and [3].

1* Normal ^-subgroups* Let G be a linear group over a field
L of characteristic p>0. That is, G is a subgroup of the group of
units of LM, the ring of u x u matrices over L. Of course G is also
contained in Lu, where L is the algebraic closure of L and thus
without loss of generality we may assume that L is algebraically
closed. Thus for the remainder of this work L will denote a fixed
algebraically closed field of char p > 0 and any subgroup of Lu for
any u will be called an L-linear group.

It is apparent from [4] that a necessary ingredient here must be
a consideration of the normal ^-subgroups of G. We start with a few
elementary observations. If G is any group let OP(G) denote its
maximal normal p-subgroup. It is clear that OP(G) always exists.
If G S Lu we let LG donote its L-linear span. Thus certainly LG is
an L-subalgebra of Lu.

LEMMA 1.1. Let G be an L-linear group. Then
( i ) OP(G) is a nilpotent group.
(ii) G/OP(G) is an L-linear group.
(iii) If OP(G) = <1>, then G can be represented as an L-linear

group in such a way that LG is semisimple.
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(iv) If LG is semίsimple and H <] G then LH is semisίmple.

Proof. Observe that LG is a finite dimensional L-algebra so JLG,
its Jacobson radical, is nilpotent. We start by proving (iv). If xe G
then since if<| G, x normalizes H and hence clearly x acts as an algebra
automorphism on LH. Since JLH is characteristic in LH we have
x~ι(JLH)x = JLH so (JLH)x = x(JLH). Thus since LG is spanned
by all such x we obtain easily (JLH)(LG) = (LG)(JLH). Now JLH
is nilpotent and therefore by the above so is the ideal (JLH)(LG).
Thus (JLH)(LG) S JLG = 0 and JLH = 0. This yields (iv).

Now let μ: LG-^ LG/JLG be the natural map and let P = {g e G\μ{g) =
1}. Since G S LG, P is a subgroup of 17 - {1 + α | a e JLG} S LG.
Now JLG is nilpotent and char L = p > 0 so we see easily that U is
a nilpotent p-group. Thus P is a nilpotent p-group and P £ OP(G).

Now μ(LG) = LG/JLG is a finite dimensional L-algebra so it is
contained in Lw for some integer w. Furthermore, LG/JLG contains
the group G = G/P and is clearly spanned by it. This shows that G
is an L-linear group with LG semisimple. If OP(G) — <1> then
certainly P — <1> so G = G and (iii) is proved.

Observe that if we show that P = OP(G) then (i) and (ii) will
follow and to do this we need only show that Q = OP(G) = <1>.
Since LG is semisimple, part (iv) and Q <\G implies that LQ is also
semisimple. Let I be the subalgebra of LQ spanned by all 1 — x
with xeQ. Then I is an ideal of LQ and I is a finite dimensional
algebra (without 1) spanned by the nilpotent elements 1 — x. As is
well known (see for example the proof of Lemma 10.1 (ii) of [2]) this
implies that I is nilpotent so IS JLQ = 0. If x e Q then 1 — x e I = 0
so x = 1. Thus Q = <1> and the lemma is proved.

Let G be any group and let H be a subgroup of G. We set

DG{H) = {xeG\[H:CH(x)]< ~} .

Clearly DG(H) is a subgroup of G and if H is normal or characteristic
in G then so is DG{H). Furthermore,

DG{G) - Λ(G) = {xeG\[G: CG(x)] < «,}

is the ί7. C subgroup of G. Finally ΔP{G) is defined to be the sub-
group of A{G) generated by all ^-elements, that is elements whose
order is a power of p. We say that G is a J-group if G = Δ{G).

LEMMA 1.2. Let G be an L-linear group.
( i ) If H<\G and G = DG{H) then [H: H Π Z{G)\ < - ,
(ii) If OP(G) = <1> then 4P(G) is finite.
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Proof. Since LG is finite dimensional we can choose some finite
number of group elements xu x2, •••,&» which span LG. By assump-
tion for each i, [H: CH(Xi)] < °o and thus by Lemma 1.1 of [2],
[H: Z] < oo where Z = ΓiΐCH(Xi). Now Z s LG is centralized by a
spanning set so it is, therefore, centralized by all of LG and hence
by all of G. This shows that Z £ Z(G) and thus (i) follows.

Suppose OP(G) = <1> and set H = ΔP(G). Then H = Δ(H) so by
part (i) applied to H we conclude that [if: Z(H)] < oo. Now OP(G) = <1>
and Z(iϊ) < G so OP(Z(H)) = <1> and since Z(fl) is abelian this says
that Z(Jϊ) has no elements of order p. Thus Λp(Z(iJ)) = <1>. On
the other hand, since [ΔP(G): Z(H)] < oo, Lemma 19.3 (v) of [2] implies
that [Z(H): Δ'(Z(H))] < oo. Thus Δ*(Z(H)) = <1> yields | Z(H) \ < oo
and hence |1T| < ©o. This completes the proof.

Let G be any group. We define a characteristic subgroup
of G as follows. Let P = OP(G) and set G* = DG{P) so that G * ί i P =
Z)p(P) = Δ{P). Then J2 (̂G) is the subgroup of G* given by

2 Δ{P),

LEMMA 1.3. Let G be an L-linear group. Then with the above
notation [Sf{G)ι Δ(P)\ is finite and S^{G) is a characteristic Δ-sub-
group of G.

Proof. *£?{G) is clearly characteristic by its construction. Now
G* <j G so OP(G*) S OP(G) = P and thus OP(G*) = Δ(P). Therefore,
by Lemma 1.1 (ii), G*/Δ(P) is an L-linear group and certainly
Op{G*jΔ{P)) - <1>. Thus Lemma 1.2 (ii) implies that Δp{G*jΔ{P)) is
finite and we see that [Sf{G)\ Δ{P)\ is finite. Furthermore, since
clearly G* = DG*(Δ(P)), Lemma 1.2 (ii) yields [Δ(P): Δ(P) f] Z(G*)] < oo
and this and the above show that <S?{G) has a center of finite index.
Therefore, £?(G) is a J-group.

We can now state our main result. If H is a subgroup of G we
say that H has locally finite index in G and write [G: H] — l.f. if
for all finitely generated subgroups S of G we have [S: S Π H] < oo.

THEOREM. Le£ K be a field of characteristic p > 0 α̂ icί let G be
a linear group over afield of the same characteristic p. ThenJK[G]Φθ
if and only if there exists an element h e Sf(G) of order p with
[G: CG(h)] - l.f.

Observe that the above necessary and sufficient conditions concern
the abstract structure of G and not how G is written as a linear
group.
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2* The case: OP(G) = <1>- The linear groups with OP(G) = <1>
were studied in [4] under the additional assumption that K = L,
that is the two fields are the same, and the semisimplicity problem
was solved in that case. Here we modify the original argument
slightly to handle the case in which K and L are different.

If S is a subset of any group G we say that S has finite index
in G and write [G: S] < ^ if G can be written as a finite union,
G = UΓ Sxi, of right translates of S.

LEMMA 2.1. Let G be an L-linear group and let Tl9 T2, •••, Tά

be a finite number of L-subspaces of LG properly smaller than LG.

Let S be a subset of G and suppose that

G = SuUiGnΆ) .
1

Then either [G: S] < oo or G = \J{ (G Π Tt) and G has a subgroup H
of finite index with LH Φ LG.

Proof. We assume that [G: S] is infinite and we consider all
ways of writing G as a finite union

where Xi e G and the M{ are L-subspaces of LG each contained in
some TV. By assumption such a decomposition exists. For each such
union we associate an ordered pair (d, r) where d — max dim Mi and
r is the number of Mi of dimension d. We say (dl9 rx) < (d2, r2) if
d1 < d2 or dΣ = d2 and rx < r2. This then is a well ordering and
assume the above union is so chosen that (d, r) is minimal. By
definition d < dim LG. We may assume that dim Mi — d for
i — 1, 2, , r. Note that the Mi terms must occur since [G: S] — oo .

Fix k ̂  r and g e G. Then

(G Π Mk)g ^G^USxtϋUiG
1 1

SO

GnJiί,gύ Sx.g-1 uύίGn Mjg-1

1 1

= U Sxig-
1 U U (G n M.g-1)

1 1

and thus

GΠMks(j Sx.g-1 U U (G Π (M^1 Π Mk)) .
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Thus replacing the term G D Mh in the original union by the above
yields a new such union with the subspace Mk replaced by the finitely
many subspaces M{g~γ Π Mk for i = 1, 2, , t. If dim (Mi^r1 Π Mk) <
dim Mk for all i, we then get a new decomposition with some smaller
parameter (d'9 r') Since this cannot happen we conclude that for some
i, MifiΓ1 Π Mk = Mk or M{ Ξ2 J|ffcflr. Since Mk has the largest dimen-
sion of all the subspaces we therefore have Af4 = Mkg for some i ^ r.

We have therefore shown that G permutes by right multiplica-
tion the subspaces Mi, M2, •••, Mr and hence if H is the stabilizer of
Mi then [G: H] < oo. lί LH = LG then Mi# = Λfi implies that
M^LH) — Mx and then MXG = Mi. Again by the minimality of (d, r)
and [G:S] = oo we have Gΐ\M1Φ<Z so let T/GGΠ-M;. Then
MλG = M, yields M1ΆyG = G. Thus Mi 2 LG, a contradiction.
This shows that Li ί ̂  I/G and therefore LH is a proper subalgebra
of LG.

Finally let 1 — gu g2, , gm be a set of right coset representatives
for H in G. By renumbering the Mi's if necessary we may assume
that M^i = M^ Let Tv be chosen with Mi S T*. Now M,H = Mι

yields yH S -Mi so 7/ίf̂  g Mi^ = Mi. Thus

G = yG =
1 1 1

so clearly G = \Jί (G Π T{) and the lemma is proved.

For the remainder of this work we let K denote a fixed field of
characteristic p. If G is a group and if x, y e G we use x ~ βy to
indicate that x and y are conjugate in G.

LEMMA 2.2. Let a = X*U ^& e K[G], a Φ 0 cmώ suppose that
a is nilpotent. Then for some i Φ j and some integer n we have
gf - Ggf.

Proof. Let S denote the subspace of K[G\ spanned by all Lie
products [/S, 7] = βrt — Ίβ with ^ 7 6 K[G\. Then S is spanned by
all Lie products [x, y\ — xy — yx with x,yeG. Now yx = x"1(xy)x
so yx ~ Gxy and, therefore, we see that if de S then the sum of the
coefficients of δ over any conjugacy class of G is zero.

By assumption a is nilpotent so we can choose n ^ 0 with apn = 0.
Then Lemma 3.4 of [2] yields

0 = a?* = Σ Γ̂fff* + δ
< = 1

for some δ e S If a{Φ 0 then since the sum of the coefficients in
the conjugacy class of gf must be zero in the above and since the
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contribution of d to this sum is zero, we conclude that some j Φ i
must exist with gf ~ Ggf.

LEMMA 2.3. Let G be an L-linear group with LG semisimple.
Since L is algebraically closed, LG is a finite direct sum of full
matrix rings over L and we embed LG in Lu for some u by placing
the matrix rings of LG in blocks along the diagonal of Lu. Then
tr, the matrix trace map on Lu, yields a nondegenerate symmetric
bilinear form (a, β) = tr aβ on LG.

Proof. The form (α, β) = tr aβ is certainly bilinear and sym-
metric. We need only show that it is nondegenerate on LG. Let
aeLG with (a, LG) = 0. Then

tr (LG)a(LG) = tr a(LG)(LG) = tr a{LG) = 0

so every element of the ideal {LG)a(LG) has trace zero. But any
nonzero ideal of LG contains one of the full matrix ring and certainly
all its elements cannot have trace 0. Thus a must be zero and the
lemma is proved.

We now obtain our generalization of Zalesskii's result by modify-
ing the proof of [4]. It is apparent that the proof could be greatly
simplified if we only knew that the radical was a nil ideal.

LEMMA 2.4. Let G be an L-linear group with OP(G) = <1>. Then
G has a normal subgroup Go of finite index and a representation of
Go as an L-linear group in such a way that LG0 is semisimple and
if [Go: H] < co then LGQ = LH.

Proof. Since OP(G) — <1>, Lemma 1.1 (iii) implies that G can be
represented as an L-linear group with LG semisimple. We now con-
sider all normal subgroups H of G of finite index and all ways in
which H can be represented as an L-linear group with LH semisimple
and we choose Go to give the minimum possible dimension of LGQ.

Thus we have Go <] G, [G: Go] < co and Go is an L-linear group
with LG0 semisimple. Furthermore, let H be a subgroup of Go of
finite index. Then [G: H\ < co so Ho, the intersection of the finitely
many G-conjugates of H, is a normal subgroup of G of finite index.
Since Ho <J Go we have LH0 semisimple by Lemma 1.1 (iv) and thus
by the minimality of the dimension of LG0 we have LG0 = LH0 and
hence LG0 = LH.

PROPOSITION 2.5. Let G be an L-linear group with OP(G) = <1>.
Then JK[G] is nilpotent.
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Proof. Let Go be the normal subgroup of G of finite index given
in the preceding lemma and let us write LG0 as described in Lemma
2.3. Thus LG0 £ Lu and tr yields a nondegenerate bilinear form on
LG0. We show now that K[G0] is semisimple.

Suppose by way of contradiction that a = Σt=ιai9i€JK[Go] with
a Φ 0 and with the group elements g{ distinct. If x e Go then also
ax = Σf^αifta? e JK[G0] Thus if G1 is the finitely generated subgroup of
Go given by G, = (gu &,•••, gkf x) then axe JK[G0] Π K[G,\ £ JK[G,\

by Lemma 16.9 of [2] We show now that for some i Φ j , tr (̂ α?) =
t r (gάx).

Suppose this is not the case and let GF(p) denote the algebraic
closure of GF(p). Since Gx is a finitely generated subgroup of Lu we
can find, by the Extension Theorem for Places, a place <p: L —*
GF(p) U {°°} such that 9> is finite on all the matrix entries of the
generators of Gι and their inverses and furthermore for all i Φ j ,
φ{tτ (giX)) Ψ 9(tr (gjX)). If & denotes the corresponding valuation
ring in L then clearly Gx g &u and φ can be extended to a homo-
morphism φ: ^ u —• GF(p)u and therefore ^(Cy is finite.

Consider the natural map η: KIGJ —>K[φ{Ĝ ] Since rj is an
epimorphism, ^(/^[GJ) £ JϋΓf^ίGi)] and thus

Now 9?(Gi) is finite so JK[φ{G$\ is nilpotent and therefore Σ *
is nilpotent. Thus Lemma 2.2 implies that for some iΦ j and some
integer n, φ(giX)pn ~ φ{G1)

(P(ΰάχ)pn* Let tr denote the trace map in
GF(p)u. Since similar matrices have the same trace and since the
fields have characteristic p > 0 we conclude that

Itr <p(g<x)]pn = te [φ(giX)p%] - Γr

and thus tr φ(gtx) = tr φ(g3 x). But certainly tro<̂ > = ^?otr so we obtain

9>(tr (flf̂ )) = tr φfax) = tr

a contradiction.
We have, therefore, shown that for each x e Go there exists some

i ^ j with tr flf4a? = tr g5x. For each i Φ j let Γ4i be the L-subspace
of LG0 given by

Ti3. = {δ e LG0\tτ (di - gj)d = 0} .

Since tr yields a nondegenerate bilinear form we see that TiS Φ LG0

and by the above we have
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G = u G n τiS.

But then Lemma 2.1 with S = 0 implies that Go has a subgroup H
of finite index with LH Φ LG09 a contradiction. This shows that
K[G0] is semisimple. Since [G: Go] < <*>, Lemma 16.8 of [2] implies
that JϋΓfG] is nilpotent and result follows.

3. A local situation. We now study a group G with a rather
special structure. We say G has property (*) if G has a normal
series G 2 l f 3 P 3 Z satisfying

1. G/TF is infinite cyclic.
2. G = G/P is an L-linear group with OP(G) = <1>
3. P is an abelian p-group.
4. [P: Z] < oo and W centralizes ^.

We say that G has property (**) if G satisfies all of the above and
in addition

5. P

Our aim is essentially to completely determine JK[G] if G satisfies
(*)• We start by assuming that G satisfies (**) and prove that JK[G]
is nilpotent. For the remainder of this section we assume that G
satisfies (**) and is given as above. We start by introducing some
more notation.

LEMMA 3.1. There exists a subgroup Go of G of finite index
with G 3 G 0 3 P and such that

( i ) Go = Go/P has a representation as an L-linear group with
LG0 semisimple and with LGQ = LH for all subgroups H g Go of
finite index.

(ii) Go centralizes the quotient P/Z.
(iii) If W>o = Go Π W then GQ/W0 is infinite cyclic.

Proof. The existence of a group Go satisfying (i) is an immediate
consequence of Lemma 2.4. Furthermore, it is clear that this same
property holds for any subgroup of Go of finite index which contains
P. Now Go acts on finite group P/Z and P centralizes this quotient.
Thus we may certainly replace Go by CGQ(P/Z) if necessary and then
this new Go also satisfies (ii). Finally

Go/Wo = GJ(Wn Go) ~ G0WJW

is a subgroup of finite index in the infinite cyclic group GJ W and the
result follows.

We will show that K[G0] is semisimple. Thus by way of con-
tradiction we assume now that Go is given as above and JK[G0] Φ 0.
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LEMMA 3.2. There exists a nonzero element 7 = aβeJK[GQ] Π
satisfying

( i ) a = Q, £&e s%m of all the elements of Q, where Q is a finite
subgroup of P.

( ϋ ) j3 = 2* = 1 α^, w&ere the gι are in distinct cosets of P in
Wo.

(iii) 7 centralizes K[P\.

Proof. By assumption JK[G0] Φ 0 and since Go/Wo is infinite
cyclic Theorem 17.7 of [2] implies that

/ = jκ[G0]nκ[ψ0]

is a nonzero ideal of iΓ[TF0]. Choose 7 G /, 7 ^ 0 such that Supp 7 is
contained in the smallest number n of cosets of P. By multiplying
7 by a group element if necessary we may assume that one of these
cosets is the identity coset. Thus

where a^KlP] and gx = 1, #2, •••, #„ are in distinct cosets of P.
Let Q be the subgroup of P generated by the support of all the

<%i. Then Q is a finitely generated and hence finite subgroup of the
abelian p-group P. Therefore, as is well known, the unique minimal
ideal of K[Q] consists of all i£-multiples of Q and thus Q is a multiple
of ax in K[Q]. By multiplying 7 on the left by this suitable factor
we may clearly assume that at = Q. Let heQ. Then (1 — h)at = 0
so (1 — h)Ύ G I has support contained in a smaller number of cosets.
This implies that (1 — h)Ί — 0 for all heQ and thus we have for all
ί, a{ = a{Q for some a{ e K. This yields

and (i) and (ii) are proved.
Finally let he P. Since P is abelian and gt — 1 we see hrιih — ye I

has support in fewer cosets of P. By the minimality of n we con-
clude t h a t h~lfrh — 7 = 0 for all h e P and (iii) follows.

We now define an even smaller subgroup of G. Again we fix
the above notation for the remainder of this section. Let

T= {heQ\hΦl,Cύo(h)

Now define the subgroup G1 by
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Gi = n r wocGQ(h)

with the understanding that G1 = Go if T = 0 .

LEMMA 3.3. Lei GL δe as above. Then

( i ) (j0 3 d 3 TF0, [G> Gil < oo and GJW0 is infinite cyclic.
(ii) If heT then Gx = ΐΓ0Cffl(Λ).

Proof. By definition we have Go 3 d 3 Wo. Moreover, Ĝ / Wo is
the intersection of finitely many nonidentity subgroups of the infinite
cyclic group Go/Wo Thus GJWQ is infinite cyclic and [GQ: GJ < w.

Finally let k ϊ 1 . Then Wo g ^ g WoCCo(A) so

, Π C o l

and the lemma is proved.

The reason for working with Gι rather than Go will be apparent
in the following result.

LEMMA 3.4. Let x e GL — Wo and let a be as above. Suppose
that for infinitely many integers s (positive or negative) there exists
an integer r = r(s) ^ 1 with

aάx~sax~2s . . ax~rs = 0 .

Then for some he T we have xe CGl(h).

Proof. The assumption on a clearly implies that for each such
s the group QQx~sQx~2s Qx~rs is not a direct product of the indicated
factors. Since there are infinitely many such s there are certainly
infinitely many positive or infinitely many negative ones. Therefore,
by Lemmas 3 and 4 of [1], there exists he Q, hφ\ and a positive
integer m with x~m or xm in Cβl(h) and hence xmeCGι(h). Now
x e Gλ — Wo and GJ Wo is infinite cyclic so xm $ Wo and by definition
of T we must have heT.

Since Gλ = W0CGi(h) by Lemma 3.3 (ii) we can write x — wy with
weW0 and yeCGl(h). Therefore, yeCGl(h), xm = (wy)m e CGί(h) and
since Wo centralizes P/Z we have hw = λ^ for some ze Z. It then
follows easily by induction on i that

and therefore

Λ - /^(wy)W = hz'z*2
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so we have zyzy2 zym = 1. We now conjugate this last expression
by y~ι and obtain

ZZ Zy — 1 = Z Zy Zy .

Thus since P is abelian we have z — zym.
Since G satisfies (**) we know that W centralizes Z and thus we

have CGι(z) 3 (Wo, y
m). Furthermore, GJWQ is infinite cyclic and

2/e Wo since x£ Wo so clearly [Gx: CGι(z)] < °°. Hence [G: CG(z)] < oo
and we have zePΠ A{G). Again by assumption (**), P Π J(G) = <1>
so z = 1. Finally Λx = ΛW2/ = hzy — h so xe CGl(h) and the result
follows.

Let ~~ denote the natural map G0—>G0^ GJP and we extend this
to the map K[G0] ->K[G0]. Thus for β= Σ ? = i ^ ^ as given before
we have β = Σ?=i α ^ We now represent Go as an L-linear group
as in Lemma 3.1 (i) so that LG0 is semisimple.

LEMMA 3.5. We can embed LGQ in the matrix ring Lu in such
a way that tr, the matrix trace map on Lu> yields a nondegenerate
symmetric bilinear form LGQ. Futhermore, if for each i Φ j we define
Ti} by

then Tij is a proper L-subspace of LG0 — LGX.

Proof. The first part follows immediately from Lemma 3.1 (i)
and Lemma 2.3. The second part about T{j follows from the nonde-
generacy of the bilinear form and the fact that g{ Φ gό by Lemma
3.2 (ii). Finally LG, = LG, by Lemma 3.1 (i).

LEMMA 3.6. Let x e Gλ — Wo and let β be as above. Suppose
that βx8 e iΓ[Gi] is nilpotent for all integers s (positive or negative)
with possibly finitely many exceptions. Then for some i Φ j we have

Proof. Since xe (?! — Wo and GjW0 is infinite cyclic we see that
ζx) is infinite. We consider <#> as an L-linear subgroup of GQ.
Let V denote the finite set of exceptional integers in the above and let

S = {xv\ve V) .

Then S is a finite subset of <£> so clearly [<£>: S] = oo. Now let s
be an integer not in V. Since

βx* = J
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is nilpotent we conclude from Lemma 2.2 that for some i Φ j and
some integer t ^ 0

Thus since similar matrices have the same trace and since char
L = p >0 we have

(trgβY = tr (gβY = tr {gβY = (tr gβ*)** .

Hence tr gβ8 = tr gβs and xs e Tiό.
We have therefore shown that

<χ> = s u U «^> π τi3)

and since [(x): S] = c>o, Lemma 2.1 implies that

<̂ > - u «^> n τi3).

This shows that x G Γ^ for some i ^ j and the lemma is proved.

We now come to the main result of this section.

PROPOSITION 3.7. Let G be a group satisfying (**). Then JK[G]
is nilpotent.

Proof. We use all the above notation and show first that
JK[GQ] — 0. If this is not the case then all of the above lemmas
and notation apply.

Let xe Gι — Wo and let s Φ 0 be an integer (positive or negative).
Since GJWΌ is infinite cyclic, the element x~s has infinite order
modulo Wo. Since 7 6 JK[G0] Π K[W0], Lemma 21.3 of [2] implies
that for some integer r — r(s) >̂ 1 we have

Now 7 = otβ so this yields

aβax~sβx~sax~2s . . . ax~rsβx~~rs = 0 .

By Lemma 3.2 (iii) 7 centralizes K[P] and hence since P <\G, T~xs

also centralizes K[P\.
We use this latter fact to rearrange the terms in the above

product. First since the product is

77X~S . . 7«~ ( r ~ 1 ) s ^*~ r s β x ~ r s

we can shift the ax~rs factor past all the Ίz~%s and obtain
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We next shift the ax~ir~~1)s term all the way to the left and continu-
ing this process we clearly obtain

Let σ denote the above first factor and τ the second. Suppose
that σ Φ 0. Now P is an abelian p-group and char K = p so JK[P]
is the unique maximal ideal of K[P]. This implies that every element
of K[P] — JK[P] is a unit in K[P]. If we now write r a s r = Στiyi

with τi e K[P] and the yi in distinct cosets of P, στ = 0 and σ Φ 0
therefore implies that τ^JKlP] and hence r e (/#[P])2f [<?<>]. But
this ideal is precisely the kernel of the homomorphism K[G0] —> iΓ [Go]
and therefore τ — 0. Thus

0 = f = ββ~x~sβ*~2s £*"•" = ()Sίc ) r + 1ίc- r

and ( / β^ s ) r + 1 = 0.

We have therefore shown that for each s Φ 0 either

aa*~sax~2s . . . αβ" r β - 0

for some r = r(s) ^ 1 or ^xs is nilpotent. If the first fact occurs for
infinitely many s then by Lemma 3.4, xe CGι(h) for some he T. If
this first fact occurs for only finitely many s, then βxs is nilpotent
for all but finitely many s and Lemma 3.6 yields x e T{j for some i Φ j .

Observe that the above holds for any xeGx — Wo. Thus we see
that

Gx = SU U(GiΠ Ti3)

where

S= WQU \JCGι{h).
heT

We apply Lemma 2.1 and there are two possible conclusions. First
there exists a subgroup H of Gt of finite index with LH Φ LGX.
But [Go: GJ < oo so [Go: 5 ] < oo and Lemma 3,1 (i) then yields
LGX — LG0 — LH, and contradiction. Secondly we have [G^ S] < oo
and this says that G1 is a finite union of cosets of the subgroups
Wo and CGl(h) for all k T . Then by Lemma 1.2 of [2] we see that
one of these subgroups must have finite index in Gx. Since GJWQ is
infinite cyclic we, therefore, have for some heT, [Gx: CGι(h)] < oo.
Moreover, [G: GJ < oo and Cffl(A) 3 P s o this yields [G: Cβl(λ)] < oo.
Thus h Φ 1 and he P C) d(G), a contradiction since G satisfies (**).

We have therefore shown that JK[GQ] = 0. Since [G: Go] < oo,
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Lemma 16.8 of [2] implies that JK[G] is nilpotent and the proposi-
tion is proved.

4* The main theorem* In this section we prove our result.
However, we first need a few additional facts about groups satisfying
condition (*).

LEMMA 4.1. Let G satisfy (*) and suppose that P Π Δ(G) is
finite. Then JK[G] is nilpotent.

Proof. Let Q = P Π Δ{G) < G and consider G/Q. Then G/Q has
a normal series

G/Q 2 W/Q 2 P/Q 2 ZQ/Q

and it is trivial to see that G/Q has property (*). In addition G/Q
satisfies (**) as follows. Let heP with hQ/QeΔ(G/Q). Then the G
conjugates of h are contained in only finitely many cosets of Q.
Since Q is finite this implies that hePf] Δ(G) = Q and hQ/Q = 1.
Thus P/Q Π Δ(G/Q) = <1> and Proposition 3.7 implies that JK[G/Q]
is nilpotent.

Consider the natural map K[G] —>K[G/Q\. Since Q is a finite
p-group the kernel of this map is the nilpotent ideal (JK[Q])K[G]
Moreover, we have

JK[G]/(JK[Q])K[G] s JK[G/Q]

and since both JK[G/Q] and (JK[Q])K[G] are nilpotent, the lemma
is proved.

LEMMA 4.2. Let Q be a periodic normal subgroup of a group G
with Q g Δ(G). Let g,yeG and suppose that gQ/QeΔ(G/Q). Then
there exists an integer m ^ 1 such that ym centralizes g.

Proof. Since hQ/Q e Δ(G/Q) it follows that some power ym' of y
with m' ̂  1 centralizes gQ/Q and thus (ym\ g) e (?. Moreover, since
Q is a periodic normal subgroup of G contained in Δ(G)9 there exists
a finite normal subgroup H of G with (#w', #) e H. This implies that
ym' normalizes the finite coset Hg and therefore some possibly bigger
power ym of y centralizes g.

At this point we could completely determine the structure of
JK[G] if G satisfies (*). However, we will content ourselves with
observing the following key fact. If aeK[G] we let
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p-Supp a — {heSupp a\h φl has order a power of p)

PROPOSITION 4.3 Let G satisfy (*) and let xeG. Suppose that
aeJK[G] with leSuppα. Then there exists hep-Sup])a and an
integer n^l such that xn centralizes h and hP/Pe JP(W/P).

Proof. Let Q = P Π Δ{G) <\ G and consider G/Q. Then G/Q has
a normal series

G/Q 2 T7/Q 2 P/Q 2 ^Q/Q

and it is trivial to see that G/Q also satisfies (*). Suppose zeZ
with zQ/QeA(G/Q) and choose i/eG with G = <TF, j/>. Then Lemma
4 2 applies and we conclude that ym centralizes z for some m ;> 1.
Since s G Z we therefore have CG{z) 2 < TΓ, ?Γ> and hence

[G: CG(z)] < o o , 2 6 P ί l 2/(G) = Q and ^Q/Q = 1 .

We have shown that the group G/Q satisfies (*) and in addition
ZQIQ Π A{GIQ) = <1>. Since [P/Q: ZQ/Q] < oo w e therefore conclude
that P/Q n 4(G/Q) is finite and hence by Lemma 4.1, JK[G/Q] is
nilpotent

Write a as

with ^ 6 K[Q] and with ^ = 1, g2, , flft in distinct cosets of Q in G.
Since 1 e Supp a we can assume that 1 e Supp at for all i and hence
& 6 Supp a.

Suppose first that ^eJKlQ]. Since l e S u p p ^ it follows that
there exists h e Supp aγ s Supp a with Λ ̂  1. Then Λ has order a
power of p and & e J(G) so certainly xn centralizes h for some n.
Finally fcP/P =leJp(W/P).

Now assume that a^JKlQ] and let — denote the natural map
K[G\ —+ K[G/Q], Since Q is an abelian p-group we see that the
kernel of ~ is (JK[Q])K[G] and therefore for each iy ά{ — a{L for
some α̂  e K and by assumption αx Φ 0. Then

has 1 in its support. Furthermore, JK[G/Q] is nilpotent so Theorem
20.2 (i) and Lemma 3.5 of [2] imply that for some i Φ 1, & e AP(G/Q)
and & has order a power of p. Since Q is a p-group we see that gi

has order a power of j> and by Lemma 4.2, xn centralizes gt for some
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n Ξ> 1. Now gt has finite order a power of p and G/W is infinite
cyclic so gi e W. Moreover, giQjQ has only finitely many conjugates
in GIQ so certainly giP/P has only finitely many conjugates in WjP.
Thus giP/PeΔp(W/P) and the proposition is proved.

The following is well known.

L E M M A 4.4. Let G be a group and let H be a normal Δ-subgroup

of G. Suppose that there exists an element heH of order p with

[G: CG{h)\ = IJ Then JK[G] n K[H] Φ 0.

Proof. Let h and H be given as above and let iϊ* = (h)H be
the normal closure of (K) in H. Then if* is a finite normal subgroup
of H whose order is divisible by p. We show that JK[H*} £ JK[G].
Since JiΓfίP] ^ 0 and JK[H*\ S # [ # ] this will yield the result.

Since JET* is finite, it clearly suffices by Lemma 17.6 of [2] to
show that if S is a finitely generated subgroup of G with S 3 £Γ*
then J iΠίP] S JϋΓ[S]. Now by definition [S: C5(Λ)] < oo so since
Cs(h) clearly normalizes H* we have [S: iVs(JEf*)] < °°. Let N denote
the core of NS(H*) in S, that is the intersection of all conjugates of
NS(H*). Then [S: N] < oo and iV < S. Since H* S S Π £Γ < S and
Sf]HQ NS(H*) we have if* £ S n if S iV and clearly H* < ΛΓ. By
Lemma 19.4 of [2], JK[H*] SJK[N] and by Theorem 16.6 of [2],

«7JSΓ[S]. Thus Jiί[iϊ*] S Jiί[S] and the result follows.

We can now prove our main theorem.

Proof of the Theorem. Let G be an L-linear group. Suppose first
that there exists an element h e £f(G) of order p with [G: CG{h)\ — l.f.
Then by Lemmas 1.3 and 4.4 we have JK[G] f] K[^f{G)} Φ 0 and
hence JK[G] Φ 0.

Conversely let us assume that JK[G] Φ 0. There are three cases
to consider.

Case 1. OP(G) = <1>.

By definition, £f(G) = Δ*(G) here and by Proposition 2.3, JK[G]
is nil potent. Thus by Theorem 20.2 there exists an element h e ΔP{G)
of order p. Since h e AV{G) we have [G: CG{h)\ < oo and hence
[G: CG{h)] = l.f.

Case 2. G has a finite normal nonidentity p-subgroup.

Let this subgroup be Q. Then Q £ OP(G) so Q £ Δ(09(G)) S J2 (̂G)
Let Λ be an element of order p in Q. Then again A e Δ{G) implies
that [G: CG(h)] < oo and hence [G: CG(h)] = l.f.
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Case 3. P = OP(G) Φ <1> and G has no finite normal nonidentity
p-subgroups.

Set G* = DG(P). Since JK[G] Φ 0 and P is nilpotent by Lemma
1.1 (i), it follows from results of [5], that JK[G] Π K[G*] Φ 0. Thus
we may choose ae JK[G] Π K[G*] with l e S u p p α . We set T =

Since P is nilpotent and P Φ <1) we have A(P) Φ <1> and hence
by assumption A{P) is infinite. On the other hand, Lemma 1.2 (i)
implies that [A{P): (Δ{P) n Z(G*))] < oo. Thus we can choose Λo G
J(P) n Z(G*) to be an element of order p. We show now that in
the notation of [3]

G =

Let xeG and suppose first that xG*/G* has infinite order. We
consider the group G = <G*, x) and show that it satisfies condition
(*). First we have the normal series

GΏG* a Δ{P) 2 ^

where ^ = Δ{P) Π Z(G*). By assumption G/G^ is generated by £G*/G*
and is therefore infinite cyclic. This yields condition (1). Now
G* n P = Λ(P), and since G/G* is infinite cyclic we have G Π P =
G * Π P = ^(-P) Thus since G/P is an L-linear group by Lemma 1.1
(ii) so is G/J(P) ^ GP/P £ G/P. Again since G/G" is infinite cyclic,
O,(G) = OP(G*) <\ G so OP(G) S P n G = Δ(P) and therefore OP(G/Δ(P)) =
<1> so condition (2) is satisfied. Moreover, Lemma 1.2 (i) clearly yields
(4). Finally Δ(P) has a center of finite index so by Lemma 2.1 of [2],
Δ(PY is finite. Then this is a finite normal p-subgroup of G so by
assumption Δ(P)' = <1>, Δ(P) is abelian and condition (3) holds.

Thus G satisfies (*). Now aeJK[G] n 2ΠG] £ JίΓ[G] by Lemma
16.9 of [2] so Proposition 4.3 implies that there exists Λep-Suppα'
and an integer n ^ 1 such that a;w centralizes h and hΔ(P)/Δ(P) e
ΔP(G*/Δ(P)). Note that the latter condition really says that h e
Thus heT and

x e U

Now let ^ 6 G with xG*/G* of finite order. Then xneG* for some
w ;> 1 and hence by the choice of h09 xneCG(h0). Therefore, in this
case also we have

x e VCJJϊoJ s VCjhύ U U VCjfi) .
heT

Thus we have show that
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G = VCjfrύ U U
hT
U

heT

Therefore, since G is a linear group, Proposition 7 of [3] implies that
for some g e {h0} U T we have [G: CG(g)] — l.f. Now by definition
{h0} U Γ i ^ ( G ) and hence g Φ 1 is an element of £f{G) of order
a power of p. Finally if h is an element of order p in <#>, then
h e £f(G) and Cβ(h) B Cσ(flr) so [G: CG(Λ)] = l.f. and the theorem is
proved.

5. Comments* The preceding proof is complicated by having
to handle a number of small details. In each case if our knowledge
of the situation was only a little more complete, a simplification of
the proof would occur. For example, the unpleasantness of the place
argument in Proposition 2.5 could be avoided if we knew that JK[G]
was a nil ideal. In addition much of the work in § 3 would be sim-
pler if we could assume that P <ϋ Δ(W) or in other words if we knew
that for an L-linear group G, Δ{P) £ Δ(G*) where P = OP(G) and
G* - DG{P).

Actually even a greater simplification would occur if only we
could handle the equation

G = \jVHi UU(Gn T,)
ΐ=i i=i

where the Hi are centralizer subgroups of G and the Tά are proper
L-subspaces of LG where G is an L-linear group. We would of course
want to conclude from the above that either [G: Hi] = l.f. for some
i or else that some subgroup of finite index has smaller linear span
than G. However, this does not appear to be true at least in this
generality. For example we have

EXAMPLE 5.1. Consider the 2 x 2 linear group over the complex
numbers C given by

G =
a b

Then G has a normal subgroup i ϊ

"1 0

a

α, 6 € C and 6 is a root of unity [ .

aeC

isomorphic to C+, the additive group of C. Note that C+ has no
proper subgroups of finite index and thus if G is a subgroup of G
of finite index then G 3 ί and it follows easily that CG — CG.

Let



ON THE SEMISIMPLICITY OF GROUP RINGS OF LINEAR GROUPS II 233

HΠhH
Then T is a proper C-subspace of CG and fZ"S T. Now suppose
xeG — H. Then x = Γl 01 for some b Φ 1 and thus clearly the

U &J
matrix x is similar to Γl 01. Since 6 is a root of unity, this implies

LO δj
that x has finite order and hence certainly xei/Cβ(g) where

^ = Lo - i j
We have therefore shown that

and certainly [G:CG(g)\ is not locally finite since CG(g) f] H — <1>.
Thus we see that we cannot conclude from such a decomposition of
G what we would like to.

Finally it would appear from the main result here and also the
result for solvable groups given in [5] (or see [3] for a description
of this fact) that JK[G] Φ 0 must imply in general that G has a
nonidentity normal J-subgroup. However, this is unfortunately not
the case as we see below.

Let p be a prime and let A = Zp be the cyclic group of order p
if p > 2 and A = Z, if p = 2.

LEMMA 5.2. Let H be an infinite p-group and let G be the
Wreath product G = A I H. If N is a normal Jsubgroup of G then
N is contained in the normal abelian subgroup of G which in ΣA

Proof. Write G = WH where W = ΣA is the direct sum of copies
of Ay one for each element of H. If N £ W choose x e N — W with
xp e W. Then N 3 (x9 W) but we see easily since H is infinite that
[(x, W): C{x>w){x)\ = oo, a contradiction.

EXAMPLE 5.3. Let Gx be an infinite locally finite p-group and
define Gx S G2 a G3 S inductively by Gn+1 = A\Gn. Then G =
U"=i G» i s a locally finite p-group. If N Φ <1> is a normal Λ-sub-
group of G choose n so that Nπ Gn Φ <1>. Then JVnGvH is a
normal J-subgroup of Gn+1 — A I Gn not contained in ΣA, a con-
tradiction by the above lemma.

Thus G has no nonidentity normal zί-subgroup. On the other
hand, if K is a field of characteristic p then JK[G\ is the augmenta-
tion ideal of K[G\, since G is a locally finite p-group. Therefore,
JK[G] Φ 0.
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