
PACIFIC JOURNAL OF MATHEMATICS
Vol. 48, No. 1, 1973

MULTIPLICATIVE AND EXTREME
POSITIVE OPERATORS

M SOLVEIG ESPELIE

Let A and B denote complex Banach *-algebras and L(A9 B)
the space of continuous linear operators from A into B. Let
P c L(A9 B) be the convex set of positive linear operators of
norm ^ 1. If A has an identity, and if B is semi-simple and
symmetric, the multiplicative operators of P are shown to be
extreme points of P. If, on the other hand, it is assumed
that, || T| | = || Te\\ for TeP9 then any extreme point T of
P satisfies Te Tab = Ta Tb for all a, be A. With A as above
and B a £*-algebra, the extreme points of P are multiplica-
tive. Thus we characterize the extreme points of P c L(A,
C(X)) as the multiplicative operators. The results are ex-
tended to include the case when A has an approximate identity.

NOTATION, Let A denote a commutative complex Banach algebra
with isometric involution *. We call such an algebra a Banach *-algebra.
Let A' denote the topological dual space of A and

PA = {feAΊ f(xx*) ^ 0 for all xe A} ,

the cone of positive functionals on A. Define the usual ordering, ^ ,
on PA. Further, let

MA = {fePA: f(xy) = f(x)f(y) for all x,yeA] and

The sets MA and PA are compact in the weak* topology and if A
contains an identity (of norm one), then MA is compact in this topology*
The set MA is always a weak* closed subset of the maximal ideal space
ΔAoί A The set MA is the symmetric portion of ΔA9 and if MA = ΔA

we call A a symmetric algebra, Equivalently, A is symmetric
if and only if f(x*) = 7W) f o r a 1 1 / ^ 4 and xeA. It is known that
the set of extreme points of the convex set PA is exactly MA [4]

We now replace the scalars of the above paragraph by a Banach
*-algebra B. That is, we consider subsets of L(A, B), the continuous
linear operators from A to B. An element Te L(A, B) is called positive
if for every aeA there corresponds a finite set {6̂  i = 1, « ,n} of
B such that Γ(αα*) = Σ?=i M*. Following the notation of the above
paragraph, let P be the cone generated by the positive operators and
define the usual ordering on P. Finally, let
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P = {TeP: ||T|| ^ 1}

and

M = {Te P: Tab = Ta Tb for all α, 6e A} .

The question examined in this paper is: When is M exactly the
set of extreme points of P? We denote this latter set by ext P.
With A containing an identity and B semi-simple and symmetric we
obtain Ma ext P. An example exists to show that the semi-simplicity
of B is necessary. The symmetry of B appears necessary but we fail
to give an example. To obtain the inclusion in the other direction we
must require that B be a ί?*-algebra; that is, | |δ | | 2 = | |δδ*| | for all
be B. Equivalently, B is linearly isometric and *-isomorphic to C(AB)
under the map δ —> b where b(h) = h(b) for all h e ΔB. By placing a
norm condition on P we are able to prove the weaker condition that
Te Tab = Ta Tb for Te ext P and a, be A. We say that PaL(A, B)
satisfies Condition I if || Γ|| = || Te\\ for all Te P.

THE NORM CONDITION. The restriction that || T\\ = \\ Te\\ for Te P
is not unusual. This is a well known property of positive functionals
— that is, if B is the set of scalars the condition is satisfied. Further,
if B is a £*-algebra then we have that \\T\\ = \\Te\\ when T e P . This
follows from the fact that in this case the unit ball S of B' is the
weak* closed absolutely convex hull Γ(AB) of ΔB. Hence for TeP,

\\T\\ = sup||Γ&|| - SUP fupj9>(Γδ)|

= sup sup \ah{Tb) I = sup sup \h(Tb) \

heάB heJB ~~

Since the reverse inequality is evident it follows that | | T | | = | |Tβ||.
It is conceivable that if Condition I is valid for PaL(A, B), for every
A, then B is a U*-algebra.

To our knowledge the first work in characterizing the extreme
points of such sets as P was done by A. and C. Ionescu Tulcea who
considered algebras of real valued continuous functions C{X) and C(Y)
on compact Hausdorff spaces X, Y. They showed that the extreme
points of

P* = {Te L(C(X), C(Y)): T ^ 0 and T(l) = 1}

are exactly the multiplicative elements of P* [8,10]. Various investi-
gators have obtained results related to and extensions of the Ionescu
Tulcea result, the work usually being done for algebras of functions
(see [2]). In our work the elements of P do not necessarily satisfy
Te = ef.
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In fact when B is a J3*-algebra and P* = {Te P: Te = e'}, since
|| Γ|| = II Te|| for TeP, it follows that F c P a n d moreover, ext P* =
P* Π ext P. Indeed, we obviously have (P* Π ext P) c ext P* Further,
if TeextP* and T±SeP, then | | ( Γ ± S)(β)|| = | | β ' ± Sβ|| ^ 1 and
Sβ = 0 since e' is an extreme point of the unit ball of B. But then
(T ± S)0) = e' and Γ ± Se P* so that S = 0 and Γe ext P. We note
that throughout this paper we use the well known characterization
of extreme points: If K is a convex set in a linear space X then
x e ext K if and only if x ± y e K for some yeX implies that y = 0.

Recently Watanabe in [11] has dropped the requirement that the
algebras be commutative and has placed pseudo-norms on the algebras.
His results, applied to the commutative case, show that ikfcextP
when A is £*, and the algebra B is semi-simple and symmetric, and
both algebras have an identity. Thus, the commutative results in
[11] are consequences of our paper since all hypotheses of our theorems
are satisfied when A or B are J5*-algebras with identity.

THEOREM 1. Suppose A and B are commutative Banach *~algebras,
A has an identity, and B is semi-simple and symmetric. If TeP,
then TeM implies TeextP.

Proof. Suppose that Γ is multiplicative and that there exists an
element SeL(A, B) such that T± SeP. Let heMB, then hT is an
extreme point of PA [4J. Further, hT±hS^0 and \\hT± hS\\ ̂  1.
Thus hSa = 0 for all a e A. But h was arbitrary and B is semi-simple
so that Sa — 0 for all aeA, and hence T e e x t P .

The inclusion in the other direction is more difficult to obtain but
is valid if we place additional restrictions on the algebras and on the
cone of positive operators. We now prove two lemmas which are
needed to obtain the implication: If T is an extreme point of P then
T is multiplicative.

LEMMA 1. Let A be a Banach *-algebra and b an element of A
such that 6 = 6* and \\b\\ < 1. Then for each aeA, the element aa* —
aba* is of the form xx* for some xeA.

Proof. This is a known result if the algebra A has an identity,
for then e — 6 = yy* where y = (e — δ)1/2 and y = y* (see [6, p. 245]).
Hence imbed A in the algebra Ax with identity adjoined and write
αα* — aba* as a(e — b)a*.

In Ax the element y = (e - δ)1/2 = Σ~=i ( 1 ^ 2 ) ( - b)n e x i s t s a n d i n

fact, y — y*. But then, since A is a maximal ideal in Ax and aeA,
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it follows that x = ayeA and xx* = (ay)(ay)* = ay2a* = αα* — αδα* e A.

LEMMA 2. Lei A am? B be commutative Banach *-algebras and
suppose TeP. If blfb2eA, with bi = CiCf for some <?{eA, i = 1, 2,
define the linear operator S by

S(a) = ΪXδJT^) - T^ΪXaδO for ae A .

Then T ± S ^ 0.

Proof. For any αeA,

( T + S)(aa*) = T(αα*) + Tφ^Tφ.aa*) - T(δ2) T ^

^ T(αα*) -

^ Γftαα*) - T{b2)T{bxaa*) ^ 0 .

Since \\bx\\ < 1 and δx = cxc* from Lemma 1 it follows that the
element px = αα* — δxαα* is positive. Similarly, since || T(b2) || < 1 and
Γ(δ2) is self-adjoint, and since T^αα*) is positive, with repeated
applications of Lemma 1 it follows that T^αα*) — T(b2)T(b1aa^) is of
the form Σ£=icici* i n -B I n a similar way it can be shown that (T —
iS)(αα*) ^ 0 for α e A

THEOREM 2. Suppose that A and B are commutative Banach
""-algebras, that A has an identity and that Condition I holds for
elements of P. Then Te Tab = Ta Tb for all a,beA whenever T is
an extreme point of P.

Proof. Suppose that T e e x t P and be A, with δ = cc* for some
ceA and | | δ | | < 1. We let S(a) = l/2(Γ(δ)T(α) - T(e)T(ab)) be the
operator defined in Lemma 2 (taking bλ = δ and δ2 = l/2e), so that
T ± S ̂  0.

Since | | Γ ± S | | = | | ( Γ ± S)(e)\\ = ||Γβ|| ^ land Γ 6 ext P it follows
that Te Tab = Ta Tb for all a e A provided that b = cc7" and || δ || < 1.
But every element be A is a linear combination of at most four ele-
ments of the form cc* with \\cc* \\ < 1 and hence Te Tab = Ta Tb for
all a, be A.

COROLLARY 2.1. With the hypotheses of Theorem 2 it follows that
hT lies on an extreme ray of PA for every heMB and TeextP.

Proof. S i n c e Te Tab = Ta Tb f o r a l l a,beA a n d \\hT\\ =
for all heMB it follows that if ||ΛΓ|| Φ 0 then (ΛΓ/||AΓ||) (αδ) =
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(ΛΓ/pΓ||)(α)(ΛΓ/||ΛΓ||)(δ) for a,beA and (hT/\\hT\\) eMA. But then,
either \\hT\\ = 0 or hT/\\hT\\eextPA; thus hT lies on an extreme ray
of PA for each h e MB.

COROLLARY 2.2. Suppose that the hypotheses of Theorem 2 hold
and in addition, that B is semi-simple and symmetric. Then T is
multiplicative if \\hT\\ is 0 or 1 for each heMB and TeextP.

Proof. Since hT lies on an extreme ray of PA and ||AΓ|| is 0 or
1 then hTeMA for each heMB. But then, h(Tab) = h(Ta Tb) for all
α, b e A and h e MB, and since B is semi-simple and symmetric, it
follows that T is multiplicative.

THEOREM 3. Let A be a commutative Banach *-algebra with
identity and let B be a B*-algebra. Then every extreme point T of
P is multiplicative.

Proof. If Γ e e x t P it follows from Theorem 2 that Te Tab =
Ta Tb for all α, b e A. Thus it suffices to prove that Te Ta = Ta for
all aeA.

Let S(ά) = l/2(Γe Γα - Γα) for α e i . The method of proof of
Lemma 2 shows that T± S^O and so we need only prove that \\T±
S\\ ̂  1. Since B is a J3*-algebra and T± S ^ 0 it follows from our
earlier remarks that || T ± S\\ = \\(T ± S)(e)\\. Now, | | Γ + S | | =
|| (Γ+ S)(e)\\ - \\l/2Te+l/2(TeY\\ ^ l/2\\Te\\ + 1/2|| Γβ||2 ^ 1. Fur-
thermore, since 0 ̂  Te - Se = (3/2)Γe - l/2(Te)2 and || Γe|| ̂  1 we see

(letting f = Tee C(JB)) that / ^ 0 and | | / | | ̂  1. But then 0 ̂  / ^ 1
so that (1 - f){2 - /) ̂  0 and therefore 0 ̂  (3/2)/ - 1/2/2 ̂  1. Hence
|| Γe - Se|| = ||(3/2)/ - l/2/2 | | ^ 1 and the proof is complete.

THEOREM 4. Assume that A, B are commutative Banach *-algebras,
that A has an identity and that B is semi-simple and symmetric. Let
TeL(A,B).

(a) If Teext P and hT lies on an extreme ray of PA for all h e
MB, then Te Tab = Ta Tb for a, be A.

(b) If Teext P and hT = 0 or hTeextPA for all heMB, then
Tab = Ta Tb for all a, be A.

The proofs of (a) and (b) are immediate for if hT lies on an
extreme ray of PA, then either \\hT\\ = 0 oτ hT/\\hT\\eMA for each
h e MB. But then h(Te Tab) = h(Ta Tb) for all h e MB, and since B is
semi-simple and symmetric, it follows that Te Tab = Ta Tb for a, be
A. Finally, if hTe is 0 or 1 for all heMB, then T is multiplicative.

We state the following result without proof. Using the above
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methods and Theorem 3 the result follows.

THEOREM 5. Let A be a commutative Banach *-algebra with
identity and B a B*-algebra. If TeP and Te Tab = Ta Tb for a, be
A, then TeextP if and only if Te is an extreme point of K— {be
B: \\b\\ g l and b = Σ?=i<*>?, n finite).

It should be noted that if Te e ext K and Te Tab = Ta Tb for α,
be A then Te ext P when B is semi-simple and symmetric. To obtain
the converse we employ the hypothesis that B is a i?*-algebra so that
K can be identified with the set {/: / ^ 0 and | | / | | ^ 1} in C(AB).
It is well known that the set of extreme points of this set is {/: f(x) =
0 or 1 for all x e JB}.

EXAMPLES. We now display some examples indicating the need
for the hypotheses placed on the algebras A and B in the above work.
Most of the algebras used in our examples can be found in [10].

Consider the involution algebra s^ of functions analytic on the
open unit disc and continuous on the closed disc with the usual
supremum norm and pointwise multiplication. An involution is defined
on j ^ by f*(z) = /(£). The algebra J ^ is semi-simple and not
symmetric.

We construct an element of ext Pa L(j^f, j^f) which is not in M.
Denote by h the element of P defined by h(f) = /(I) for / e S$f and
denote by Zn the element of s$? defined by Zn(w) = wn for n = 0,1,
2 , . . . , Then the operator given by Tf = Z2h(f) for fes>f is an
element of ext P and not in M.

It follows that TeP since T(ff*) - f(l)f*(l)Z2 = (f(l)Z)(f(ΐ)Z)*
and | |Γ | | = sup,I/ll=1 \\Z2h(f)\\ = 1. Suppose that T± SeP for some
SeL(j*r, Szf) so that || T{Zn) ± S(Zn) \\ = \\Zn ± S(Zn) \\ ^ 1. Since Zn,
for each n, is an extreme point of the unit ball of sf it follows that
S(Zn) = 0 and that S is zero on the polynomials, a dense subalgebra
of s^. Consequently, S = 0 and T e ext P. T is not multiplicative
but it should be noted that T satisfies Te Tfg = Tf Tg for all /,

We now consider a space L(A, B) such that the algebra B is not
semi-simple. Let Ssf be the Banach space of the above paragraph.
However, we now place a multiplication on sf defined in terms

of a convolution, f*g(w) — w\ /[(I — t)w]g(tw)dt where \w\ ^ 1. We
Jo

denote this algebra by J ^ ; it is a Banach *-algebra with the involution
f*(z) — f(z) and the supremum norm. With this definition of mul-
tiplication we have l i m ^ \\fn\\lln = 0 for all / e j ^ since H/*|| =

Ĉ  ~ 1)! Thus Stf0 is a radical algebra and we consider the
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algebra Ssf0 + e, the algebra with the identity adjoined. This algebra
has one maximal ideal so that it is symmetric. The element Z{w) —
w is positive since it is P where I(w) = 1 for all w in the disc.

We consider L ( j ^ J ^ + e) and define TeL(j^, s$ζ + e) by Tf =
f(l)Z, Z(w) = w. Using methods similar to these above we can show
that T e e x t P and T&M. All the hypotheses of Theorem 4.b are
satisfied except for the semi-simplicity of the range space. Again we
have Te Tfg = Tf Tg for all f,gej#:

Finally we display an operator between two algebras which is
multiplicative and not an extreme point of P when all hypotheses of
Theorem 1 are satisfied except for the semi-simplicity of the range.

Let Ω be the algebra of all power series a(z) — Σ~=o UnZn such that
Σn=o|αn |/w! < co; the norm is | |α(s)| | = Σ~=o (|αΛ|/w!). Multiplication
is defined in the usual way. Ω is a Banach *-algebra with involution
defined by (α(z))* = Σ~=<>α»3Λ The identity of Ω is the series with
α0 = 1 and an — 0 for n ^ 1.

We consider the maximal ideal generated by the series with ax =
1 and au = 0 for n Φ 1. All elements of this ideal are essentially nil-
potent and this is the only maximal ideal in Ω. Thus Ω is symmetric and
not semi-simple. Let Te L(Ω, Ω) be defined by jΓ(Σ«==oα»s*) = Σ~=oαwz2\
It can be shown that TePaL(Ω,Ω) and that TeM. Define S by
S(a(z)) = Σ»-i a2n~iZ*n~2. Now T ± S e P and S Φ 0 so that T$ ext P.

A GENERALIZATION. If we replace the condition that A has an
identity with the condition that A has an approximate identity we
obtain analogues of the above statements. The net {ea} is an approx-
imate identity in A if 11 ea || ^ 1 and ea > 0 for all a and || eax — x || >

0 for all xe A. (We assume that ea > 0 for all α: since \\xeae* — x\\ ^
||(α?eα — α?)e*|| + ||α?eί — x\\ ^ ||a?e« — a?|| + \\x*ea — α*|| for all a e i so
that {e«e*} is an approximate identity whenever {ea} is.) We make
use of the fact that for a commutative Banach *-algebra A with
approximate identity, if f ePA, then | | / | | = limβ/(eβ) and M'A — extP^
[5]. With this result Theorem 1 remains true as stated in this new
setting.

To obtain further generalizations we place Condition Γ on P: 11 T\ \ —
limβ | | Tea\\ for all T e P. We now show that if T is positive in L(A, B)
where A is a commutative Banach *-algebra with approximate
identity and B is a i?*-algebra, then Condition I' holds. For each
a and each heMB we have hTea^\\Tea\\ so that \\hT\\ = \imahTea =
liminfα/2,Tβα^liminfα | |Tβα | | . Since || Γ | | ^ supIlfc||s=1 | |ΛΓ||, it follows
that || Γ | | ^ liminfα | | Tea\\. Moreover, || Tea\\ ̂  || T\\ for each a yielding
l imsup | |Te α | | ^ || Γ|| and hence

THEOREM 6. Suppose that A, B are commutative Banach *-algebras,
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that A has an approximate identity, and that P satisfies Condition
P. Then, for every extreme point T of P it follows that

T(a)T(b) = limα T(ea)T(ab) for all af be A.

Proof. Let S(a) = l/2(T(b)T(eaa) - T(ea)T(ba)) be the operator
defined in Lemma 2 with bι — b and δ2 = ea/2, so that T ± S ̂  0.

Since P satisfies Condition Γ, it follows that 11 T ± S | | = lim^ 11 T(eβ) ±
l/2[Γ(b)T(eaeβ) - T(ea)T(beβ)]\| = lim^ || T(eβ) || ̂  1 and hence, T±SeP.
Since TeextP we have T(b)T(eaa) = T(ea)T(ba) for a e A and each ea9

so that limα T(ea)T(ab) = T(a)T{b) for all α 6 A and δ 6 A with | | δ | | < 1
and b — cc* for some ceA.

Now, every product, and hence every element of the form beβ

can be written as the linear combination of four positive elements;
that is, beβ = l/4Σl=J f c(e* + ίfcδ)(^* + ikb)* for all δeA and all β.
It follows, from the linearity of T, that \imaT(ea)T(abeβ) = T(a)T(beβ)
for all α, δ e i and all /S; and, from the continuity of Γ, that
limaT(ea)T(ab) = T(a)T(b) for a, be A.

COROLLARY 6.1. With the hypotheses of Theorem 6 for TeP and
heMB, either hT = 0 or hTf\\hT\\eMA.

Proof. From Theorem 6 for Te P we conclude that limα h(TeaTab) =
^(Γα Tδ) for a,beA and heMB. Consequently,

||ΛΓ||λΓ(α6) = hT(a)hT(b)

and either hT = 0 or hT/\\hT\\eMA for ΛeΛf*. Or equivalently, hT
lies on an extreme ray of PA for every heMB and JΓGP

DEFINITION. AS noted earlier, if A is a commutative Banach
*-algebra then Ax denotes the algebra with identity adjoined. If fe
PA then /„ defined by Λ(α + λ) = f(a) + λ | | / | | , is the extension of
/ to Ax and PAι is the cone of positive elements of A[ Similarly,
PAl, denotes the set of positive elements of norm ^ 1. Finally, if
TeL(A, B) and Γ ^ O w e define 2\ to be that element of L(AU B,)
defined by Tx{a + λ) = T(a) + λ || Γ||. (We let B, = B if B has an
identity.) Furthermore, P1 denotes the cone of positive operators and
P1 those positive operators of norm ^ 1.

We now prove the statement equivalent to Theorem 3 when A
has an approximate identity.

THEOREM 7. Let A be a commutative Banach *-algebra with
approximate identity and B a B*-algebra. Then, every extreme point
T of P is multiplicative.
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Proof. From the decomposition for products used in Theorem 6
it follows easily that if T is a positive operator, then T(α&*) = (T(α*&))*
for a, b 6 A. Since A has an approximate identity and T is continuous,
it follows that T(α*) = (To)* for aeA. Moreover, since the range of
T is contained in C0(ΔB) (or C(AB) if B contains an identity), letting
hx (or x) be that element of ΔB defined by hx(b) — b(x) for b e C0(ΔB)
it follows that (Ta*)(x) — (Ta)(x) for aeA and xeΔB. Further, for
T positive from a Cauchy-Schwarz inequality [9, p. 213] we conclude
t h a t \T(ab*)\2(x) ^ [T{aa*)T{bb*)]{x) for a9beA a n d α e Λ L e t t i n g
b = ea and taking the limit we obtain \Ta\2(x) = | |Γ | | [T(αα*)](α) for
#e J* and aeA.

We now show that for any TeP the element Tγ defined by 7\(α +
X) = Γα + λ |i Γ|| is, in fact, positive. Thus, if Te P and || Γ| | Φ 0, then

[2\(α + λ)(α* 4- \)](x) = [Tαα* + λΓα* + λΓα + |λ|

= [Taa* -2Re(-X)Ta+ |λΓ

for all α + λ e i i and xL e ABι, where xt is the extension of the element
x in ΔB when B does not have an identity. Finally, when B does not
have an identity, let xf be that element of ΔBγ which has A as its
corresponding maximal ideal (we note that in this case ΔBl is the one
point compactification of ΔB); then [T,(a + λ)(α* + λ)](#') = |λ|2(α?') ^ 0
for α + λG A1# Thus Γj ^ 0. Since the range of TΊ is contained in
a J3*-algebra, PL satisfies Condition I and hence || 2\|| = || Γ^H.

We now show that 7\ is an extreme point of Px. Suppose that
there exists SeL(Au Bt) such that Tt ±SePι. Then, || Γ^ ± iSβ|| =
||e' ± Ste|| ^ 1 and hence Se = 0 since e' is an extreme point of the
unit ball of Bt. Let S denote the restriction of S to A, then, since
T± S ^ 0 and || Γ ± S| | ^ 1, it follows that S = 0 since T e e x t P .
Therefore, S = 0 and Tx is an extreme point of Px so that from Theorem
3 it follows that 7\ is multiplicative. Hence, T is multiplicative and
the proof is complete.
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