DIFFERENTIABLE OPEN MAPS OF (p + 1)-MANIFOLD TO *p*-MANIFOLD

P. T. CHURCH AND J. G. TIMOURIAN

Let $f: M^{p+1} \to N^p$ be a C^3 open map with $p \ge 1$, let $R_{p-1}(f)$ be the critical set of f, and let

 $\dim\left(R_{p-1}(f)\cap f^{-1}(y)\right)\leq 0$

for each $y \in N^{p}$. Then (1.1) there is a closed set $X \subset M^{p+1}$ such that dim $f(X) \leq p-2$ and, for every $x \in M^{p+1} - X$, there is a natural number d(x) with f at x locally topologically equivalent to the map

 $\phi_{d(x)}: C \times R^{p-1} \rightarrow R \times R^{p-1}$

defined by

$$\phi_{d(x)}(z, t_1, \cdots, t_{p-1}) = (\mathscr{R}(z^{d(x)}), t_1, \cdots, t_{p-1})$$

 $(\mathscr{R}(z^{d(x)})$ is the real part of the complex number $z^{d(x)})$.

The hypothesis on the critical set is essential [3, (4.11)], but in [4] we show that any real analytic open map satisfies this hypothesis, and thus this conclusion.

COROLLARY 1.2. If $f: M^{p+1} \to N^p$ is a C^{p+1} open map with $\dim (R_{p-1}(f)) \leq 0$, then at each $x \in M^{p+1}$, f is locally topologically equivalent to one of the following maps:

(a) the projection map $\rho: \mathbb{R}^{p+1} \to \mathbb{R}^p$,

(b) $\tau: C \times C \rightarrow C \times R$ defined by

 $au(z, w) = (2z \cdot \overline{w}, |w|^2 - |z|^2), where \ \overline{w} \ is \ the \ complex \ conjugate \ of \ w.$ (c) $\psi_d: C \to R \ defined \ by \ \psi_d(z) = \mathscr{R}(z^d).$

In order to read the proofs in this paper, the reader will need to have [3] at hand. In particular, the terms locally topologically equivalent, branch set B_f , layer map, extended embedding, and 0-regular are defined in [3; (1.3), (1.5), (2.1), (2.3), and (4.1), respectively].

2. Spoke sets. The definition and lemmas of this section are given in somewhat greater generality than needed in this paper (i.e., for open maps), for use in a subsequent paper.

Let Γ^2 be any 2-manifold (without boundary).

DEFINITION 2.1. Let $\psi_w \times \iota$: $C \times R^{p-1} \to R \times R^{p-1}$ be defined by $\psi_0 \times \iota(z, t) = (|z|, t)$ and $\psi_w \times \iota(z, t) = (\mathscr{R}(z^w), t) (w = 1, 2, \cdots)$. Thus

 $B(\psi_1 \times \iota) = \emptyset$ and $B(\psi_w \times \iota) = \{0\} \times R^{p-1}$ otherwise. For w = 0 let $L = D^2 \times D^{p-1}$ and let J = [-1, 1]; for $w \ge 1$ and $\eta > 0$ sufficiently small, let

$$L = (D^2 imes D^{p-1}) \cap (\psi_w imes \iota)^{-1} ([-\eta, \eta] imes D^{p-1})$$

and let $J = [-\eta, \eta]$. These examples motivate the following definition.

Let $f: \Gamma^2 \times R^{p-1} \to R \times R^{p-1}$ be a layer map, let $J = [b_0, b_1] \subset R$, and let $W \subset R^{p-1}$ be a closed q-cell $(q = 0, 1, \dots, p-1)$. Let $\{\gamma_j\}$ be a (possibly empty) collection of 2w disjoint closed arcs in $S^1(j = 1, 2, \dots, 2w)$; let $A = \bigcup_j \gamma_j$, and let $\zeta: S^1 \times W \to \Gamma^2 \times W$ be a layer embedding such that $B_f \cap \operatorname{imag} \zeta = \emptyset$, $f \circ \zeta: \gamma_j \times W \approx J \times W$, and for each component \emptyset of $\operatorname{Cl}[S^1 - A]$, $f(\zeta(\emptyset \times W)) = \{b_i\} \times W(i = 0$ or 1). A spoke set of f over $J \times W$ is (i) a compact, connected subspace $L \subset f^{-1}(R \times W)$ such that (ii) $L \cap (\Gamma^2 \times \{t\})$ is a 2-cell for each $t \in W$ and (iii) for some ζ as above, the boundary Ω of L with respect to $f^{-1}(R \times W)$ is imag ζ . Thus if $A = \emptyset$, $f(\Omega) = \{b_i\} \times W$ (i = 0 or 1). (In case $A \neq \emptyset$ and q = 1, L is homeomorphic to the hub and spokes of a wagon wheel, where $\zeta(A \times W)$ corresponds to the ends of the spokes.) The index $\hat{\zeta}(L) = 1 - w$.

LEMMA 2.2. Let $f: \Gamma^2 \times R^{p-1} \to R \times R^{p-1}$ be a layer map with dim $(B_f \cap (\Gamma^2 \times \{t\})) = \dim (f(B_f) \cap (R \times \{t\})) \leq 0$ for each $t \in R^{p-1}$, let $E \subset B_f$ be compact, let $a \in R^{p-1}$, and let $\varepsilon > 0$. Then there are a closed (p-1)-cell neighborhood W of a, closed intervals $J_j(j = 1, 2, \dots, m)$, and spoke sets L_j over $J_j \times W$ such that

- (iv) $E \cap L_j \neq \emptyset$ and $E \cap (\Gamma^2 \times W) \subset \bigcup_j (L_j \Omega_j)$,
- (v) the $L_j \Omega_j$ are mutually disjoint, and
- (vi) each diam $L_j < \varepsilon$.

Proof. Let F be a compact neighborhood of E in $\Gamma^2 \times R^{p-1}$, let $\{U_{\alpha}\}$ be a cover of Γ^2 by interiors of closed 2-cells, and let δ be the Lebesgue number of $\{U_{\alpha} \times R^{p-1}\}$ as a cover of F. We may suppose that $\varepsilon < \min(\delta, d(E, bdy F))$. Thus

(1) for each $\Psi \subset F$ with diam $\Psi < \varepsilon$, there is a closed 2-cell U with $\Psi \subset (\text{int } U) \times R^{p-1}$.

Given $y \in R$ with $(y, a) \in f(E)$ and $X = E \cap f^{-1}(y, a)$, let Q be the finite set and $\nu: Q \times D \to \Gamma^2 \times R^{p-1}$ be the extended embedding with imag $\nu \cap B_f = \emptyset$ given by [3, (2.5)] for X and ε . According to that lemma each component K of $f^{-1}(\operatorname{int} D)$ -imag ν meeting Xhas diam $K < \varepsilon$, and each is open. Since $X = E \cap f^{-1}(y, a)$ and Eis compact, one may prove (by contradiction) that it is possible to select the *p*-cell neighborhood D of (y, a) in $R \times R^{p-1}$ sufficiently small that each component K of $f^{-1}(\operatorname{int} D) - \operatorname{imag} \nu$ meeting E has diam $K < \varepsilon$. Summarizing.

(2) each component K of $f^{-1}(\operatorname{int} D)$ -imag ν with $K \cap E \neq \emptyset$ has diam $K < \varepsilon$, so that $\overline{K} \subset \operatorname{int} F$.

Choose a closed interval $J(y) \subset R$ with $y \in int J(y)$,

$$J(y) imes \{a\} \subset \operatorname{int} D$$
 ,

and end points $b_0(y)$, $b_1(y)$ with $(b_0(y), a)$, $(b_1(y), a) \notin f(B_f)$. Since $f(F \cap B_f)$ is closed, there is a closed (p-1)-cell neighborhood W(y) of a in \mathbb{R}^{p-1} such that $(\partial J(y) \times W(y)) \cap f(F \cap B_f) = \emptyset$ and

$$J(y) imes W(y) \subset D$$
 .

Let $\nu(y)$ be the corresponding extended embedding (restricted) over $J \times W$.

There are $y_1, y_2, \dots, y_u \in R$ with $(y_j, a) \in f(E)$ and

$$f(E) \cap (R imes \{a\}) \subset igcup_j ext{ int } (J(y_j)) imes \{a\}$$
 .

The points $\{b_i(y_j): i = 0, 1; j = 1, 2, \dots, u\}$ are the end points of a finite set of closed intervals with mutually disjoint interiors; let $J_k(h = 1, 2, \dots, r)$ be those intervals with $(J_k \times \{a\}) \cap f(E) \neq \emptyset$. Let W be a closed (p-1)-cell neighborhood of $a \in \mathbb{R}^{p-1}$ with $W \subset \bigcap_j W(y_j)$. Then $(\partial J_k \times W) \cap f(F \cap B_j) = \emptyset$ and

$$f(E) \cap (R imes W) \subset igcup_h \left((\operatorname{int} J_h) imes W
ight) \; (h = 1, \, 2, \, \cdots, \, r) \; .$$

Since each J_h is contained in some $J(y_j)$, restriction of $\nu(y_j)$ yields an extended embedding ν_h over $J_h \times W$.

Let $J = [b_0, b_1]$ be one of these intervals J_h , let

 $arphi:~(Q imes J) imes~W{\longrightarrow}~arPi^2 imes~R^{p-1}$

be the layer embedding ν_h , and let $P \subset F$ be a component of

$$f^{-1}(\{b_i\} \times W) - \operatorname{imag} \nu$$
.

Since $(\{b_i\} \times W) \cap f(F \cap B_f) = \emptyset$, $f^{-1}(\{b_i\} \times W) \cap \text{int } F$ is a p-manifold, \overline{P} is a compact connected p-manifold with boundary, and [3, (1.9)] $f | \overline{P} \colon \overline{P} \to \{b_i\} \times W$ is a bundle map. Thus [11; p. 53, (11.4)] it is a product bundle map, and since f is a layer map

(3) there is a layer embedding $\lambda: \Lambda^1 \times W \to \Gamma^2 \times W$, where $\lambda(\Lambda^1 \times W) = \overline{P}$ and $\Lambda^1 \approx S^1$ or [0, 1].

In particular, $P \cap (I^{r_2} \times \{s\})$ is a component of $f^{-1}(b_i, s) - \operatorname{imag} \nu$ $(s \in W; i = 0, 1)$, and $\operatorname{Cl} [P \cap (I^{r_2} \times \{s\})] \approx \Lambda^1$. From the compactness of F and the finiteness of Q, the number of such components P is finite. Let K be a component of $f^{-1}(J \times W)$ -imag ν meeting E (thus by (2) diam $K < \varepsilon$ and $\overline{K} \subset \operatorname{int} F$) and let T be a component of the boundary of K in (i.e., relative to) $\Gamma^2 \times W$. Then

$$T \subset f^{-1}(\{b_0, b_1\} \times W) \cup \operatorname{imag} \nu$$
.

Moreover, from (3) there are a finite union (possibly empty) A of disjoint arcs in S^1 and a layer embedding $\zeta: S^1 \times W \to \Gamma^2 \times W$ with imag $\zeta = T$, $\zeta(A \times W) = T \cap \operatorname{imag} \nu$, and

$$\zeta \left(\operatorname{Cl}\left[S^{\scriptscriptstyle 1} - A
ight] imes W
ight) = T \cap f^{\scriptscriptstyle -1}(\{b_{\scriptscriptstyle 0}, \, b_{\scriptscriptstyle 1}\} imes W) \; .$$

For each $s \in W$ and component (arc) γ of A, $f \circ \zeta: \gamma \times s \approx J \times s$, and for each component Δ of $\operatorname{Cl}[S^1 - A]$, $f(\zeta(\Delta \times \{s\})) = (b_i, s)$ (i = 0or 1). Thus if $A \neq \emptyset$, there are an even number of such components (arcs) Δ , and they alternate in value. Hence there are an even number (possibly zero) of components (arcs) of A.

The union of such embeddings ζ over all $J \in \{J_h: h = 1, 2, \dots, r\}$ and components K of $f^{-1}(J \times W) - \operatorname{imag} \nu$ is finite: call them

$$\zeta_j (j = 1, 2, \cdots, k)$$
.

Let $\Omega_j = \operatorname{imag} \zeta_j$ and let K_j be the corresponding component K; by (1) there is a closed 2-cell $U_j \subset \Gamma^2$ with $\overline{K}_j \subset (\operatorname{int} U_j) \times W$, and thus each $\overline{K}_j \cap (\Gamma^2 \times \{s\})$ is a 2-cell-with-holes contained in int U_j . Each Ω_j separates $U_j \times W$ into two components; let L_j be the closure of the component disjoint from $\partial U_j \times W$. Each $L_j \cap (\Gamma^2 \times \{s\})$ is a 2cell, and since the K_j are mutually disjoint, for $i \neq j$ exactly one of the following is true: $(L_i - \Omega_i) \cap (L_j - \Omega_j) = \emptyset$, $L_i \subset L_j$, or $L_j \subset L_i$. The desired spoke sets are those L_j with $E \cap L_j \neq \emptyset$ and $L_j \subset L_i$ for any $i \neq j$. Since each diam $K_j < \varepsilon$, each diam $\Omega_j < \varepsilon$, so that diam $L_j < \varepsilon$. Since $E \cap (\Gamma^2 \times W) \subset \bigcup_j K_j \subset \bigcup_j L_j$, $E \subset B_f$, and $B_f \cap \Omega_j = \emptyset$, $E \cap (\Gamma^2 \times W) \subset \bigcup_j (L_j - \Omega_j)$.

LEMMA 2.3. Let $f: \Gamma^2 \times R^{p-1} \to R \times R^{p-1}$ be a layer map, let L_0 (resp., $L_j, j = 1, 2, \dots, q$) be a spoke set over $J \times W(resp., J_j \times W')$, and let $s \in W \cap W'$. Suppose that $L_j \cap (\Gamma^2 \times \{s\}) \subset L_0$,

$$B_f\cap L_{\scriptscriptstyle 0}\cap (\varGamma^{\scriptscriptstyle 2} imes \{s\}) \subset igcup_{j>0}(L_j-arOmega_j)\;,$$

and the $L_j - \Omega_j$ are mutually disjoint (j > 0). Then

$$\xi(L_{\scriptscriptstyle 0}) = \sum\limits_{j>0} \xi(L_j)$$
 .

Proof. Since $B(f_s) \subset B_f \cap (\Gamma^2 \times \{s\})$ and $\xi(L_j) = \xi(L_j \cap (\Gamma^2 \times \{s\}))$, it suffices to prove the lemma for $f = f_s: \Gamma^2 \to R$. Thus $L_j \subset L_0$ and $B_f \cap L_0 \subset \bigcup_{j>0} L_j - \Omega_j$. If A_j (see (2.1)) has 2 w(j) components $(w(j) = 0, 1, \cdots)$, define $g_j: L_j \to R$ to agree with f on $\partial L_j = \Omega_j$ and to be topologically equivalent to $\psi_{w(j)}$. Let $h: L_0 \to R$ agree with fon $L_0 - \bigcup_{j>0} (L_j - \Omega_j)$ and with g_j on L_j $(j = 1, 2, \cdots, q)$. Then $B(h) = \bigcup_{j>0} B(g_j)$, and so is discrete.

Let $D(L_j)$ be the identification space obtained from

$$(L_j \times \{0\}) \cup (L_j \times \{1\})$$

by identifying (x, 0) with (x, 1) for each $x \in A = A(L_j)$, let $D(g_j)$: $D(L_j) \to R$ be defined by $D(g_j)$ $(x, 0) = D(g_j)$ $(x, 1) = g_j(x)$, and let D(h) be defined analogously. Define a vector field u_j (resp., v) on $D(L_j)$ (resp., $D(L_0)$) which is 0 precisely on the (discrete) branch set $B(D(g_j))$ (resp., B(D(h))) and elsewhere is transverse to the level curves of $D(g_j)$ (resp., D(h)), i.e., a "gradient vector field" $(j = 0, 1, \dots, q)$. For any vector field α with isolated zeros, let the sum of the indices of α at its zeros [7, p. 32] be denoted by $\iota(\alpha)$.

Since $L_j \approx D^2$, the Euler characteristic

$$\chi(D(L_j)) = 2 - 2w(j) = 2\xi(L_j)$$
 .

According to the Poincaré-Hopf Theorem [7, p. 35] (differentiability is not really needed in our case) $\chi(D(L_j)) = \iota(u_j)$, so that $2\xi(L_j) = \iota(u_j)$ and $2\xi(L_0) = \iota(u_0) = \iota(v)$. Thus $2\xi(L_0) = \iota(v) = 2\sum_{j>0} \iota(v \mid L_j)$ (by definition of $\iota) = \sum_{j>0} \iota(u_j) = 2\sum_{j>0} \xi(L_j)$, so that $\xi(L_0) = \sum_{j>0} \xi(L_j)$ (where $j = 1, 2, \dots, q$).

Alternatively, we could have used [5, p. 370] or [10, p. 35, (4.3.6)]; in this case we would have removed an open 2-cell with boundary a level circle about each local maximum or minimum point of g_j and h, in order to have open maps. Or, we could have used a counting argument based on the Euler characteristics of L_j , L_0 , and $L_0 - \bigcup_j \text{ int } L_j$; the first two spaces are 2-cells, and the last one is disjoint from B_j , so that information about it can be obtained from [3, (1.9)].

3. Spoke sets of open maps.

LEMMA 3.1. Let $f: \Gamma^2 \times R^{p-1} \to R \times R^{p-1}$ be an open layer map, and let L_0 be a spoke set over $J \times W$, where W is a closed (p-1)cell. Then

(a) $f^{-1}(y, t) \cap L_0$ does not contain a homeomorph of S^1

$$((y, t) \in R \times R^{p-1})$$

- (b) $\hat{\xi}(L_0) \leq 0;$
- (c) $f(L_0) = J \times W;$

 $(\mathbf{d}) \quad \hat{\xi}(L_0)
eq 0 \quad implies \quad that \quad B_f \cap (L_0 - \Omega_0) \cap (I^{r_2} imes \{t\})
eq \oslash \quad for every \quad t \in R^{p-1};$

(e) if dim $(f(B_f) \cap (R \times \{t\})) \leq 0$ for every $t \in R^{p-1}$,

 $\dim (B_f \cap f^{-1}(y, t)) \leq 0$ for every $(y, t) \in R imes R^{p-1}$,

and $\xi(L_0) = 0$, then $B_f \cap \operatorname{int} L_0 = \emptyset$.

Proof. Suppose (a) is false, where Λ is the homeomorph of S^1 . Then Λ bounds an open 2-cell Δ in $L_0 \cap (\Gamma^2 \times \{t\}) \approx D^2$. Since $f_t: \Gamma^2 \to R$ is open, $f_t(\Delta)$ is an open interval, while $f_t(\overline{\Delta})$ is a closed interval with $f_t(\partial \Delta)$ a single point, and a contradiction results.

If $\xi(L_0) > 0$, then $\Omega_0 \cap (\Gamma^2 \times \{t\})$ is a component of $f^{-1}(y, t)$ for some $y \in R$, and a contradiction of (a) results. Thus (b) is true.

From the definition of L_0 (2.1), $f(L_0) \subset J \times W$, and from that definition and (b), $f(\Omega_0) = J \times W$, so that (c) $J \times W = f(L_0)$.

If $B_f \cap (L_0 - \Omega_0) \cap (\Gamma^2 \times \{t\}) = \emptyset$ for some $t \in W$, then

$$g: L_0 \cap (\Gamma^2 \times \{t\}) \longrightarrow J \times \{t\}$$

defined by restriction of f has $B_g = \emptyset$ [3, (4.10)], and so is a bundle map [3, (1.9)]. Thus [11, p. 53, (11.4)] $L_0 \cap (\Gamma^2 \times \{t\}) \approx J \times F$, where the fiber F is a 1-manifold with boundary. Since $J \times F \approx D^2$ (2.1) (ii), F is connected and $F \not\approx S^1$. Thus $F \approx [0, 1]$, so that $\hat{\xi}(L_0) = 0$. Conclusion (d) results.

For a spoke set L of f over $I \times U$, let *L be $L \cap f^{-1}(\operatorname{int}(I \times U))$; thus ${}^*L - \Omega = \operatorname{int} L$ (interior relative to $\Gamma^2 \times R^{p-1}$). Since the restriction map α : $f^{-1}(\operatorname{int}(J \times W)) \to \operatorname{int}(J \times W)$ is open, ${}^*L_0 - \Omega_0$ is open in $f^{-1}(\operatorname{int}(J \times W))$, and $B(f | L_0) \cap \Omega_0 = \emptyset$, the restriction map β_0 : ${}^*L_0 \to \operatorname{int}(J \times W)$ is open. Suppose that f satisfies the hypotheses of (e), i.e., $\hat{\varsigma}(L_0) = 0$, while $(x, s) \in B_f \cap \operatorname{int} L_0$. Given $\varepsilon > 0$, which we may assume is less than $d(B_f, \Omega_0)$, let W' and the spoke sets $L_j(j = 1, 2, \cdots, q)$ be as given by (2.2) for f, ε , a = s, and E = $(B_f \cap L_0)$, where $(x, s) \in \operatorname{int} L_1$. From (b) each $\hat{\varsigma}(L_j) \leq 0$ and from (2.3) $\hat{\varsigma}(L_0) = \sum_{j>0} \hat{\varsigma}(L_j)$; thus $\hat{\varsigma}(L_j) = 0$ for every j, so in particular $\hat{\varsigma}(L_1) = 0$. Let β_1 : ${}^*L_1 \to f({}^*L_1)$ be restriction of f.

For each $(z, t) \in f(L_i) - f(B_f)$, (i = 0, 1), $(\beta_i)^{-1}(z, t)$ is a 1-manifold with boundary; by (a) each of its components is homeomorphic to [0, 1], and since $\xi(L_i) = 0$, $(\beta_i)^{-1}(z, t) \approx [0, 1]$. By $[3, (4.3)(a)] (\beta_i)^{-1}(y, u)$ is arcwise connected for each $(y, u) \in \text{imag } \beta_i$. Choose $\delta > 0$ such that $S((x, s), \delta) \subset \text{int } L_1$. Then

$$f^{-1}(y, u)\cap S(x, \delta)\subset (eta_1)^{-1}(y, u)\subset f^{-1}(y, u)\cap S((x, s), arepsilon)$$

so that f is 0-regular at (x, s) [3, (4.1)]. Since $(x, s) \in B_f \cap L_0$ is arbitrary, by [3, (4.2)] f is 0-regular at each point of L_0 . Thus β_0 is

a bundle map [3, (4.3) (b)], so that $B_f \cap \operatorname{int} L_0 = \emptyset$.

LEMMA 3.2. Let $g: \Gamma^2 \times R^{p-1} \to R \times R^{p-1}$ be an open layer map, let L be a spoke set over $J \times W$ where W is a (p-1)-cell and let $\alpha; W \approx B_g \cap L$ with $\pi \circ \alpha$ the identity map. Then $g \mid int L$ is topologically equivalent to $\psi_w \times \iota (w = 2, 3, \cdots; see (2.1)).$

Proof. We may as well replace g by its restriction to g^{-1} (int $J \times int W$), and L by $L \cap g^{-1}$ (int $J \times int W$), i.e., we may as well suppose that int J = R and int $W = R^{p-1}$. Let $h: R \times R^{p-1} \to R \times R^{p-1}$ be the layer homeomorphism defined by $h(y, t) = (y, t) - g(\alpha(t))$, and let $\lambda = h \circ g \mid L$. Then $B_{\lambda} = B_g \cap L$ and $\lambda(B_{\lambda}) = \{0\} \times R^{p-1}$.

Let J_i be $(-\infty, 0]$ or $[0, \infty)$ according as i is odd or even. (1) Let K be a component of $\lambda^{-1}((\operatorname{int} J_i) \times R^{p-1})$, and let $\beta: K \to \operatorname{int} J_i \times R^{p-1}$ and $\gamma: \overline{K} \to J_i \times R^{p-1}$ be the restriction of λ . Since $B_{\beta} = \emptyset$, β is a bundle map with fiber a 1-manifold F [3, (1.9)], and so $K \approx F \times \operatorname{int} J_i \times R^{p-1}$ [11, p. 53, (11.4)]. Since K is connected, F is also, and by (3.1(a)) $F \approx [0, 1]$. By [3, (4.3)(a)], $\gamma^{-1}(0, t)$ is arcwise connected for each $t \in R^{p-1}$.

Given $(x, s) \in B_{\tau} \cap \gamma^{-1} (\{0\} \times R^{p-1})$ and $\varepsilon > 0$ with $S((x, s), \varepsilon) \subset \operatorname{int} L$, let L' be a spoke set over $J' \times W'$ given by (2.2) for $\lambda, E = \{(x, s)\}, a = s$, and ε . Then L' satisfies the original hypotheses, so that $(r')^{-1}(y, t)$ is arcwise connected for every (y, t). Choose $\delta > 0$ with $S((x, s), \delta) \subset \operatorname{int} L'$. Then

$$S((x, s), \delta) \cap \gamma^{-1}(y, t) \subset (\gamma')^{-1}(y, t) \subset S((x, s), \varepsilon) \cap \gamma^{-1}(y, t)$$

for each $(y, t) \in J' \times W'$, so that γ' is 0-regular at (x, s). By [3, (4.2)] γ is 0-regular, and (by [3, (4.3)(b)]) (2) γ is a (product) bundle map with fiber [0, 1].

For each $t \in \mathbb{R}^{p-1}$ and component K (see (1)), $\gamma \mid (\bar{K} \cap (\Gamma^2 \times \{t\}))$ is a product bundle map over $J_i \times (t)$ with fiber [0, 1], so that $\lambda^{-1}(0, t)$ is a deformation retract of $L \cap (\Gamma^2 \times \{t\}) \approx D^2$. Thus $\lambda^{-1}(0, t)$ is connected. Since $\lambda^{-1}(0, t)$ contains no homeomorph of S^1 (3.1(a)), and $\lambda^{-1}(0, t) - \{\alpha(t)\}$ is a 1-manifold with boundary points the 2w $(\xi(L) = 1 - w)$ points of $\lambda^{-1}(0, t) \cap \Omega$ (2.1), it follows that $\lambda^{-1}(0, t)$ is homeomorphic to the union of 2w arcs disjoint except for their common endpoint $\alpha(t)$. As a result $\alpha(t) \in \overline{K} \cap (\Gamma^2 \times \{t\})$, so that each \overline{K} contains imag α , i.e., B_i .

Let K_i $(i = 1, 2, \dots, 2w)$ be the components K enumerated so that for any $t \in \mathbb{R}^{p-1}$, $(\text{int } K_i) \cap (\Gamma^2 \times \{t\})$ are the components of

$$(\operatorname{int} L) \cap ((\varGamma^2 \times \{t\}) - \lambda^{-1}(0, t))$$

in counterclockwise order around $\alpha(t)$ with $\lambda(\overline{K}_i) = J_i \times R^{p-1}$. Let

 $\Lambda_i = \bar{K}_i \cap \text{int } L$, let $\psi = \psi_w \times \iota$ (see (2.1)), and let Δ_i be the closures of the components of $\psi^{-1} (\text{int } J_i \times R^{p-1})$ enumerated in analogous fashion.

By (2) there is an orientation-preserving homeomorphism μ_i of Λ_i onto $R \times J_i \times R^{p-1}$ with $\pi \circ \mu_i = \lambda | \Lambda_i$. Let ν_i be the homeomorphism of $R \times J_i \times R^{p-1}$ onto itself defined by

$$u_i(x, y, t) = (x, y, t) - \mu_i(\alpha(t)) + (0, 0, t),$$

and let $\zeta_i = \nu_i \circ \mu_i$. Then $\zeta_i(\alpha(t)) = (0, 0, t)$, so that

$$\zeta_i(B_i)=\{0\} imes\{0\} imes R^{p-1}$$
 .

There is an analogous orientation-preserving homeomorphism ξ_i of Δ_i onto $R \times J_i \times R^{p-1}$ with $\pi \circ \xi_i = \psi \mid \Delta_i$ and $\xi_i(B_{\psi}) = \{0\} \times \{0\} \times R^{p-1}$.

Let σ_i be the layer homeomorphism of $R \times \{0\} \times R^{p-1}$ onto itself which is the restriction of $\xi_i \circ \rho \circ \zeta_i^{-1}$, (on $\zeta_i(\gamma_{i-1})$, σ_i agrees with the identity map) and let τ_i be its first coordinate map. Let ϕ_i be the homeomorphism of $R \times J_i \times R^{p-1}$ onto itself defined by ϕ_i (x, y, t) = $(\tau_i(x, t), y, t)$, and let $\chi_i = (\xi_i)^{-1} \circ \phi_i \circ \zeta_i$. Then $\chi_i: \Lambda_i \approx \Delta_i$, they agree with ρ , and they thus define χ : int $L \approx C \times R^{p-1}$; since $\pi \circ \zeta_i = \lambda | \Lambda_i$ and $\pi \circ \xi_i = \psi | \Delta_i$, where π : $R \times J_i \times R^{p-1} \to J_i \times R^{p-1}$ is projection, $\psi \circ \chi = \lambda |$ int L. This is the desired conclusion.

4. The Proof of the theorem.

REMARK 4.1. According to the Rank Theorem [3, (1.6)] $B_f \subset R_{p-1}(f)$, and we prove (1.1) under the weaker hypothesis that $\dim (B_f \cap f^{-1}(y)) \leq 0$ for each $y \in N^p$.

Proof. Let X be the complement of the set on which f has the desired structure; then $X \subset B_f$ is closed. We suppose that

$$\dim f(X) \geqq p-1$$
 ,

and will obtain a contradiction.

Since f is C³, dim $(f(R_{p-2}(f))) \leq p-2$ [2, p. 1037]. If, for every

 $x \in M^{p+1} - f^{-1}(f(R_{p-2}(f)))$, there is an open neighborhood

$$U_x \subset M^{p+1} - f^{-1}(f(R_{p-2}(f)))$$

of x with \overline{U}_x compact and dim $(f(U_x \cap X)) \leq p-2$, it follows from the fact that $\{U_x\}$ has a countable subcover that dim $(f(X)) \leq p-2$. Thus, there is an $\overline{x} \in M^{p+1} - f^{-1}(f(R_{p-2}(f)))$ such that, (1) for every open neighborhood $U \subset M^{p+1} - f^{-1}(f(R_{p-2}(f)))$ of \overline{x} , dim $(f(U \cap X)) \geq p-1$.

By [1, p. 87, (1.1)] there are open neighborhoods U of \bar{x} and V of $f(\bar{x})$ and C^r diffeomorphisms $\sigma: R^2 \times R^{p-1} \approx U$ and $\rho: V \approx R \times R^{p-1}$ such that $\rho \circ f \circ \sigma = g$ is a C^r layer map and $\sigma(0, 0) = \bar{x}$. By hypothesis dim $(B_g \cap g^{-1}(y, t)) \leq 0$ for each $(y, t) \in R \times R^{p-1}$.

Since $\sigma^{-1}(X) \subset B_g$, $B_g \subset R_{p-1}(g)$ (by the Rank Theorem [3, (1.6)]), $R_{p-1}(g) \cap (R^2 \times (t)) = R_0(g_t)$, and $\dim(g_t(R_0(g_t))) \leq 0$ by Sard's Theorem (e.g. [2, p. 1037]), (2) dim $(g(B_g) \cap (R^2 \times \{t\})) \leq 0$ and

dim
$$(g(\sigma^{-1}(X)) \cap (R \times \{t\})) \leq 0$$
.

On the other hand, (by (1)) dim $(g(\sigma^{-1}(X)) \ge p - 1)$, so there is an r > 0 such that

$$\Lambda = (\operatorname{Cl} [S(0, r)] \times R^{p-1}) \cap \sigma^{-1}(X)$$

has dim $g(\Lambda) \geq p-1$. If $\pi: R \times R^{p-1} \to R^{p-1}$ is projection, then dim $(\pi(g(\Lambda))) \geq p-1$ (by (2) and [6, p. 91]), and there is an open (p-1)-cell $T \subset \pi(g(\Lambda))$ [6, p. 44] with \overline{T} compact. Thus (3)

$$\Lambda \cap (R^2 \times \{t\}) \neq \emptyset$$
 for each $t \in T$.

Let $W \subset T$ and the spoke sets $L_j (j = 1, 2, \dots, q)$ be as given by (2.2) for g, any $a \in T$, $E = A \cap (R^2 \times \overline{T})$, and (say) $\varepsilon = 1$. If (4) (i) the cardinality $w(t) \geq 1$ of $B_g \cap (R^2 \times \{t\}) \cap (\bigcup_j L_j)$ ($t \in int W$) is bounded above by $|\sum_j \xi(L_j)|$, choose $s \in int W$ such that w(s) is maximal and let (x_i, s) $(i = 1, 2, \dots, w(s))$ be these points. Otherwise, (4) (ii) there are $s \in int W$ and distinct points (x_i, s) $(i = 1, 2, \dots, (\sum_j \xi(L_j) | + 1))$ of $B_g \cap (R^2 \times \{t\}) \cap (\bigcup_j L_j)$. Let w' be w(s) in case (4) (i) and $|\sum_j \xi(L_j)| + 1$ in case (4) (ii). Let $\varepsilon > 0$ be less than $d(x_k, x_i)$ for $h \neq i$ and $d(B_g, \bigcup_j \Omega_j)$, and let $W' \subset int W$ and $\{L'_k\}$ be as given by (2.2) for g, a = s, $E = \bigcup_j L_j \cap B_g$, and this ε . Thus (5) the (x_i, s) , are in distinct spoke sets L'_k .

By hypothesis and by (2), the hypothesis of (3.1) (e) is satisfied, so that by (3.1) (d) and (e) $\xi(L_j) = 0$ if and only if $L_j \cap B_g = \emptyset$. We may thus omit those L_j and L'_k with $\xi(L_j) = 0 = \xi(L'_k)$. From (3.1) (b) each $\xi(L_j) < 0$ and $\xi(L'_k) < 0$, and from (5) and (3.1) (d) the cardinality c of $\{L'_k\}$ satisfies $w' \leq c \leq |\sum_k \xi(L'_k)|$. Since each L'_k is contained in some L_j , $\sum_j \hat{\xi}(L_j) = \sum_k \hat{\xi}(L'_k)$ by (2.3), and so $w' \leq |\sum_j \hat{\xi}(L_j)|$; this contradicts (4) (ii), and hence (4) (i) must be true. For $t \in W'$, $w(t) \geq c$ by (3.1) (d), while $c \geq w(s)$ by (4) (i), so that w(t) = w(s). Thus (by (3.1) (d)) each $B_g \cap (R^1 \times \{t\}) \cap L'_k$ is a single point for $t \in W'$, and since B_g is closed, there is a homeomorphism α_i : $W' \approx L'_k \cap B_g$ with $\pi \circ \alpha_i$ the identity map on W'. By (3.2) $\bigcup_k (\sigma^{-1}(X) \cap L'_k) = \emptyset$. But this set contains $\Lambda \cap (R^2 \times W')$, contradicting (3).

REMARK 4.2. In case p = 1, C^3 may be replaced by C^2 and the argument can be shortened considerably. In that case (4.1) results from [12, p. 103, Theorem 1] (cf. [18, pp. 7-8]), and (4.1) in case B_f is discrete is [10, p. 28, (4.3.1)] and [9]. Considerable information relating to open maps $f: M^2 \to N^1$ is given in [5], [8], and [10].

4.3. Proof of (1.2). The hypotheses of (1.1) are satisfied (with C^2 if p = 1). In case p = 1, $X = \emptyset$, so that at each $x \in M^{p+1}$, f at x is locally topologically equivalent to $\psi_{d(x)}$. In case $p \ge 2$, for each $x \in M^{p+1} - X$ with $d(x) \ne 1$ (i.e., $x \in B_f$), dim $B_f = p - 1 \ge 1$ in a neighborhood of x; the assumption that dim $R_{p-1}(f) \le 0$ contradicts the Rank Theorem [3, (1.6)]. Thus $B_f \subset X$, so that

dim
$$f(B_f) \leq p-2$$
.

That f is locally topological equivalent to ρ or to τ is now a consequence of [3, (4.7)].

References

- 1. P. T. Church, Differentiable open maps on manifolds, Trans. Amer. Math. Soc., 109 (1963), 87-100.
- 2. ____, On points of Jacobian rank k. II, Proc. Amer. Math. Soc., 16 (1965), 1035-1038.
- 3. P. T. Church and J. G. Timourian, Differentiable maps with O-dimensional critical set, I, Pacific J. Math., (to appear).
- 4. ____, Real analytic open maps, Pacific J. Math., 41 (1972), 615-630.
- 5. W. C. Fox, The critical points of peano interior functions defined on 2-manifolds, Trans. Amer. Math. Soc., 83 (1956), 338-370.
- 6. W. Hurewicz and H. Wallman, *Dimension Theory*, 2nd edition, Princeton University Press, Princeton, N. J., 1948.
- 7. J. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, Virginia, 1965.
- 8. M. Morse, Topological Methods in the Theory of Functions of a Complex Variable, Princeton University Press, Princeton, N. J. 1947.
- W. D. Nathan, Open mappings on 2-manifolds, Pacific J. Math., 41 (1972), 495-501.
 , Open Mappings on Manifolds, Ph. D. dissertation, Syracuse University, Syracuse, 1968.
- 11. N. Steenrod, *The Topology of Fiber Bundles*, Princeton University Press, Princeton, N. J., 1951.

12. Y. K. Toki, A topological characterization of pseudo-harmonic functions, Osaka Math. J., ${\bf 3}$ (1951), 101–122.

Received June 21, 1972. Work of the first author supported in part by NSF Grant GP-6871, and that of the second author by NSF Grant GP-8888 and NRC Grant A7357.

SYRACUSE UNIVERSITY UNIVERSITY OF TENNESSEE AND UNIVERSITY OF ALBERTA