ON 2-TRANSITIVE COLLINEATION GROUPS OF FINITE PROJECTIVE SPACES

William M. Kantor

In 1961, A. Wagner proposed the problem of determining all the subgroups of $P \Gamma L(n, q)$ which are 2 -transitive on the points of the projective space $P G(n-1, q)$, where $n \geqq 3$. The only known groups with this property are: those containing $\operatorname{PSL}(n, q)$, and subgroups of $\operatorname{PSL}(4,2)$ isomorphic to A_{7}. It seems unlikely that there are others. Wagner proved that this is the case when $n \leqq 5$. In unpublished work, D. G. Higman handled the cases $n=6,7$. We will inch up to $n \leqq$ 9. Our result is that nothing surprising happens. The same is true if $n=r^{\alpha}+1$ for a prime divisor r of $q-1$.

One of Wagner's results is that it suffices to only consider subgroups of $P G L(n, q)$. Once this is done, it becomes simpler to view the problem as one concerning linear groups: find all those subgroups G of $G L(n, q)$ which are 2-transitive on the 1 -spaces of the underlying vector space V. Our approach is based primarily on three facts. (1) Wagner showed that the global stabilizer in G of any 3 -space of V induces at least $S L(3, q)$ on that 3 -space. (2) Unless $G \geqq S L(n, q)$ or $n=4$, $q=2$, and $G \approx A_{7}$, no nontrivial element of G can fix every 1 -space of some n-2-space of V. (3) $G \leqq S L(n, q)$ if $|G|$ is divisible by a prime which is a primitive divisor of $q^{m}-1$ for a suitable $m \leqq n-2$.

Wagner's results are in [10]. Higman's result, and the case $n=$ $2^{\alpha}+1$ and q odd, are mentioned by Dembowski [1], p. 39. The result mentioned above in (2) is an easy consequence of results of Wagner. The idea used in (3) is due to Perin [8] and, independently, to G. Hare and E. Shult.

I am indebted to G. Seitz for several helpful remarks.
2. Notation and preliminaries. As already mentioned, we will be dealing with linear groups. Let V be an n-dimensional vector space over $G F(q)$. We write $G L(V)=G L(n, q)$ and $S L(V)=S L(n, q)$. It will be convenient to regard everything as taking place in the relative holomorphic $V \cdot G L(V)$. For any subgroups K, L of this semidirect product we can then consider the normalizer $N_{L}(K)$ and centralizer $C_{L}(K)$. If $L \leqq G L(V)$ and W is an L-invariant subspace of V, we write $L^{W}=L / C_{L}(W)$ for the subgroup of $G L(W)$ induced by L. $C_{L}(V / W)$ and $L^{V / W}$ are defined similarly. For any group G, as usual G^{\prime} is its commutator subgroup, $Z(G)$ its center, and $\Phi(G)$ its Frattini subgroup.

A group A is said to be involved in a group B if $A \approx C / D$ with $B \geqq C \unrhd D$.
(2.1) If $R \leqq G L(V)$ has prime power order and $(|R|, q)=1$, then $V=C_{V}(R) \oplus[V, R]$, where $[V, R]=\langle v-v r \mid v \in V, r \in R\rangle$ is $N_{G L(V)}(R)$ invariant.

Proof. [3], p. 177.
(2.2) Let $R \leqq G L(V)$ have prime power order with $(|R|, q)=1$. Let W be an R-invariant subspace. Then $\operatorname{dim} C_{V}(R)=\operatorname{dim} C_{W}(R)+$ $\operatorname{dim} C_{V / W}(R)$.

Proof. [3], p. 187, or (2.1).
Both (2.1) and (2.2) will be used frequently, generally without reference.

A primitive divisor of $q^{k}-1$ is a prime r satisfying $r \mid q^{k}-1$ but $r \nmid q^{i}-1$ for $1 \leqq i<k$; clearly $k \mid r-1$.
(2.3) (i) If q is a prime power and $\dot{k} \geqq 2$, then $q^{k}-1$ has a primitive divisor unless $k=6, q=2$, or $k=2$ and q is a Mersenne prime.
(ii) Let r be a primitive divisor of $q^{k}-1$, and let R be an r subgroup of $G L(V)$ for a $G F(q)$-space V. If $C_{V}(R)=0$, then k divides $\operatorname{dim} V$.

Proof. (i) [12].
(ii) This is clear if $|R| \leqq r$. Let $|R|>r$, and let $R_{1} \leqq Z(R)$ have order r. Then $V=W \oplus\left[V, R_{1}\right]$, where $W=C_{V}\left(R_{1}\right)$ is R-invariant and $C_{W}(R)=0$. By induction, k divides $\operatorname{dim} W$ and $\operatorname{dim}\left[V, R_{1}\right]$.
(2.4) Suppose $\operatorname{dim} V=\alpha m, r$ is a primitive divisor of $q^{m}-1$, and $R \leqq G L(V)$ is an r-group such that $C_{V}(R)=0$. Then:
(i) Each noncyclic composition factor of $N=N_{G L(V)}(R)$ is involved in $\operatorname{PSL}\left(\alpha, q^{m}\right)$; and
(ii) If R is abelian, each noncyclic composition factor of $N / C_{v}(R)$ is involved in the symmetric group S_{α}.

Proof. Write $V=W_{1} \oplus \cdots \oplus W_{\beta}$, with each W_{i} a sum of R isomorphic irreducible R-spaces and no two W_{i} having isomorphic irreducible R-subspaces. Set $R_{i}=C_{R}\left(W_{\imath}\right)$. Then $Z\left(R / R_{i}\right)$ is cyclic and nontrivial; let Z_{i} be its subgroup of order r. By (2.3 ii), $\operatorname{dim} W_{i}=$ $m e_{i}$ for some e_{i}. Consequently, $\beta \leqq \alpha$ and $e_{i} \leqq \alpha$.
N permutes the W_{i}. Let K be the kernel of this permutation representation. Then N / K is involved in $S_{\beta} \leqq S_{\alpha}$, and hence in $G L\left(\alpha, q^{m}\right)$.

Set $K_{i}=N_{G L\left(W_{i}\right)}\left(Z_{i}\right)$. Then K is contained in $K_{1} \times \cdots \times K_{\beta}$. Moreover, K_{i} is contained in $\Gamma L\left(e_{i}, q^{m}\right)$. This proves (i).

Now assume that R is abelian. Then R / R_{i} is a cyclic group normalized by K. Since $\cap R_{i}=1$, it follows that $K / C_{K}(R)$ is abelian. Since N / K is involved in $S_{\alpha^{\prime}}$ this proves (ii).
(2.5) Let q be odd, and let $H \leqq G L(V)$. Suppose that $H \unrhd A \neq 1$, where A is an elementary abelian 2 -group. Set

$$
m=\min \left\{\left|H: N_{H}(B)\right||B<A,|A: B|=2\}\right.
$$

Then $m \leqq \operatorname{dim} V$.
Proof. (G. Seitz.) Let \bar{V} be an H-irreducible section of V on which A acts nontrivially. Let \bar{H} and \bar{A} be the groups induced by H and A. Then $\bar{A} \neq 1$, and the corresponding $\bar{m} \geqq m$. We may thus assume that $V=\bar{V}$ is H-irreducible. By Clifford's Theorem ([3], p. 70), $V=V_{1} \oplus \cdots \oplus V_{t}$ with the V_{i} direct sums of A-isomorphic irreducible A-spaces, no two V_{i} having a common irreducible constituent. Here A induces a group of order 2 on each V_{i}, while H is transitive on $\left\{V_{1}, \cdots, V_{t}\right\}$. Thus, $\left\{C_{A}\left(V_{i}\right) \mid i=1, \cdots, t\right\}$ is an orbit of H of subgroups of A of index 2 . Consequently, $t \geqq m$, so $\operatorname{dim} V \geqq m$.
(2.6) Let L be a finite group and $K \triangleleft L$ with L / K simple. Suppose L has no proper subgroup L_{0} for which $L_{0} / L_{0} \cap K \approx L / K$. Then:
(i) K is nilpotent; and
(ii) Each proper normal subgroup of L is contained in K.

Proof. (i) Let S be a Sylow subgroup of K. By the Frattini argument, $L=K N_{L}(S)$, so our conditions on L imply that $L=N_{L}(S)$.
(ii) Let $M \unlhd L$ and $M \nsubseteq K$. Since $1 \neq M K / K \unlhd L / K, M K=L$ and hence $M=L$.
(2.7) Let $d>e \geqq 2$ and $t \geqq 1$. Then $\operatorname{PSL}(d, q)$ is not involved in $P S L\left(e, q^{t}\right)$.

Proof. If p is the prime dividing q, then p-Sylow subgroups of $\operatorname{PSL}(d, q)$ and $\operatorname{PSL}\left(e, q^{t}\right)$ have nilpotence class $d-1$ and $e-1$, respectively.

We now come to our main technical lemma.
(2.8) Let $q=p^{e}$, where p is a prime, and $m=\operatorname{dim} V$. Suppose either $m=3$, 4, or 5 , or $m=6$ and $p=2$. Let $L \leqq G L(V)$ and $H, K \triangleleft L$, where $H \leqq K, L / K \approx P S L(3, q)$, and $L / H \approx P S L(3, q)$ or $S L(3, q)$. Assume that L has no proper subgroup L_{0} for which $L_{0} / L_{0} \cap K \approx \operatorname{PSL}(3, q)$. Finally, assume: (\#) If $1 \neq h \in H$ and $p \nmid|h|$, then $\operatorname{dim} C_{V}(h) \leqq m-3$.

Then there are L-invariant subspaces X, Y with $X>Y$ such that the following hold.
(a) $K=P \times C$ with P a p-group, $|C|=(3, q-1)$, and $H=P$ or K.
(b) $L / P \approx S L(3, q)$.
(c) $P^{V / X}, P^{X / Y}$ and P^{Y} are all 1.
(d) $\operatorname{dim} X / Y=3$ and $L^{X / Y}=S L(X / Y)$.
(e) If $m \leqq 5$ and $q \neq 2$, then $L^{V / X}$ and L^{Y} are 1. Moreover, some element g of order p in the center of a p-Sylow subgroup of L satisfies $\operatorname{dim} C_{V}(g) \geqq m-2$, and even $\operatorname{dim} C_{V}(g)=m-1$ if $P=1$.

Proof. Everything is obvious if $m=3$, so assume $m>3$. We will proceed by a series of steps.
(i) Clearly $L=L^{\prime}$. We can apply (2.6) to L. In particular, K is nilpotent.
(ii) Suppose that there are L-invariant subspaces V_{1}, V_{2} with $V_{1} \geqq V_{2}$ and $\operatorname{dim} V_{1} / V_{2} \leqq 2$. We claim that L centralizes V_{1} / V_{2}. For, $C_{L}\left(V_{1} / V_{2}\right) \unlhd L$, and since $L^{V_{1} / V_{2}}$ does not have $\operatorname{PSL}(3, q)$ as a homomorphic image, (2.6) implies that $C_{L}\left(V_{1} / V_{2}\right)=L$.
(iii) Next, suppose that there are L-invariant subspaces X, Y with $X>Y, \operatorname{dim} X / Y=3$ and $L^{X / Y} \neq 1$. We claim that (a)-(e) hold.

Arguing as in (ii) we find that $L^{X / Y}=S L(X / Y)$, while $L^{V / X}$ and L^{Y} are both 1 or $S L(3, q)$. Write $K=P \times C$ with P a p-group and C a p^{\prime}-group. C induces a group of order 1 or $(3, q-1)$ on $V / X, X / Y$, and Y. By (2.2), (a) holds unless $|C|=9$ and $m=6$. However, in this case $C \leqq Z(L)$, so $L / P=(L / P)^{\prime}$ is a central extension of $S L(3, q)$ by a group of order 9 , and this is impossible [2].

Thus, (a), (b), (c), and (d) hold.
Now let $m \leqq 5$. Then $\operatorname{dim} V / X$ and $\operatorname{dim} Y$ are $\leqq 2$, so $L^{V / X}$ and L^{Y} are 1 by (ii). If $P \neq 1$ then, by (c), each $g \neq 1$ in P satisfies $\operatorname{dim} C_{V}(g) \geqq m-2$.

Suppose $P=1$, so $L \approx S L(3, q)$. By results of Higman [4], §5, if $q \neq 2$ then there is an L-invariant 3 -space T, and each element of L inducing a transvection on T is a transvection of V. This proves (e).
(iv) From now on we assume that m and L are chosen with m minimal such that (2.8) is false. Then $m>3$.
L is irreducible on V. For otherwise, there is an L-invariant subspace W with $V>W>0$.

Then $L^{W} \neq 1$ and $L^{V / W} \neq 1$. For suppose, say, that $L^{V / W}=1$. Consider L^{W}, K^{W}, and H^{W}. By (2.2), (\#) is inherited by L^{W}. Also, if $L_{0} \leqq L$ and $L_{0}^{W} / L_{0}^{W} \cap K^{W} \approx P S L(3, q)$ then $L_{0} K / K \approx L_{0} / L_{0} \cap K$ has $\operatorname{PSL}(3, q)$ as a homomorphic image, so that $L_{0} K=L$ and hence $L_{0}=L$.

Consequently, L^{w} satisfies the hypotheses of (2.8). Then we can find subspaces X and Y of W such that (iii) applies, whereas (2.8) is assumed false. Thus, $L^{W} \neq 1$ and $L^{\nu / W} \neq 1$.

By (ii) we must have $m=6$ and $\operatorname{dim} W=3$. Then (iii) again applies, and this is again impossible.
(v) By (iv) and the nilpotence of $K,(|K|, q)=1$.
K is not central in L. For suppose $K \leqq Z(L)$. Since $L=L^{\prime}, L$ is a homomorphic image of the covering group of $\operatorname{PSL}(3, q)$. Then L is $\operatorname{PSL}(3, q)$ or $S L(3, q)$ (see, e.g., [2]).

On the other hand, L has an irreducible $G F(q)$-representation of degree m, where $4 \leqq m \leqq 6$ and q is even if $m=6$. No such representation exists by [7] and [9].
(vi) Let r be a prime and R_{1} an r-Sylow subgroup of K such that $R_{1} \nsubseteq Z(L)$. Set $R=R_{1} \cap H$. Then $R \nsubseteq Z(L)$ and $R \triangleleft L$.

Let A be a characteristic elementary abelian subgroup of R. By (\#), $|A| \leqq r^{m-3}$.

We claim that $A \leqq Z(L)$. For otherwise, L has a nontrivial $G F(r)$-representation of degree $\leqq m-3 \leqq 3$. By (2.6 ii), $\operatorname{PSL}(3, q)$ is involved in $G L(3, r)$. Thus, $q=2$ and $r \neq 3$. Since A is a noncyclic elementary abelian subgroup of $G L(6,2),|A|=7^{2}$. Then L acts transitively on $A-\{1\}$. However, not all elements of $A-\{1\}$ are conjugate in $G L(6.2)$.

Thus, $A \leqq Z(L)$. In (iv), $|A|=r$. In particular, $Z(R)$ is cyclic.
(vii) Suppose $r \nmid q-1$. By (vi), $R \leqq G L(6, q)$ is nonabelian, so $r=3 \mid q+1$ and $m=6$. Moreover, $R \triangleright B$ with $|R: B|=3$ and B abelian. By (vi) we can find $B_{1} \neq B$ with $R \triangleright B_{1},\left|R: B_{1}\right|=3$, and B_{1} abelian. Then $B \cap B_{1} \leqq Z(R)$ and $|R / Z(R)| \leqq 9$. Consequently, L centralizes $Z(R), R / Z(R)$, and hence also R, which is not the case.

Thus, $r \mid q-1 . \quad$ In (iv), $A \leqq L \cap Z(G L(V)) \leqq Z(S L(V))$, so $r \mid(q-1, m)$.
There are now just three possibilities: $m=4, r=2 ; m=5, r=5$; and $m=6, r=3$.
(viii) Let $m=4, r=2$. By (vii), $-1 \in R$. There is an involution $t \neq-1$ in R. Either $\operatorname{dim} C_{r}(t) \geqq 2$ or $\operatorname{dim} C_{r}(-t) \geqq 2$. This contradicts $(\#)$.
(ix) Let $m=5, r=5$. A 5-Sylow subgroup of $G L(5, q)$ has a normal abelian subgroup of index 5 (the "diagonal subgroup"). Thus, we can find $B \leqq R$ with B abelian and $|R: B|=1$ or 5 . By (vi), $|R: B|$ is 5 and B is not characteristic in R. Let $B_{1}<R, B_{1} \neq B$, satisfy the same conditions as B. Then $B_{1} \cap B \leqq Z(R)$ and $|R: Z(R)| \leqq 5^{2}$. By (vi), $Z(R)$ is cyclic, so L centralizes $Z(R), R / Z(R)$, and hence also R, which is not the case.
(x) Finally, let $m=6, r=3$, and $q=2^{i}$. Here $3 \mid q-1$. On the one hand, $L / C_{L}(R / \Phi(R))$ can be regarded as a subgroup of $G L(e, 3)$ for some e; on the other hand, using (2.6) and $(|K|, q)=1$, we
find that this group has an elementary abelian 2 -subgroup of order q^{2} whose normalizer is transitive on the nontrivial elements. By (2.5), $e \geqq q^{2}-1$. However, a 3-Sylow subgroup of $S L(6, q)$ has order $\leqq 3(q-1)^{6}$. Thus, $3^{q^{2-1}} \leqq 3^{e} \leqq|R|<3 q^{6}$, and since $q \geqq 4$ this is ridiculous.

This contradiction completes the proof of (2.8).
3. Wagner's results and some corollaries. Let V be n-dimensional over $G F(q), n \geqq 3$, and let $G \leqq G L(V)$ be 2 -transitive on 1 -spaces.
(3.1) For each 3 -space $T, N_{G}(T)^{T} \geqq S L(T)$.

Proof. Wagner [10], p. 417.
(3.2) If $n \leqq 5$ then $G \geqq S L(V)$, unless $n=4, q=2$, and $G \approx A_{7}$.

Poof. Wagner [10], p. 422.
(3.3) For each n-1-space $W, N_{G}(W)$ is 2-transitive on the 1-spaces of V not in W.

Proof. [6], p. 6.
(3.4) If G has an element $g \neq 1$ such that $\operatorname{dim} C_{V}(g) \geqq n-2$, then $G \geqq S L(V)$ or $n=4, q=2$, and $G \approx A_{7}$.

Proof. We may assume that $|g|$ is prime and $n>5$. Since $\operatorname{dim}[V, g] \leqq 2$ and g centralizes $V /[V, g]$, there is a 3 -space $T>[V, g]$ such that $g^{T} \neq 1$. Then $1 \neq C_{G}(V / T)^{T} \geqq N_{G}(T)^{T}$. By (3.1), $C_{G}(V / T)^{T} \geqq$ $S L(T)$. Choose $g^{\prime} \in C_{G}(V / T)$ with $\mid g^{\prime} \| q+1$ and $\operatorname{dim} C_{T}\left(g^{\prime}\right)=1$. Then $\operatorname{dim} C_{V}\left(g^{\prime}\right)=n-2$.

We may thus assume that $(|g|, q)=1$. Since $g^{[V, g]} \neq 1$, as before $C_{G}(V / T)^{T} \geqq S L(T)$ for each 3 -space $T>[V, g]$. By the 2 -transitivity of G, this holds for every 3 -space of V.

Choose $m \leqq n$ maximal with repect to $C_{G}(V / U)^{U} \geqq S L(U)$ for all m-spaces U. Suppose $m<n$. By Wagner [10], p. 420, $m \leqq n-2$. Take any subspace W of dimension $m+1$ or $m+2$. For each m-space $U<W, C_{G}(V / U)$ fixes W and centralizes V / W, while $C_{G}(V / U)^{U} \geqq$ $S L(U)$. By Wagner [10], p. 420, and (3.2), $C_{G}(V / W)^{W} \geqq S L(W)$ for each $m+1$-space W. This contradicts the maximality of m.
(3.5) Let s be a prime and S an s-group maximal with respect to $\operatorname{dim} C_{V}(S) \geqq 3$. Then $N_{G}(S)$ is 2 -transitive on the 1 -spaces of $C_{V}(S)$.

Proof. Take any 3 -space $T \leqq C_{V}(S)$. Then S is Sylow in $C_{G}(T)$. By the Frattini argument and (3.1), $\left(N_{G}(S) \cap N_{G}(T)\right)^{T}=N_{G}(T)^{T} \geqq$ $S L(T)$. Our assertion follows immediately.
4. The case $n=r^{\alpha}+1$. There is one very easy case of our problem.
(4.1) Theorem. Let r be a prime divisor of $q-1$, and let $\alpha \geqq 1$. Then every collineation group of $P G\left(r^{\alpha}, q\right)$ which is 2-transitive on points contains $\operatorname{PSL}\left(r^{\alpha}+1, q\right)$.

We first prove:
(4.2) Let r be a prime divisor of $q-1$, and let $\alpha \geqq 1$. Let V be an r^{α}-dimensional vector space over $G F(q)$. If $G \leqq \Gamma L(V)$ is transitive on $V-\{0\}$, then $r||G \cap Z(G L(V))|$.

Proof. Let r^{β} be the largest power of r dividing $q^{d}-1$, where $d=r^{\alpha}$. Then q is not an r^{β} th power, so $r \| G \cap G L(V) \mid$.

Let R be an r-Sylow subgroup of G. By [11], p. 6, each orbit of R on $V-\{0\}$ has length divisible by r^{β}.
R fixes no nontrivial proper subspace of V. For, if it did we would have $r^{\beta} \mid q^{m}-1$ with $1 \leqq m<d$. Set $e=(d, m)$. Then $r^{\beta} \mid q^{e}-1$. However, as d / e is a power of $r,\left(q^{d}-1\right) /\left(q^{e}-1\right)$ is divisible by r, and this contradicts the definition of r^{β}.

Let $x \in Z(R) \cap G L(V)$ have order r. Since $r \mid q-1, x$ can be diagonalized. By the preceding paragraph, x is a scalar transformation, that is, $x \in Z(G L(V))$.
(4.3) Let r be a prime divisor of $q-1$, and let $\alpha \geqq 1$. Then a collineation group of the affine space $A G\left(r^{\alpha}, q\right)$ which is 2 -transitive on points contains the translation group.

Proof. (4.2).
Now (4.1) follows immediately from (3.3) and (4.3).
5. Primes dividing $|G|$. We will consider the following situation in the remainder of this paper.

Let V be an n-dimensional $G F(q)$-space, $n \geqq 6$, and G be a subgroup of $G L(V)$, 2-transitive on 1-spaces, such that $G \nsupseteq S L(V)$. We may clearly assume that $G>Z=Z(G L(V))$.

In this section let s be a prime dividing $\left(|G|, q^{m}-1\right), 1<m \leqq$ $n-2$, such that s is a primitive divisor of $q^{m}-1$. (5.1) is essentially due to Perin [8] and, independently, to E. Shult and G. Hare.
(5.1) If $m=n-2$ then $q=2$ and n is even.
(5.2) Suppose that $n=\alpha m+\beta, \alpha<\beta \leqq m+2$, and an element of order s centralizes some 3 -space X. Then, for some n^{\prime} satisfying $5<n^{\prime}<n$ and $n^{\prime} \equiv n(\bmod m)$, there is a subgroup of $G L\left(n^{\prime}, q\right)$, not containing $S L\left(n^{\prime}, q\right)$, which is 2-transitive on the points of $P G\left(n^{\prime}-1, q\right)$.

Clearly (5.2) has an inductive flavor. Since the proofs are similar, we will only prove the second of the above results.

Proof of (5.2). Choose $S \leqq C_{G}(X)$ as in (3.5). Set $W=C_{V}(S)$, $W^{*}=[V, S]$, and $N=N_{G}(S)$. Then $V=W \oplus W^{*}, C_{W^{*}}(S)=0$, and N^{W} is 2-transitive on 1-spaces.

Set $n^{\prime}=\operatorname{dim} W$, so $n^{\prime} \geqq 3$. By (2.3 ii), since $\beta \leqq m+2$ we have $\operatorname{dim} W^{*}=\gamma m$ with $\gamma \leqq \alpha$. Then $n^{\prime}=n-\gamma m \geqq n-\alpha m=\beta>\alpha \geqq \gamma$.

We must show that $n^{\prime}>5$ and $N^{W} \nsupseteq S L(W)$. Deny this. Then either $N^{W} \geqq S L(W)$ or $n^{\prime}=4, q=2$, and $N^{W} \approx A_{7}$. In particular, the commutator subgroup $N^{\prime W}$ contains a nontrivial element centralizing an $n^{\prime}-2$-space.

In this situation, $C_{N^{\prime}}\left(W^{*}\right)^{W} \leqq Z(G L(W))$. For otherwise, $C_{N^{\prime}}\left(W^{*}\right)^{W} \unlhd N^{\prime W}$ implies that $C_{N^{\prime}}\left(W^{*}\right)^{W}=N^{\prime W}$. Then $C_{N^{\prime}}\left(W^{*}\right)$ has a nontrivial element g centralizing an n^{\prime}-2-space of W. Hence, $\operatorname{dim} C_{V}(g) \geqq n-2$, which contradicts (3.4).

It follows that $N^{\prime{ }^{\prime W *}}$ has $\operatorname{PSL}\left(n^{\prime}, q\right)$ as a homomorphic image, unless $n^{\prime}=4$ and $q=2$, in which case A_{7} may be a homomorphic image.

Since $C_{W^{*}}(S)=0$, we can apply (2.4): each noncyclic composition factor of $N^{W^{*}}$ is involved in $\operatorname{PSL}\left(\gamma, q^{m}\right)$. Since $n^{\prime}>\gamma$, by (2.7) $\operatorname{PSL}\left(n^{\prime}, q\right)$ cannot be such a composition factor. Thus, $n^{\prime}=4, q=2, \gamma \leqq 3$, and A_{7} is a composition factor of $N^{{ }^{W *}}$. However, A_{7} is not involved in $\operatorname{PSL}\left(3,2^{m}\right)$. This is a contradiction.

Remark. It is useful to note that the above proof holds under slightly weaker hypotheses: s is a primitive divisor of $q^{m}-1, S \neq 1$ is an s-subgroup of G with $W=C_{V}(S)$ of dimension $n^{\prime} \geqq 3,\left(n-n^{\prime}\right) / m<$ n^{\prime}, and $N_{G}(S)^{W}$ is 2 -transitive on 1 -spaces.

We conclude this section with two miscellaneous results.
(5.3) Assume that G has a cyclic subgroup H of order $q^{n}-1$ containing an r-Sylow subgroup of G for some prime r dividing $q^{2}+q+1$. Then $q=2$ and n is even.

Proof. Suppose $q \neq 2$ or $q=2$ and n is odd. By (2.3), H is transitive on $V-\{0\}$. Thus, H is transitive on the 3 -spaces fixed by its subgroup R of order r.

On the other hand, by (3.1) each 3 -space is fixed by a conjugate of R. Thus, G is transitive on 3 -spaces, and this contradicts Perin [8] or (5.1) since $n \geqq 6$.
(5.4) Assume that G has a cyclic subgroup of order $q^{n-1}-1$ fixing some $n-1$-space W and transitive on $W-\{0\}$. Then $N_{G}(W)$ is 2 -transitive on the 1 -spaces of $W, q=2$, and n is even.

Proof. We may assume that $G-Z$ has no element fixing all 1 - spaces in W. By [6], Lemma 7.3, $N_{G}(W)$ is 2 -transitive on the 1 -spaces of W. The result now follows from (2.3) and (5.1).
6. The case $n \leqq 9$. Let n, V, G, and Z be as in $\S 5$, so $G \nsupseteq$ $S L(V)$. Let p be the prime dividing q.

Assume that $6 \leqq n \leqq 9$.
(6.1) $n \neq 6$.

Proof. Suppose $n=6$. If $q=2$ then $q^{5}-1$ is a prime. By (5.4), the stabilizer of a 5 -space W is 2 -transitive on $W-\{0\}$. By (3.2) and (3.4), $G \geqq S L(V)$, which is not the case.

Thus, $q>2$. Let r be a prime dividing $q-1$.
Suppose that there is 3 -space T for which $N_{G}(T)-Z$ contains an element inducing a scalar transformation of order r on T. Using Z, we find that $r \| C_{G}(T) \mid$. Let R be an r-Sylow subgroup of $C_{G}(T)$. By (3.4), $T=C_{V}(R)$. By (3.5), $N_{G}(R)^{T} \geqq S L(T)$. Also, $N_{G}(R)$ normalizes the 3 -space $[V, R]$. An element of order p in the center of a p Sylow subgroup of $N_{G}(R)$ centralizes 2-spaces of both $C_{V}(R)$ and [V, R], and hence centralizes a 4 -space of $V=C_{V}(R) \oplus[V, R]$. This contradicts (3.4). Thus, no element of $G-Z$ of order r has an eigenspace of dimension >2.

Now take any 3 -space T, and write $T=X \oplus Y$ with $\operatorname{dim} X=2$ and $\operatorname{dim} Y=1$. Set $F=N_{G}(X) \cap N_{G}(Y)$, so $F^{x}=G L(X)$. Take $R \leqq F$ of order r with $R \not \equiv Z$ and $R^{T} \leqq Z\left(F^{T}\right)$. By the Frattini argument, $N_{F}(R)^{x}=G L(X)$. Let $E \leqq N_{F}(R)$ be minimal with respect to $E^{x}=S L(X)$.

Since R is diagonalizable and each of its eigenspaces has dimension 1 or 2 , we can write $V=X \oplus W_{1} \oplus W_{2}$ with $W_{1}>Y, \operatorname{dim} W_{i}=$ 2, and W_{i} invariant under $N_{G}(R)$. If $q \neq 3, E=E^{\prime}$ centralizes W_{1}, so an element of E of order p centralizes a 4 -space, which contradicts (3.4). If $q=3, R$ cannot have more than two eigenspaces as $|R|=$ 2 , which is again a contradiction.

(6.2) q is even.

Proof. Assume that q is odd. There is an involution $t \in G-Z$. Since $n \geqq 6, \operatorname{dim} C_{V}(t)$ or $\operatorname{dim} C_{V}(-t)$ is $\geqq 3$. Let S be a 2 -group in G maximal with respect to $\operatorname{dim} C_{V}(S) \geqq 3$. Set $W=C_{V}(S)$ and $W^{*}=$ $[V, S]$, so $V=W \oplus W^{*}$. Set $M=N_{G}(S)$. By (3.5), M^{W} is 2-transitive on 1-spaces. Since $M>Z$ and all involutions in M^{W} centralize at most a 2 -space (by the maximality of S), $\operatorname{dim} W \leqq 4$. Consequently, by (3.2), $M^{W} \geqq S L(W)$.

By (4.1) and (6.1), $n=7$ or 8 , so $\operatorname{dim} W^{*} \leqq 5$.

We claim that $C_{M K}\left(W^{*}\right)^{W} \leqq Z(G L(W))$. For otherwise, $C_{M K}\left(W^{*}\right)^{W} \unlhd$ M^{W} yields $C_{M L}\left(W^{*}\right)^{W} \geqq S L(W)$. Then $C_{M}\left(W^{*}\right)$ contains a nontrivial transvection of V, which contradicts (3.4).

Thus, $C_{N T}\left(W^{*}\right)$ is cyclic and $M^{T^{* *}}$ has $P S L(W)$ as a homomorphic image.

Suppose that $\operatorname{dim} W=4$. Then $\operatorname{dim} W^{*}=3$ or 4 . Use of $M^{W^{* *}}$ yields $\operatorname{dim} W^{*}=4$ and $M^{\prime{ }^{\prime * *}} \geqq S L\left(W^{*}\right)$. If $g \neq 1$ is in the center of a p-Sylow subgroup of M^{\prime} then g^{W} and $g^{W^{*}}$ are transvections, and this contradicts (3.4).

Thus, $\operatorname{dim} W=3$. Let $L \leqq M$ be minimal with respect to having $\operatorname{PSL}(3, q)$ as a homomorphic image. Let $H=C_{L}(W) \leqq K \triangleleft L$ with $L / K \approx P S L(3, q)$. Then (2.8) applies to $W^{*}, L^{w^{*}}, K^{w^{*}}$, and $H^{w^{*}}$.

Choose $g \in L$ so that $g^{W^{*}}$ is as in (2.8e). If $g \in H=C_{L}(W)$, then $\operatorname{dim} C_{V}(g) \geqq n-2$. If $H^{w^{*}}=1$ then $H=1$, and both $g^{\mid{ }^{\mid T}}$ and $g^{w^{*^{*}}}$ are transvections, so once again $\operatorname{dim} C_{v}(g) \geqq n-2$. In either case we have contradicted (3.4).
(6.3) $n \neq 7,8$.

Proof. Let $n=7$ or 8 . Fix a prime $r \mid q+1$.
Take any 3 -space T. By (3.1), $N_{G}(T)^{T} \geqq S L(T)$. Also, $N_{G}(T)$ acts on V / T. By (3.4), $C_{G}(V / T)^{T} \leqq Z\left(G L(T)\right.$) (since otherwise, $C_{G}(V / T)$ would have an element of order r), so $C_{G}(V / T)$ is solvable. Thus, $N_{G}(T)^{r / T}$ has $P S L(3, q)$ as a composition factor. By (2.8), there is an r-group $R \neq 1$ in $N_{G}(T)$ such that $\operatorname{dim} C_{V / T}(R) \geqq 2$, and then $\operatorname{dim} C_{V}(R) \geqq 3$.

This contradicts (5.2) with $n=2 \cdot 2+3$ or $2 \cdot 2+4$.
(6.4) If $n=9$ then $q=2$ or 4 .

Proof. Suppose $n=9$ and $q>4$ is even.
(i) By (5.2) with $n=2 \cdot 3+3$, no nontrivial element of order dividing $\left(q^{2}+q+1\right) /(q+1,3)$ can centralize a 1 -space.
(ii) Let T be any 3 -space. Let $L \leqq N_{G}(T)$ be minimal with respect to having $P S L(3, q)$ as a homomorphic image. By (3.4), $C_{G}(V / T)^{T} \leqq Z(G L(T))$, so (2.8) applies to $L^{V_{/ T}}$. Consequently, by (i) there is a 6 -space $Y>T$ such that $L^{Y / T}=S L(Y / T)$ and $L^{y / Y}=S L(V / Y)$.
(iii) Let s be a prime dividing $q+1$. By (ii), there is an element of order s centralizing a 3 -space.

Let S be an s-group maximal with respect to $\operatorname{dim} C_{V}(S) \geqq 3$. By (3.5), $N_{G}(S)$ is 2 -transitive on the 1 -spaces of $C_{V}(S)$. In view of (i), it follows from (3.2), (6.1), and (6.3) that $\operatorname{dim} C_{V}(S)=3$.

Let $T=C_{V}(S)$ in (ii), and choose $L \leqq N_{G}(S)$ there. By (i) and the proof of (2.4), $(L S)^{[r, S]}$ acts as a subgroup of $\Gamma L\left(3, q^{2}\right)$, with S inducing scalar transformations.
(iv) Since $q>4$, by (2.3 i) there is a prime $r \neq 3$ dividing $q-1$. Moreover, if $q \neq 16$ we can choose $r \neq 5$.

We claim that some element of order r centralizes a 4 -space. For, since $r \neq 3$, in (iii) we can find $g \in L-Z$ of order r such that $g^{[V, S]}$ has an eigenspace of dimension $\geqq 4$. Consequently, some element of $\langle g, Z\rangle$ of order r centralizes a 4 -space.
(v) Let R be an r-group maximal with respect to $\operatorname{dim} C_{V}(R) \geqq 3$; by (iv), $R \neq 1$. Set $T=C_{V}(R)$ and $T^{*}=[V, R]$. By (3.5), $N_{G}(R)^{T}$ is 2 -transitive on 1 -spaces, so $\operatorname{dim} T=3$ by (i). We can thus choose $L \leqq N_{G}(R)$ in (ii).

We claim that $L R$ centralizes R and that R is diagonalizable. Certainly $(L R)^{r^{*}} \leqq G L\left(T^{*}\right)$. Suppose $r>5$. Then an r-Sylow subgroup of $G L(6, q)$ is diagonalizable, and hence abelian. By (2.4 ii) (with $m=1, \alpha=6$), each composition factor of $L / C_{L}(R)$ is involved in S_{6}. By (2.6 ii), $L=C_{L}(R)$, so $R \leqq Z(L R)$.

Consider the case $r=5, q=16$. Suppose $L>C_{L}(R)$. Then L acts nontrivially on $R / \Phi(R)$, where $|R / \Phi(R)| \leqq 5^{7}$. By (2.6 ii), $16+1$ divides $|G L(7,5)|$, which is not the case.

Thus, L centralizes R. There is an s-group $S_{0}<L$ such that $\operatorname{dim} C_{T^{*}}\left(S_{0}\right)=2$. Since R normalizes $C_{T^{*}}\left(S_{0}\right)$ and [T^{*}, S_{0}], it follows that R is again diagonalizable. Thus, $R \leqq Z(L R)$.
(vi) $\quad T^{*}$ is the direct sum of R-invariant subspaces, each invariant under $L R$. By (ii) and (v), there are 3 -spaces X and X^{\prime} such that $T^{*}=X \oplus X^{\prime}, R^{X}$ and $R^{X^{\prime}}$ consist of scalar transformations, $L^{X}=$ $S L\left(X^{\prime}\right)$, and $L^{X^{\prime}}=S L\left(X^{\prime}\right)$.

Consequently, for each $h \in R$, $\operatorname{dim} C_{V}(h)=3,6$, or 9 .
(vii) By (iv), there is an r-group $R_{1} \neq 1$ maximal with respect to $\operatorname{dim} C_{V}\left(R_{1}\right) \geqq 4$. By (vi), $W=C_{V}\left(R_{1}\right)$ has dimension 6 . Set $M=$ $N_{G}\left(R_{1}\right)$.

Take any 3 -space $T<W$. Let $R \geqq R_{1}$ be an r-Sylow subgroup of $C_{G}(T)$. If $R=R_{1}$ then $N_{M}(T)^{T} \geqq S L(T)$ by the Frattini argument. If $R>R_{1}$ then the choice of R_{1} implies that $C_{V}(R)=T$, and hence that R is an r-group maximal with respect to $\operatorname{dim} C_{V}(R) \geqq 3$; by (v), $C_{G}(R)^{T} \geqq S L(T)$, so again $N_{M}(T)^{T} \geqq S L(T)$.

Consequently, M^{W} is 2 -transitive on 1 -spaces. Then $\left(q^{6}-1\right) /(q-1)$ divides $|G|$, and this contradicts (5.2).
(6.5) If $n=9$ then $q \neq 4$.

Proof. Suppose $n=9$ and $q=4$. We will try to imitate the proof of (6.4) using $r=3$. Steps (i) and (ii) of that proof still hold.

We begin by showing the existence of $x \in G$ of order 3 such that $x^{y}=x^{-1}$ for some 2 -element y. Take T and L as in (ii). Then we can find $x, y \in L$ with $|x|=3, y$ a 2-element, and $x^{y}=x^{-1} a, a \in C_{L}(T)$.

By (2.8), $C_{L}(T)=P \times C$ with P a 2 -group and $|C|=1$ or 3 . Then $\langle x\rangle$ is Sylow in $\langle x, y\rangle P$. By the Frattini argument, some element of $\langle y\rangle P$ inverts $\langle x\rangle$, and we may assume this is y.

We next claim that some element of order 3 centralizes a 4 -space. For, assume that this is false, and choose x, y as above. Since $q=$ $4, x$ is diagonalizable and has at most 3 eigenspaces. However, no element of $\langle x, Z\rangle-\{1\}$ centralizes a 4 -space, so $C_{V}(x)=T$ is a 3 -space and x has two other 3 -dimensional eigenspaces T_{1}, T_{2}. Moreover, by our assumption, $C_{G}(T)$ has a cyclic 3 -Sylow subgroup. Thus, by the Frattini argument, $\quad N_{G}(\langle x\rangle)^{T} \geqq S L(T)$, so $\quad C_{G}(x)^{T} \geqq S L(T)$. Since $|G L(T): S L(T)|=3, y^{T} \in S L(T)$, so we can find $c \in C_{G}(X)$ such that $c^{-1} y \in C_{G}(T)$. Clearly $c^{-1} y$ inverts x, so there is an involution $t \in$ $\left\langle c^{-1} y\right\rangle$. Here, t centralizes T and centralizes 2 -spaces of each T_{i}, so $\operatorname{dim} C_{V}(t) \geqq 7$. This contradicts (3.4), and proves our claim.

Now define R, T, T^{*}, and L as in (v). We will be able to obtain a contradiction precisely as in (vi) and (vii) if we can show that $R \leqq$ $Z(L R)$ and R is diagonalizable.

By (2.6), $L \triangleright K$ with $L / K \approx \operatorname{PSL}(3,4)$ and K nilpotent. By (2.2) and (2.8), $K=P \times C$ with $|C|=3$ or 9 and P a 2 -group; moreover, there is an L-invariant 3 -space $X<T^{*}$ such that $L^{X}=S L(X), L^{T^{*} / X}=$ $S L\left(T^{*} / X\right)$, and P centralizes T, X, and T^{*} / X. By (3.4), no nontrivial element of P centralizes a 4 -space of T^{*}. Consequently, P is elementary abelian of order $\leqq 4^{3}$. Thus, if $P \nsubseteq Z(L)$ then $P S L(3,4)$ is isomorphic to a subgroup of $G L(6,2)$, which is not the case ([7], [9]). Thus, $K \leqq Z(L)$.

Now suppose that L acts nontrivially on R, and hence on $R / \Phi(R)$. Since $R \leqq G L(6,4),|R / \Phi(R)| \leqq 3^{6} \cdot 3^{2}$. Thus, $P S L(3,4)$ or $S L(3,4)$ is isomorphic to a subgroup of $G L(8,3)$. Then $G L(8,3)$ has an elementary abelian subgroup of order 4^{2} whose normalizer is transitive on the nontrivial elements. By (2.5), this is impossible.

Consequently, $L \leqq C_{G}(R)$. An element of L of order 5 centralizes 1 -spaces of X and T^{*} / X. It follows that T^{*} is the sum of R-invariant 2 -spaces. Thus, R is diagonalizable and $R \leqq Z(L R)$. This completes the proof of (6.5).

Last, and least:
(6.6) If $n=9$ then $q \neq 2$.

Proof. Suppose $n=9$ and $q=2$. Using (5.1) and (5.2) we find that $|G|=2^{\alpha} \cdot 3^{\beta} \cdot 5 \cdot 7 \cdot 17 \cdot 73$ for some α, β.

Let S be a 73-Sylow subgroup of G. By (5.3), $\left|C_{G}(S)\right|=73$. Thus, $\left|N_{G}(S)\right|=3^{r} \cdot 73$ with $\gamma \leqq 2$.

By Sylow's theorem, $2^{\alpha} \cdot 3^{\beta-\gamma} \cdot 5 \cdot 7 \cdot 17 \equiv 1(\bmod 73)$. A little arithmetic shows that this is impossible.

In view of (3.2) and the results of this section, we can now state:
THEOREM 6.7. Let H be a subgroup of $\operatorname{P\Gamma L}(n, q)$ which is 2transitive on the points of $P G(n-1, q)$. If $3 \leqq n \leqq 9$, then $H \geqq$ $\operatorname{PSL}(n, q)$ or $n=4, q=2$, and $H \approx A_{7}$.

References

1. P. Dembowski, Finite Geometries, Springer, Berlin-Heidelberg-New York, 1968.
2. W. Feit, The current situation in the theory of finite simple groups, Proc. Int. Cong. Math. Nice, 1970, Vol. 1, 55-93.
3. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
4. G. Hare, Thesis, Southern Illinois University, 1970.
5. D. G. Higman, Flag-transitive collineation groups of finite projective spaces, Illinois J. Math., 6 (1962), 434-446.
6. W. M. Kantor, 2-Transitive symmetric designs, Trans. Amer. Math. Soc., 146 (1969), 1-28.
7. C. Mark, Thesis, University of Toronto, 1939.
8. D. Perin, On collineation groups of finite projective spaces, Math. Z., 126 (1972), 135-142.
9. R. Steinberg, Representations of algebraic groups, Nagoya Math. J., 22 (1963), 3356.
10. A. Wagner, On collineation groups of finite projective spaces, I. Math. Z., 76 (1961), 411-426.
11. H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
12. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. f. Math. u. Phys., 3 (1892), 265-284.

Received November 6, 1971 and in revised form October 13, 1972. This research was supported in part by NSF Grant GP28420.

University of Oregon

