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DIFFERENTIABLE OPEN MAPS OF
(p + 1)-MANIFOLD TO »-MANIFOLD

P. T. CHURCH AND J. G. TIMOURIAN

Let f: M?**—> N? be a C3 open map with p =1, let
R,_1(f) be the critical set of f, and let
dim (R,—(f)Nnf ) =0

for each y € N7. Then (1.1) there is a closed set Xc M7+! gsuch
that dim f(X) < p — 2 and, for every x € M7+ — X, there is
a natural number d(x) with f at x lecally topologically
equivalent to the map

¢d(z): Cx Rr1>5 R X Re!
defired by
gsd(z)(zs tl; ) tp-l) = (% (zd(z))’ tlr Tty tp—l)

(R (2¢®) is the real part of the complex number z¢®),

The hypothesis on the critical set is essential [3, (4.11)], but in
[4] we show that any real analytic open map satisfies this hypothesis,
and thus this conclusion.

COROLLARY 1.2. If f: M**— N? 4is a C** open map with
dim (R,_,(f)) < 0, then at each wxe M*, f is locally topologically
equivalent to one of the following maps:

(a) the projection map po: R — R?,

(b) 7: Cx C—C X R defined by
(2, w) = (22 - 0, |w|* — |2 |°), where @ 1is the complex conjugate of w.

(¢) gt C— R defined by +y(2) = 2 (29).

In order to read the proofs in this paper, the reader will need to
have [3] at hand. In particular, the terms locally topologically
equivalent, branch set B, layer map, extended embedding, and O-
regular are defined in [3; (1.3), (1.5), (2.1), (2.3), and (4.1), respec-
tively].

2. Spoke sets. The definition and lemmas of this section are
given in somewhat greater generality than needed in this paper (i.e.,
for open maps), for use in a subsequent paper.

Let I be any 2-manifold (without boundary).

DEFINITION 2.1. Let 4, X ¢: C X R — R X R*™ be defined by
"l"a X [(zy t) = (] 4 l’ t) and Y X t(z, t) = (%(zw)’ t) (w = 1: 21 i ’)‘ Thus
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By, X ¢) = @ and B(y, X ¢) = {0} x R** otherwise. For w = 0 let
L=D*xD""and let J=[-1,1]; for w =1 and 7 > 0 sufficiently
small, let

L = D*x D) N (Y X 97 ([—7, 7] x D7)

and let J =[—7, ). These examples motivate the following defini-
tion.

Let f: I X R**— R X R*™* be a layer map, let J = [b, b] C R,
and let Wc R* be a closed g-cell (g =0,1,---,p —1). Let {7} be
a (possibly empty) collection of 2w disjoint closed ares in S'(j =1,
2, vve, 2w); let A =U;7; and let & S'x W—I7x W be a layer
embedding such that B,Nimag{ =@, fol: 7; Xx Wa~J X W, and
for each component @ of CI[S!— A], f((@ x W))={b} x WE =0
or 1). A spoke set of f over J x W is (i) a compact, connected sub-
space L C f~(R x W) such that (ii) L N (I™ x {t}) is a 2-cell for each
te W and (iii) for some { as above, the boundary 2 of L with respect
to fF(Rx W) is imagl. Thusif A=Q, f(@) ={b}x WE=0or
1). (In case A+ @ and ¢ =1, L is homeomorphic to the hub and
spokes of a wagon wheel, where {(A X W) corresponds to the ends
of the spokes.) The index &(L) = 1 — w.

LeMMA 2.2, Let f: I X R*'— R X R*™ be a layer map with
dim (B, N (I™ x {t})) = dim (f(By) N (R X {t})) = 0 for each tc R*™, let
E C B, be compact, let ac R*™, and let € > 0. Then there are a closed
(» — 1)-cell neighborhood W of a, closed intervals J;(j = 1,2, <<+, m),
and spoke sets L; over J; X W such that

ivv ENL;= @ and EN{* x Wyc U,;(L; — 2),

(v) the L; — 2; are mutually disjoint, and

(vi) each diam L; < e.

Proof. Let F be a compact neighborhood of E in I™ x R*™, let
{U,} be a cover of I™ by interiors of closed 2-cells, and let  be the
Lebesgue number of {U, x R*™} as a cover of F. We may suppose
that ¢ < min (9, d(E, bdy F)). Thus

(1) for each ¥ c F with diam ¥ < ¢, there is a closed 2-cell U
with Z c (int U) x R*.

Given ye R with (y,a)e f(E) and X = EN f'(y,a), let Q be
the finite set and v: @ X D— 1™ x R be the extended embedding
with imagy N B; = @ given by [3, (2.5)] for X and &. According to
that lemma each component K of jf~'(intD)-imagy meeting X
has diam K < &, and eaeh is open. Since X = EN f(y,a) and E
is compact, one may prove (by contradiction) that it is possible to
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select the p-cell neighborhood D of (y,e) in R x R** sufficiently
small that each component K of f~'(int D) — imagy meeting E has
diam K < e. Summarizing.

(2) each component K of f~'(int D)-imagy with KN E # @ has
diam K < ¢, so that Kcint F.

Choose a closed interval J(y) € R with yeintJ(y),

J() X {a}cint D,

and end points by(y), b(y) with (b(y), @), (b.(y), @) ¢ f(By). Since
F(F NBy) is closed, there is a closed (p — 1)-cell neighborhood W (y)
of ¢ in R such that 0J(y) x W) N f(FNB) =g and

J@) x Wy cD.

Let v(y) be the corresponding extended embedding (restricted) over
J X W.
There are %, ¥;, +++, ¥, € R with (y;, @) e f(F) and

S(E) N (R x {a}) c U, int (J(y,) % {a} .

The points {bi(y;): 4 =0,1; j=1,2, ---, u} are the end points of a
finite set of closed intervals with mutually disjoint interiors; let
Ju(h =1,2,---,7) be those intervals with (J, x {a}) N f(F) # @.
Let W be a closed (p — 1)-cell neighborhood of ae R** with
WcN; W(y;). Then @J, x W)N f(FNBy) =@ and

FE)NR X W)U, (intdy) x W) (h=1,2, -, 7).

Since each J, is contained in some J(y;), restriction of v(y;) yields an
extended embedding vy, over J, x W.
Let J = [b,, b)] be one of these intervals J,, let

v: (@ XxJ) X W—>I* x R
be the layer embedding v,, and let PC F be a component of
F'({b;} x W) — imagy.

Since ({b;} x W)NF(F NBy) = @, f7({b} x W) Nint F is a p-manifold,
P is a compact connected p-manifold with boundary, and [3, (1.9)]
f1P: P—{b} x W is a bundle map. Thus [11; p. 53, (11.4)] it is a
product bundle map, and since f is a layer map

(8) there is a layer embedding N A' X W—T1?x W, where
MA* x W) = P and 4*~ S or [0, 1].

In particular, PN (/™ X {s}) is a component of f~(b;, s) — imagy
(se W; 1=0,1), and C1[PN (I® X {s})] ~ 4. From the compactness
of F' and the finiteness of @, the number of such components P is
finite.
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Let K be a component of f~(J X W)-imagy meeting E (thus by
(2) diam K< e and KcCintF) and let T be a component of the
boundary of K in (i.e., relative to) /® x W. Then

Tc (b, b} X W)U imagy.

Moreover, from (8) there are a finite union (possibly empty) A of
disjoint arcs in S* and a layer embedding {: S' x W— I x W with
imagl =T, {(A x W)= TNimagy, and

CEI[S'—AlxW)=Tn f({dbs, b} x W) .

For each sc€ W and component (arc) v of A, fol: v Xxs~J X s,
and for each component 4 of CI[S* — A], f(C(4 x {s})) = (b;,8) (t =0
or 1). Thus if A # @, there are an even number of such components
(arcs) 4, and they alternate in value. Hence there are an even
number (possibly zero) of components (arcs) of A.

The union of such embeddings £ over all Je{J,: h=1,2, «-+, 7}
and components K of f~'(J x W) — imagy is finite: call them

Cj(j=1,2,"',k).

Let 2; = imag{; and let K; be the corresponding component K; by
(1) there is a closed 2-cell U;c I with K, c (int U;) x W, and thus
each K, N (I x {s}) is a 2-cell-with-holes contained in int U;. Each
Q; separates U; X W into two components; let L; be the closure of
the component disjoint from oU; x W. Each L;N([™ X {s}) is a 2-
cell, and since the K; are mutually disjoint, for 7 + j exactly one of
the following is true: (L;—2)N(L; — 2;) = @, L;c L;, or L;C L,
The desired spoke sets are those L; with ENL;+* @ and L; ¢ L;
for any 7 # j. Since each diam K; < ¢, each diam 2; < &, so that
diam L; < &. Since EN(™x W)ycU;K;cU;L;, EcCB; and
B:N2;=00, ENI® x W)cUi(L; — 2)).

LEMMA 2.3. Let f: I X R — R X R*™ be a layer map, let L,
(resp., L;, 5 =1,2,+++,q) be a spoke set over J X W(resp., J; x W',
and let se WN W'. Suppose that L; N (I X {s}) C L,

B, NL,N{™x{shcC yo(Lj -2,
and the L; — Q; are mutually disjoint (5 > 0). Then
§(L) = 2, 6(Ly) -
Proof. Since B(f,)C B, N (I™x {s}) and &(L;) = &L;N (™ x {s})),

it suffices to prove the lemma for f = f,: I*— R. Thus L;C L, and
B,NL,cUjssoL;— 2, If A; (see (2.1)) has 2 w(j) components
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(w(@) = 0,1, --.), define g;: L; — R to agree with f on 0L; = 2; and
to be topologically equivalent to .. Let h: L,— R agree with f
on Ly — Ujse (L; — 2;) and with ¢g; on L; (j=1,2,---,9). Then
B(h) = U;>B(9;), and so is discrete.

Let D(L;) be the identification space obtained from

(L; x {0}) U (L; x {1}

by identifying (x, 0) with (x, 1) for each xe A = A(L;), let D(g,):
D(L;) — R be defined by D(g;) (x,0) = D(9;) (x,1) = gi(x), and let
D(h) be defined analogously. Define a vector field u; (resp., v) on
D(L;) (resp., D(L,)) which is 0 precisely on the (discrete) branch set
B(D(g;)) (resp., B(D(h))) and elsewhere is transverse to the level
curves of D(g;) (resp., D(k)), i.e., a “gradient vector field” (5 =
0,1, --+,9). For any vector field & with isolated zeros, let the sum
of the indices of a at its zeros [7, p. 32] be denoted by ¢ ().
Since L; ~ D?, the Euler characteristic

X(D(Ly) = 2 — 2w(j) = 2&6(Ly) -

According to the Poincaré-Hopf Theorem [7, p. 35] (differentiability is
not really needed in our case) y(D(L;)) = ¢(u;), so that 2&(L;) = ¢ (u;)
and 28(L,) = ¢(u)) = ¢(v). Thus 2&(L,) =¢(w) = 23s0¢ (| Ly) (by
definition of 0 = st (U;) = 230550 §(Lj), so that &(Ly) = 35, &(L;)
(where j =1,2, ..., q).

Alternatively, we could have used [5, p. 370] or [10, p. 35, (4.8.6)];
in this case we would have removed an open 2-cell with boundary a
level circle about each local maximum or minimum point of g; and
h, in order to have open maps. Or, we could have used a counting
argument based on the Euler -characteristics of L; L, and
L, — U;int L;; the first two spaces are 2-cells, and the last one is
disjoint from B,, so that information about it can be obtained from
[3, L.9)].

3. Spoke sets of open maps.

LemMMmA 3.1. Let f: I* X R”'— R X R*™ be an open layer map,
and let L, be a spoke set over J X W, where W 1is a closed (p — 1)-
cell. Then

(a) f“y,t)NL, does not contain a homeomorph of S*
((y,9)e B x R™™)

(b) &Ly = 0;
(¢) f(L)=JxW;
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(d) &(Ly) # 0 implies that B, N (L, — 2) N ([I* x {t}) = @ for
every te R
(e) of dim (f(By) N (R X {t})) =0 for every te R*,

dim (B, N f~'(y, %)) =0 for every (y,t)c R X R*™,
and (L)) = 0, then B, Nint L, = O.

Proof. Suppose (a) is false, where 4 is the homeomorph of S*.
Then A bounds an open 2-cell 4 in L,N (1™ X {t}) ~ D*. Since f;:
I*— R is open, f,(4) is an open interval, while f,(4) is a closed
interval with f,(04) a single point, and a contradiction results.

If &Ly >0, then 2,N (I™ x {t}) is a component of f~*(y,t) for
some y ¢ R, and a contradiction of (a) results. Thus (b) is true.

From the definition of L,(2.1), f(L)cJ X W, and from that
definition and (b), f(2,) =J X W, so that (c) J X W = f(L,).

B N(L —2)N{I*"x{t})) = 2 for some te W, then

g: LynN (I x {t}) —J x {t}

defined by restriction of f has B, = @ [3, (4.10)], and so is a bundle
map [3, (1.9)]. Thus [11, p. 53, 11.4)] L, N (™ X {t})) ~J X F, where
the fiber F' is a l-manifold with boundary. Since J x F ~ D* (2.1)
(i), F' is connected and F' = S'. Thus F' ~ [0, 1], so that (L, = 0.
Conclusion (d) results.

For a spoke set L of f over I x U, let *L be L f~'(int(I x U));
thus *L — Q = int L (interior relative to 7™ x R*"'). Since the re-
striction map a: f™ (int (J/ X W)) —int (J x W) is open, *L, — 2, is
open in f~Xint (J x W)), and B(f| L) N 2, = @&, the restriction map
Bo: *L,—int (J X W) is open. Suppose that f satisfies the hypotheses
of (e), i.e., &(L,) = 0, while (z,s)e B;Nint L,. Given &> 0, which
we may assume is less than d(B,, 2,), let W’ and the spoke sets
Lj=1,2,--+,9) be as given by (2.2) for f, &, a =s, and E =
(B; N Ly, where (z,s)eintL,. From (b) each &(L,) <0 and from
(2.3) &(Lo) = Sis0 &(Ly); thus &(L,) = 0 for every j, so in particular
&(L,) = 0. Let pg: *L,— f(*L,) be restriction of f.

For each (2, t) € f(L;) — f(By), (i =0, 1), (8:)7\(=, t) is a 1-manifold
with boundary; by (a) each of its components is homeomorphic to
[0, 1], and since &(Ly) = 0, (8)™(z, §)~[0, 1]. By [3, 4.3)()] (8)(y, »)
is arcwise connected for each (y, u) € imag B8;. Choose 6 > 0 such that
S((x, s), 6) cint L,. Then

f_l(yy u) n S(x, 5) C (Bl)—l(y, ’l/l/) c f—_l(y, u’) n S((‘,U; S)y 8) ’

so that f is O-regular at (z,s) [3, (4.1)]. Since (x,s)e B,N L, is
arbitrary, by [3, (4.2)] f is O-regular at each point of L,. Thus g, is



DIFFERENTIABLE OPEN MAPS OF (p + 1)-MANIFOLD TO p-MANIFOLD 41

a bundle map [3, (4.3) (b)], so that B,Nint L, = @ .

LEMMA 3.2. Let g: I X R*'— R X R*™ be an open layer map,
let L be a spoke set over J X W where W is a (p — 1)-cell and let
&, W~ B,NL with woa the identity map. Then g|int L 1is
topologically equivalent to +r, X ¢ (w = 2,8, «+-; see (2.1)).

Proof. We may as well replace g by its restriction to g~ (intJ X
int W), and L by LN g™ (intJ X int W), i.e., we may as well suppose
that intJ = R and int W = R*. Let h: R X R*'— R X R*™ be the
layer homeomorphism defined by &(y,t) = (y,t) — g(a(t)), and let
N=hog|L. Then B, = B,N L and \B;) = {0} x R*.

Let J; be (— <, 0] or [0, ) according as ¢ is odd or even. (1)
Let K be a component of A~'((int.J;) x R*™), and let g: K —intJ; X
R and v: K—J; X R*™ be the restriction of \. Since B; = @,
B is a bundle map with fiber a 1-manifold F [3, (1.9)], and so
K~ F X intJ; x R’ [11, p. 53, (11.4)]. Since K is connected, F' is
also, and by (3.1(a)) F ~ [0,1]. By [3, (4.8)(a)], v~*(0, t) is arcwise
connected for each fe R,

Given (z, s) € B,N7™ ({0} X R*™") and ¢ > 0 with S((z, s), e)Cint L,
let L’ be a spoke set over J’ x W’ given by (2.2) for A\, E = {(z, s)},
a =38, and e. Then L’ satisfies the original hypotheses, so that
(*)'(y, t) is arcwise connected for every (y,t). Choose 6 > 0 with
S((x, s), ) cint L'. Then

S((=,8), ) N7y, ) < (V)7 (y, Y) < S((w, 8), &) N7 (¥, ©)

for each (y, t) e J' X W', so that 7' is O-regular at (z, s). By [3, (4.2)]
v is O-regular, and (by [3, (4.3)(b)]) (2) ¥ is a (product) bundle map
with fiber [0, 1].

For each te R** and component K (see (1)), 7| (K N (I x {t})) is
a product bundle map over J; X (¢) with fiber [0, 1], so that A ™*(0, ?)
is a deformation retract of L N (/™ X {t}) ~ D*. Thus A (0, t) is con-
nected. Since N\7'(0,t) contains no homeomorph of S! (3.1(a)), and
A0, ) — {a(t)} is a l-manifold with boundary points the 2w
((L) = 1 — w) points of A (0, &) N 2 (2.1), it follows that A'(0, ) is
homeomorphic to the union of 2w arcs disjoint except for their com-
mon endpoint a(f). As a result a()e KN (I™ x {t}), so that each K
contains imag «, i.e., B,.

Let K; (¢ =1,2,+--,2w) be the components K enumerated so
that for any te R*™, (int K;) N (/™ X {t}) are the components of

(int L) N ((7* % {th) — X0, 1))

in counterclockwise order around «(f) with MK, = J; x R*™. Let
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4; = K, Nint L, let ¥ = 4, X ¢ (see (2.1)), and let 4; be the closures
of the components of ~~* (intJ; X R*') enumerated in analogous
fashion.

By (2) there is an orientation-preserving homeomorphism g; of 4;
onto B X J; X R*™ with woyg, = \|4;. Lety; be the homeomorphism
of R x J, x R*™* onto itself defined by

”i(xy Y, t) = (CX}, Y, t) - ﬂ,(a(t)) + (0! Or t) ’
and let {; = y; o ;. Then {(a(t)) = (0,0, t), so that
Ci(By) = {0} x {0} x R,

There is an analogous orientation-preserving homeomorphism &; of 4;
onto R x J; X R with wo§& = o |4; and &(By) = {0} x {0} x R,

Let @ = (int L) N2\ ({0} x R*™), and let I'; (resp., ¥;) be the
closure in @ (resp., ¥'({0} X R*™)) of the component in & — B,(resp.,
-1 ({0} x R*™) — By) meeting both 4; and 4,,, (resp., 4; and 4,,,),
where ¢ and 7 + 1 are interpreted mod 2w. In case w = 1 there are
two such components, and 1; is so chosen that, for each ¢{e R*, a
counter-clockwise path around «(f) from A; to A;,, passes through
Y;. Then (&) ' (also (&;4) "0 {;y,) defines a homeomorphism of 1;
onto ; with (&) o{(B) = By. Let p: &~y ({0} x R*™) agree
with (&)™, on 1.

Let o; be the layer homeomorphism of K x {0} x R onto itself
which is the restriction of &;0 00, (on {;(7;—), 0; agrees with the
identity map) and let z; be its first coordinate map. Let ¢; be the
homeomorphism of B x J; X R*™ onto itself defined by ¢; (z, 9, t) =
(ti(z, t), ¥, t), and let y; = (§) o g; 0 L. Then x;: 4;~ 4;, they agree
with o, and they thus define y: int L ~ C X R*™; since wo{; = \| 4,
and wo &, = 4| 4;, where m: R X J; X R*™'—J; X R’ is projection,
Jpoy = A|int L. This is the desired conclusion.

4. The Proof of the theorem.

REMARK 4.1. According to the Rank Theorem [3, (1.6)]
B;C R,_(f), and we prove (1.1) under the weaker hypothesis that
dim (B; N f(y)) = 0 for each ye N~.

Proof. Let X be the complement of the set on which f has the
desired structure; then X B, is closed. We suppose that
dmf(X)=zp—-1,

and will obtain a contradiction.
Since f is C?, dim (f(R,—.(f))) =< »p — 2 [2, p. 10387]. If, for every
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xe M — f(f(R,—(f))), there is an open neighborhood

U, M — f7(f(R,—(f))

of » with U, compact and dim (f(U, N X)) < p — 2, it follows from
the fact that {U,} has a countable subcover that dim(f (X)) < » — 2.
Thus, there is an Ze M*™ — f(f(R,-.(f))) such that, (1) for every
open neighborhood Uc M** — f(f(R,—(f))) of Z, dim (f(UN X)) =
»— 1.

By [1, p. 87, (1.1)] there are open neighborhoods U of Z and V
of f(Z) and C diffeomorphisms ¢: R* X R*'~ U and p: V~ R x R*™
such that po foo=g is a C" layer map and 0(0,0) = Z. By
hypothesis dim (B, N g7'(y, t)) < 0 for each (y,{)e R X R™.

Since (X)) B,, B,C R,_,(g9) (by the Rank Theorem [3, (1.6)]),
R, .(9) N (B* X (1)) = Ryg.), and dim(g,(R(g.))) = 0 by Sard’s Theorem
(e.g. [2, p. 1037]), (2) dim (¢(B,) N (R* X {t})) < 0 and

dim (ge™(X) N (R x {t})) £ 0.

On the other hand, (by (1)) dim (g(67(X)) = » — 1, so there is an
+ > 0 such that

A = (C1[S(0, »] x R*™) N o~(X)

has dimg(4)=p—1. If n: R x R'— R** is projection, then
dim (z(g(4))) = p — 1 (by (2) and [6, p. 91]), and there is an open
(p — D-cell Tcr(g(d)) [6, p. 44] with T compact. Thus (3)

AN(R x {t) = @ for each teT.

Let Wc T and the spoke sets L;(j = 1,2, ---, ) be as given by
2.2) for g, any ac T, E=AN(R*x T), and (say) e =1. If (4) (i)
the cardinality w(t) =1 of B,N(R*x {tHh N (U;L;) (teintW) is
bounded above by |>);6(L;)|, choose seint W such that w(s) is
maximal and let (x;,s8) ¢ =1,2, -+-, w(s)) be these points. Other-
wise, (4) (ii) there are seint W and distinet points (x;,8) ¢ =1,2, -+,
|3 8L;) |+ 1) of BN (REx{th N (U;L;). Let w be w(s) in case
4 () and |>;&L;)|+ 1 in case (4) (ii). Let €> 0 be less than
d(x,, ©;) for h =4 and d(B,, U,;2;), and let W cint W and {L;} be
as given by (2.2) for g, e = s, E = J; L; N B,, and this . Thus (5)
the (x;, s), are in distinct spoke sets Lj.

By hypothesis and by (2), the hypothesis of (3.1) (e) is satisfied,
so that by (3.1) (d) and (e) &(L;) =0 if and only if L;NB,= Q.
We may thus omit those L; and Lj with &(L;) = 0 = &(L}). From
(3.1) (b) each &(L;) < 0 and &(L;) < 0, and from (5) and (3.1) (d) the
cardinality ¢ of {L}} satisfies w Z¢ < |3, &L})|. Since each Lj is
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contained in some L;, >,;&(L;) = > &) by (2.3), and so w' =
| 3%; &(L;) |; this contradicts (4) (ii), and hence (4) (i) must be true.

For te W', w(t)=c by (3.1) (d), while ¢ = w(s) by (4) (i), so
that w(t) = w(s). Thus (by (3.1) (d)) each B,N(R' X {tHh N L; is a
single point for te W’, and since B, is closed, there is a homeo-
morphism «;: W’ ~ L}, N B, with 7 o «; the identity map on W’. By
B.2) Upr(c(X)N L) = @. But this set contains 4N (R x W),
contradicting (3).

REMARK 4.2. In case p = 1, C® may be replaced by C? and the
argument can be shortened considerably. In that case (4.1) results
from [12, p. 103, Theorem 1] (cf. [18, pp. 7-8]), and (4.1) in case B,
is discrete is [10, p. 28, (4.3.1)] and [9]. Considerable information
relating to open maps f: M*— N' is given in [5], [8], and [10].

4.3. Proof of (1.2). The hypotheses of (1.1) are satisfied (with
C*if p=1). In case p=1, X = @, so that at each ze M**, f at
x is locally topologically equivalent to +y,,. In case p = 2, for each
xe M* — X with d(x) =1 (i.e., € By, dimB;,=p—1=1 in a
neighborhood of 2x; the assumption that dim R,_,(f) < 0 contradicts
the Rank Theorem [3, (1.6)]. Thus B,c X, so that

dim f(B)<p— 2.

That f is locally topological equivalent to 0 or to ¢ is now a con-
sequence of [3, (4.7)].
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