DIFFERENTIABLE OPEN MAPS OF ($p+1$)-MANIFOLD TO p-MANIFOLD

P. T. Church and J. G. Timourian

Let $f: M^{p+1} \rightarrow N^{p}$ be a C^{3} open map with $p \geqq 1$, let $R_{p-1}(f)$ be the critical set of f, and let

$$
\operatorname{dim}\left(R_{p-1}(f) \cap f^{-1}(y)\right) \leqq 0
$$

for each $y \in N^{p}$. Then (1.1) there is a closed set $X \subset M^{p+1}$ such that $\operatorname{dim} f(X) \leqq p-2$ and, for every $x \in M^{p+1}-X$, there is a natural number $d(x)$ with f at x locally topologically equivalent to the map

$$
\phi_{d(x)}: C \times R^{p-1} \rightarrow R \times R^{p-1}
$$

defined by

$$
\dot{\varphi}_{d(x)}\left(z, t_{1}, \cdots, t_{p-1}\right)=\left(\mathscr{R}\left(z^{d(x)}\right), t_{1}, \cdots, t_{p-1}\right)
$$

$\left(\mathscr{R}\left(z^{d(x)}\right)\right.$ is the real part of the complex number $\left.z^{d(x)}\right)$.

The hypothesis on the critical set is essential [3, (4.11)], but in [4] we show that any real analytic open map satisfies this hypothesis, and thus this conclusion.

Corollary 1.2. If $f: M^{p+1} \rightarrow N^{p}$ is a C^{p+1} open map with $\operatorname{dim}\left(R_{p-1}(f)\right) \leqq 0$, then at each $x \in M^{p+1}, f$ is locally topologically equivalent to one of the following maps:
(a) the projection map $\rho: R^{p+1} \rightarrow R^{p}$,
(b) $\tau: C \times C \rightarrow C \times R$ defined $b y$ $\tau(z, w)=\left(2 z \cdot \bar{w},|w|^{2}-|z|^{2}\right)$, where \bar{w} is the complex conjugate of w.
(c) $\psi_{d}: C \rightarrow R$ defined by $\psi_{d}(z)=\mathscr{R}\left(z^{d}\right)$.

In order to read the proofs in this paper, the reader will need to have [3] at hand. In particular, the terms locally topologically equivalent, branch set B_{f}, layer map, extended embedding, and 0 regular are defined in [3; (1.3), (1.5), (2.1), (2.3), and (4.1), respectively].
2. Spoke sets. The definition and lemmas of this section are given in somewhat greater generality than needed in this paper (i.e., for open maps), for use in a subsequent paper.

Let Γ^{2} be any 2-manifold (without boundary).
Definition 2.1. Let $\psi_{w} \times c: C \times R^{p-1} \rightarrow R \times R^{p-1}$ be defined by $\psi_{0} \times c(z, t)=(|z|, t)$ and $\psi_{w} \times c(z, t)=\left(\mathscr{R}\left(z^{w}\right), t\right)(w=1,2, \cdots)$. Thus
$B\left(\psi_{1} \times \iota\right)=\varnothing$ and $B\left(\psi_{w} \times \iota\right)=\{0\} \times R^{p-1}$ otherwise. For $w=0$ let $L=D^{2} \times D^{p-1}$ and let $J=[-1,1]$; for $w \geqq 1$ and $\eta>0$ sufficiently small, let

$$
L=\left(D^{2} \times D^{p-1}\right) \cap\left(\psi_{w} \times \iota\right)^{-1}\left([-\eta, \eta] \times D^{p-1}\right)
$$

and let $J=[-\eta, \eta]$. These examples motivate the following definition.

Let $f: \Gamma^{2} \times R^{p-1} \rightarrow R \times R^{p-1}$ be a layer map, let $J=\left[b_{0}, b_{1}\right] \subset R$, and let $W \subset R^{p-1}$ be a closed q-cell ($q=0,1, \cdots, p-1$). Let $\left\{\gamma_{j}\right\}$ be a (possibly empty) collection of $2 w$ disjoint closed arcs in $S^{1}(j=1$, $2, \cdots, 2 w)$; let $A=\bigcup_{j} \gamma_{j}$, and let $\zeta: S^{1} \times W \rightarrow \Gamma^{2} \times W$ be a layer embedding such that $B_{f} \cap \operatorname{imag} \zeta=\varnothing, f \circ \zeta: \gamma_{j} \times W \approx J \times W$, and for each component Φ of $\mathrm{Cl}\left[S^{1}-A\right], f(\zeta(\Phi \times W))=\left\{b_{i}\right\} \times W(i=0$ or 1). A spoke set of f over $J \times W$ is (i) a compact, connected subspace $L \subset f^{-1}(R \times W)$ such that (ii) $L \cap\left(\Gamma^{2} \times\{t\}\right)$ is a 2-cell for each $t \in W$ and (iii) for some ζ as above, the boundary Ω of L with respect to $f^{-1}(R \times W)$ is imag ζ. Thus if $A=\varnothing, f(\Omega)=\left\{b_{i}\right\} \times W(i=0$ or 1). (In case $A \neq \varnothing$ and $q=1, L$ is homeomorphic to the hub and spokes of a wagon wheel, where $\zeta(A \times W)$ corresponds to the ends of the spokes.) The index $\xi(L)=1-w$.

Lemma 2.2. Let $f: \Gamma^{2} \times R^{p-1} \rightarrow R \times R^{p-1}$ be a layer map with $\operatorname{dim}\left(B_{f} \cap\left(\Gamma^{2} \times\{t\}\right)\right)=\operatorname{dim}\left(f\left(B_{f}\right) \cap(R \times\{t\})\right) \leqq 0$ for each $t \in R^{p-1}$, let $E \subset B_{f}$ be compact, let $a \in R^{p-1}$, and let $\varepsilon>0$. Then there are a closed ($p-1$)-cell neighborhood W of a, closed intervals $J_{j}(j=1,2, \cdots, m)$, and spoke sets L_{j} over $J_{j} \times W$ such that
(iv) $E \cap L_{j} \neq \varnothing$ and $E \cap\left(\Gamma^{2} \times W\right) \subset \bigcup_{j}\left(L_{j}-\Omega_{j}\right)$,
(v) the $L_{j}-\Omega_{j}$ are mutually disjoint, and
(vi) each $\operatorname{diam} L_{j}<\varepsilon$.

Proof. Let F be a compact neighborhood of E in $\Gamma^{2} \times R^{p-1}$, let $\left\{U_{\alpha}\right\}$ be a cover of Γ^{2} by interiors of closed 2-cells, and let δ be the Lebesgue number of $\left\{U_{\alpha} \times R^{p-1}\right\}$ as a cover of F. We may suppose that $\varepsilon<\min (\delta, d(E, b d y F))$. Thus
(1) for each $\Psi \subset F$ with $\operatorname{diam} \Psi<\varepsilon$, there is a closed 2-cell U with $\Psi \subset(\operatorname{int} U) \times R^{p-1}$.

Given $y \in R$ with $(y, a) \in f(E)$ and $X=E \cap f^{-1}(y, a)$, let Q be the finite set and $\nu: Q \times D \rightarrow \Gamma^{2} \times R^{p-1}$ be the extended embedding with imag $\nu \cap B_{f}=\varnothing$ given by [3, (2.5)] for X and ε. According to that lemma each component K of f^{-1} (int D)-imag ν meeting X has $\operatorname{diam} K<\varepsilon$, and each is open. Since $X=E \cap f^{-1}(y, a)$ and E is compact, one may prove (by contradiction) that it is possible to
select the p-cell neighborhood D of (y, a) in $R \times R^{p-1}$ sufficiently small that each component K of $f^{-1}(\operatorname{int} D)$ - imag ν meeting E has diam $K<\varepsilon$. Summarizing.
(2) each component K of $f^{-1}(\operatorname{int} D)$-imag ν with $K \cap E \neq \varnothing$ has $\operatorname{diam} K<\varepsilon$, so that $\bar{K} \subset \operatorname{int} F$.

Choose a closed interval $J(y) \subset R$ with $y \in \operatorname{int} J(y)$,

$$
J(y) \times\{a\} \subset \operatorname{int} D,
$$

and end points $b_{0}(y), b_{1}(y)$ with $\left(b_{0}(y), a\right),\left(b_{1}(y), a\right) \notin f\left(B_{f}\right)$. Since $f\left(F \cap B_{f}\right)$ is closed, there is a closed ($p-1$)-cell neighborhood $W(y)$ of a in R^{p-1} such that $(\partial J(y) \times W(y)) \cap f\left(F \cap B_{f}\right)=\varnothing$ and

$$
J(y) \times W(y) \subset D
$$

Let $\nu(y)$ be the corresponding extended embedding (restricted) over $J \times W$.

There are $y_{1}, y_{2}, \cdots, y_{u} \in R$ with $\left(y_{j}, a\right) \in f(E)$ and

$$
f(E) \cap(R \times\{a\}) \subset \bigcup_{j} \operatorname{int}\left(J\left(y_{j}\right)\right) \times\{a\}
$$

The points $\left\{b_{i}\left(y_{j}\right): i=0,1 ; j=1,2, \cdots, u\right\}$ are the end points of a finite set of closed intervals with mutually disjoint interiors; let $J_{h}(h=1,2, \cdots, r)$ be those intervals with $\left(J_{h} \times\{a\}\right) \cap f(E) \neq \varnothing$. Let W be a closed ($p-1$)-cell neighborhood of $a \in R^{p-1}$ with $W \subset \bigcap_{j} W\left(y_{j}\right)$. Then $\left(\partial J_{h} \times W\right) \cap f\left(F \cap B_{f}\right)=\varnothing$ and

$$
f(E) \cap(R \times W) \subset \bigcup_{k}\left(\left(\operatorname{int} J_{h}\right) \times W\right)(h=1,2, \cdots, r) .
$$

Since each J_{h} is contained in some $J\left(y_{j}\right)$, restriction of $\nu\left(y_{j}\right)$ yields an extended embedding ν_{h} over $J_{h} \times W$.

Let $J=\left[b_{0}, b_{1}\right]$ be one of these intervals J_{h}, let

$$
\nu:(Q \times J) \times W \longrightarrow \Gamma^{2} \times R^{p-1}
$$

be the layer embedding ν_{h}, and let $P \subset F$ be a component of

$$
f^{-1}\left(\left\{b_{i}\right\} \times W\right)-\operatorname{imag} \nu
$$

Since $\left(\left\{b_{i}\right\} \times W\right) \cap f\left(F \cap B_{f}\right)=\varnothing, f^{-1}\left(\left\{b_{i}\right\} \times W\right) \cap \operatorname{int} F$ is a p-manifold, \bar{P} is a compact connected p-manifold with boundary, and [3, (1.9)] $f \mid \bar{P}: \bar{P} \rightarrow\left\{b_{i}\right\} \times W$ is a bundle map. Thus [11; p. 53, (11.4)] it is a product bundle map, and since f is a layer map
(3) there is a layer embedding $\lambda: \Lambda^{1} \times W \rightarrow \Gamma^{2} \times W$, where $\lambda\left(\Lambda^{1} \times W\right)=\bar{P}$ and $\Lambda^{1} \approx S^{1}$ or [0, 1].

In particular, $P \cap\left(I^{2} \times\{s\}\right)$ is a component of $f^{-1}\left(b_{i}, s\right)$ - imag ν ($s \in W ; i=0,1$), and $\mathrm{Cl}\left[P \cap\left(\Gamma^{2} \times\{s\}\right)\right] \approx \Lambda^{1}$. From the compactness of F and the finiteness of Q, the number of such components P is finite.

Let K be a component of $f^{-1}(J \times W)$-imag ν meeting E (thus by (2) $\operatorname{diam} K<\varepsilon$ and $\bar{K} \subset \operatorname{int} F$) and let T be a component of the boundary of K in (i.e., relative to) $\Gamma^{2} \times W$. Then

$$
T \subset f^{-1}\left(\left\{b_{0}, b_{1}\right\} \times W\right) \cup \operatorname{imag} \nu
$$

Moreover, from (3) there are a finite union (possibly empty) A of disjoint arcs in S^{1} and a layer embedding $\zeta: S^{1} \times W \rightarrow \Gamma^{2} \times W$ with $\operatorname{imag} \zeta=T, \zeta(A \times W)=T \cap \operatorname{imag} \nu$, and

$$
\zeta\left(\mathrm{Cl}\left[S^{1}-A\right] \times W\right)=T \cap f^{-1}\left(\left\{b_{0}, b_{1}\right\} \times W\right) .
$$

For each $s \in W$ and component (arc) γ of $A, f \circ \zeta: \gamma \times s \approx J \times s$, and for each component Δ of $\mathrm{Cl}\left[S^{1}-A\right], f(\zeta(\Delta \times\{s\}))=\left(b_{i}, s\right)(i=0$ or 1). Thus if $A \neq \varnothing$, there are an even number of such components (arcs) Δ, and they alternate in value. Hence there are an even number (possibly zero) of components (arcs) of A.

The union of such embeddings ζ over all $J \in\left\{J_{h}: h=1,2, \cdots, r\right\}$ and components K of $f^{-1}(J \times W)-\operatorname{imag} \nu$ is finite: call them

$$
\zeta_{j}(j=1,2, \cdots, k)
$$

Let $\Omega_{j}=\operatorname{imag} \zeta_{j}$ and let K_{j} be the corresponding component K; by (1) there is a closed 2-cell $U_{j} \subset \Gamma^{2}$ with $\bar{K}_{j} \subset$ (int $\left.U_{j}\right) \times W$, and thus each $\bar{K}_{j} \cap\left(\Gamma^{2} \times\{s\}\right)$ is a 2-cell-with-holes contained in int U_{j}. Each Ω_{j} separates $U_{j} \times W$ into two components; let L_{j} be the closure of the component disjoint from $\partial U_{j} \times W$. Each $L_{j} \cap\left(\Gamma^{2} \times\{s\}\right)$ is a 2cell, and since the K_{j} are mutually disjoint, for $i \neq j$ exactly one of the following is true: $\left(L_{i}-\Omega_{i}\right) \cap\left(L_{j}-\Omega_{j}\right)=\varnothing, L_{i} \subset L_{j}$, or $L_{j} \subset L_{i}$. The desired spoke sets are those L_{j} with $E \cap L_{j} \neq \varnothing$ and $L_{j} \not \subset L_{i}$ for any $i \neq j$. Since each $\operatorname{diam} K_{j}<\varepsilon$, each $\operatorname{diam} \Omega_{j}<\varepsilon$, so that $\operatorname{diam} L_{j}<\varepsilon$. \quad Since $E \cap\left(\Gamma^{2} \times W\right) \subset \bigcup_{j} K_{j} \subset \bigcup_{j} L_{j}, \quad E \subset B_{f}, \quad$ and $B_{f} \cap \Omega_{j}=\varnothing, E \cap\left(\Gamma^{2} \times W\right) \subset \bigcup_{j}\left(L_{j}-\Omega_{j}\right)$.

Lemma 2.3. Let $f: \Gamma^{2} \times R^{p-1} \rightarrow R \times R^{p-1}$ be a layer map, let L_{0} (resp., $L_{j}, j=1,2, \cdots, q$) be a spoke set over $J \times W$ (resp., $J_{j} \times W^{\prime}$), and let $s \in W \cap W^{\prime}$. Suppose that $L_{j} \cap\left(\Gamma^{2} \times\{s\}\right) \subset L_{0}$,

$$
B_{f} \cap L_{0} \cap\left(\Gamma^{2} \times\{s\}\right) \subset \bigcup_{j>0}\left(L_{j}-\Omega_{j}\right),
$$

and the $L_{j}-\Omega_{j}$ are mutually disjoint $(j>0)$. Then

$$
\xi\left(L_{0}\right)=\sum_{j>0} \xi\left(L_{j}\right) .
$$

Proof. Since $B\left(f_{s}\right) \subset B_{f} \cap\left(\Gamma^{2} \times\{s\}\right)$ and $\xi\left(L_{j}\right)=\xi\left(L_{j} \cap\left(\Gamma^{2} \times\{s\}\right)\right)$, it suffices to prove the lemma for $f=f_{s}: \Gamma^{2} \rightarrow R$. Thus $L_{j} \subset L_{0}$ and $B_{f} \cap L_{0} \subset \bigcup_{j>0} L_{j}-\Omega_{j} . \quad$ If A_{j} (see (2.1)) has $2 w(j)$ components
$(w(j)=0,1, \cdots)$, define $g_{j}: L_{j} \rightarrow R$ to agree with f on $\partial L_{j}=\Omega_{j}$ and to be topologically equivalent to $\psi_{w(j)}$. Let $h: L_{0} \rightarrow R$ agree with f on $L_{0}-\bigcup_{j>0}\left(L_{j}-\Omega_{j}\right)$ and with g_{j} on $L_{j}(j=1,2, \cdots, q)$. Then $B(h)=\bigcup_{j>0} B\left(g_{j}\right)$, and so is discrete.

Let $D\left(L_{j}\right)$ be the identification space obtained from

$$
\left(L_{j} \times\{0\}\right) \cup\left(L_{j} \times\{1\}\right)
$$

by identifying $(x, 0)$ with $(x, 1)$ for each $x \in A=A\left(L_{j}\right)$, let $D\left(g_{j}\right)$: $D\left(L_{j}\right) \rightarrow R$ be defined by $D\left(g_{j}\right)(x, 0)=D\left(g_{j}\right)(x, 1)=g_{j}(x)$, and let $D(h)$ be defined analogously. Define a vector field u_{j} (resp., v) on $D\left(L_{j}\right)$ (resp., $D\left(L_{0}\right)$) which is 0 precisely on the (discrete) branch set $B\left(D\left(g_{j}\right)\right)$ (resp., $B(D(h))$) and elsewhere is transverse to the level curves of $D\left(g_{j}\right)$ (resp., $D(h)$), i.e., a "gradient vector field" ($j=$ $0,1, \cdots, q)$. For any vector field α with isolated zeros, let the sum of the indices of α at its zeros [7, p. 32] be denoted by $c(\alpha)$.

Since $L_{j} \approx D^{2}$, the Euler characteristic

$$
\chi\left(D\left(L_{j}\right)\right)=2-2 w(j)=2 \xi\left(L_{j}\right)
$$

According to the Poincaré-Hopf Theorem [7, p. 35] (differentiability is not really needed in our case) $\chi\left(D\left(L_{j}\right)\right)=\iota\left(u_{j}\right)$, so that $2 \hat{\xi}\left(L_{j}\right)=\iota\left(u_{j}\right)$ and $2 \xi\left(L_{0}\right)=\iota\left(u_{0}\right)=\iota(v)$. Thus $2 \xi\left(L_{0}\right)=\iota(v)=2 \sum_{j>0} \iota\left(v \mid L_{j}\right) \quad$ (by definition of $\iota)=\sum_{j>0} \ell\left(u_{j}\right)=2 \sum_{j>0} \xi\left(L_{j}\right)$, so that $\xi\left(L_{0}\right)=\sum_{j>0} \xi\left(L_{j}\right)$ (where $j=1,2, \cdots, q$).

Alternatively, we could have used [5, p. 370] or [10, p. 35, (4.3.6)]; in this case we would have removed an open 2-cell with boundary a level circle about each local maximum or minimum point of g_{j} and h, in order to have open maps. Or, we could have used a counting argument based on the Euler characteristics of L_{j}, L_{0}, and $L_{0}-U_{j}$ int L_{j}; the first two spaces are 2-cells, and the last one is disjoint from B_{f}, so that information about it can be obtained from [3, (1.9)].

3. Spoke sets of open maps.

Lemma 3.1. Let $f: \Gamma^{2} \times R^{p-1} \rightarrow R \times R^{p-1}$ be an open layer map, and let L_{0} be a spoke set over $J \times W$, where W is a closed ($p-1$)cell. Then
(a) $f^{-1}(y, t) \cap L_{0}$ does not contain a homeomorph of S^{1}

$$
\left((y, t) \in R \times R^{p-1}\right)
$$

(b) $\quad \xi\left(L_{0}\right) \leqq 0$;
(c) $f\left(L_{0}\right)=J \times W$;
(d) $\quad \tilde{\xi}\left(L_{0}\right) \neq 0$ implies that $B_{f} \cap\left(L_{0}-\Omega_{0}\right) \cap\left(\Gamma^{2} \times\{t\}\right) \neq \varnothing$ for every $t \in R^{p-1}$;
(e) if $\operatorname{dim}\left(f\left(B_{f}\right) \cap(R \times\{t\})\right) \leqq 0$ for every $t \in R^{p-1}$,

$$
\operatorname{dim}\left(B_{f} \cap f^{-1}(y, t)\right) \leqq 0 \quad \text { for every }(y, t) \in R \times R^{p-1}
$$

and $\xi\left(L_{0}\right)=0$, then $B_{f} \cap \operatorname{int} L_{0}=\varnothing$.
Proof. Suppose (a) is false, where Λ is the homeomorph of S^{1}. Then Λ bounds an open 2-cell Δ in $L_{0} \cap\left(\Gamma^{2} \times\{t\}\right) \approx D^{2}$. Since f_{t} : $\Gamma^{2} \rightarrow R$ is open, $f_{t}(\Delta)$ is an open interval, while $f_{t}(\overline{4})$ is a closed interval with $f_{t}(\partial \Delta)$ a single point, and a contradiction results.

If $\xi\left(L_{0}\right)>0$, then $\Omega_{0} \cap\left(\Gamma^{2} \times\{t\}\right)$ is a component of $f^{-1}(y, t)$ for some $y \in R$, and a contradiction of (a) results. Thus (b) is true.

From the definition of $L_{0}(2.1), f\left(L_{0}\right) \subset J \times W$, and from that definition and (b), $f\left(\Omega_{0}\right)=J \times W$, so that (c) $J \times W=f\left(L_{0}\right)$.

If $B_{f} \cap\left(L_{0}-\Omega_{0}\right) \cap\left(\Gamma^{2} \times\{t\}\right)=\varnothing$ for some $t \in W$, then

$$
g: L_{0} \cap\left(\Gamma^{2} \times\{t\}\right) \longrightarrow J \times\{t\}
$$

defined by restriction of f has $B_{g}=\varnothing[3,(4.10)]$, and so is a bundle $\operatorname{map}[3,(1.9)]$. Thus [11, p. 53, (11.4)] $L_{0} \cap\left(\Gamma^{2} \times\{t\}\right) \approx J \times F$, where the fiber F is a 1 -manifold with boundary. Since $J \times F \approx D^{2}$ (2.1) (ii), F is connected and $F \not \approx S^{1}$. Thus $F \approx[0,1]$, so that $\tilde{\xi}\left(L_{0}\right)=0$. Conclusion (d) results.

For a spoke set L of f over $I \times U$, let ${ }^{*} L$ be $L \cap f^{-1}(\operatorname{int}(I \times U))$; thus $* L-\Omega=\operatorname{int} L$ (interior relative to $\Gamma^{2} \times R^{p-1}$). Since the restriction $\operatorname{map} \alpha: f^{-1}(\operatorname{int}(J \times W)) \rightarrow \operatorname{int}(J \times W)$ is open, ${ }^{*} L_{0}-\Omega_{0}$ is open in $f^{-1}\left(\operatorname{int}(J \times W)\right.$), and $B\left(f \mid L_{0}\right) \cap \Omega_{0}=\varnothing$, the restriction map $\beta_{0}:{ }^{*} L_{0} \rightarrow \operatorname{int}(J \times W)$ is open. Suppose that f satisfies the hypotheses of (e), i.e., $\xi\left(L_{0}\right)=0$, while $(x, s) \in B_{f} \cap \operatorname{int} L_{0}$. Given $\varepsilon>0$, which we may assume is less than $d\left(B_{f}, \Omega_{0}\right)$, let W^{\prime} and the spoke sets $L_{j}(j=1,2, \cdots, q)$ be as given by (2.2) for $f, \varepsilon, a=s$, and $E=$ $\left(B_{f} \cap L_{0}\right)$, where $(x, s) \in \operatorname{int} L_{1}$. From (b) each $\xi\left(L_{j}\right) \leqq 0$ and from (2.3) $\xi\left(L_{0}\right)=\sum_{j>0} \xi\left(L_{j}\right)$; thus $\xi\left(L_{j}\right)=0$ for every j, so in particular $\xi\left(L_{1}\right)=0$. Let $\beta_{1}:{ }^{*} L_{1} \rightarrow f\left({ }^{*} L_{1}\right)$ be restriction of f.

For each $(z, t) \in f\left(L_{i}\right)-f\left(B_{f}\right),(i=0,1),\left(\beta_{i}\right)^{-1}(z, t)$ is a 1 -manifold with boundary; by (a) each of its components is homeomorphic to $[0,1]$, and since $\xi\left(L_{i}\right)=0,\left(\beta_{i}\right)^{-1}(z, t) \approx[0,1]$. By [3, (4.3)(a)] $\left(\beta_{i}\right)^{-1}(y, u)$ is arcwise connected for each $(y, u) \in$ imag β_{i}. Choose $\delta>0$ such that $S((x, s), \delta) \subset \operatorname{int} L_{1}$. Then

$$
f^{-1}(y, u) \cap S(x, \delta) \subset\left(\beta_{1}\right)^{-1}(y, u) \subset f^{-1}(y, u) \cap S((x, s), \varepsilon)
$$

so that f is 0-regular at (x, s) [3, (4.1)]. Since $(x, s) \in B_{f} \cap L_{0}$ is arbitrary, by [3, (4.2)] f is 0-regular at each point of L_{0}. Thus β_{0} is
a bundle map [3, (4.3) (b)], so that $B_{f} \cap \operatorname{int} L_{0}=\varnothing$.
Lemma 3.2. Let $g: \Gamma^{2} \times R^{p-1} \rightarrow R \times R^{p-1}$ be an open layer map, let L be a spoke set over $J \times W$ where W is a ($p-1$)-cell and let $\alpha ; W \approx B_{g} \cap L$ with $\pi \circ \alpha$ the identity map. Then $g \mid$ int L is topologically equivalent to $\psi_{w} \times c(w=2,3, \cdots$; see (2.1)).

Proof. We may as well replace g by its restriction to g^{-1} (int $J \times$ int W), and L by $L \cap g^{-1}$ (int $J \times \operatorname{int} W$), i.e., we may as well suppose that int $J=R$ and int $W=R^{p-1}$. Let $h: R \times R^{p-1} \rightarrow R \times R^{p-1}$ be the layer homeomorphism defined by $h(y, t)=(y, t)-g(\alpha(t))$, and let $\lambda=h \circ g \mid L$. Then $B_{\lambda}=B_{g} \cap L$ and $\lambda\left(B_{\lambda}\right)=\{0\} \times R^{p-1}$.

Let J_{i} be $(-\infty, 0]$ or $[0, \infty)$ according as i is odd or even. (1) Let K be a component of $\lambda^{-1}\left(\left(\operatorname{int} J_{i}\right) \times R^{p-1}\right)$, and let $\beta: K \rightarrow \operatorname{int} J_{i} \times$ R^{p-1} and $\gamma: \bar{K} \rightarrow J_{i} \times R^{p-1}$ be the restriction of λ. Since $B_{\beta}=\varnothing$, β is a bundle map with fiber a 1-manifold F [3, (1.9)], and so $K \approx F \times \operatorname{int} J_{i} \times R^{p-1}[11, \mathrm{p} .53$, (11.4)]. Since K is connected, F is also, and by (3.1(a)) $F \approx[0,1]$. By [3, (4.3)(a)], $\gamma^{-1}(0, t)$ is arcwise connected for each $t \in R^{p-1}$.

Given $(x, s) \in B_{r} \cap \gamma^{-1}\left(\{0\} \times R^{p-1}\right)$ and $\varepsilon>0$ with $S((x, s), \varepsilon) \subset \operatorname{int} L$, let L^{\prime} be a spoke set over $J^{\prime} \times W^{\prime}$ given by (2.2) for $\lambda, E=\{(x, s)\}$, $a=s$, and ε. Then L^{\prime} satisfies the original hypotheses, so that $\left(r^{\prime}\right)^{-1}(y, t)$ is arcwise connected for every (y, t). Choose $\delta>0$ with $S((x, s), \delta) \subset \operatorname{int} L^{\prime}$. Then

$$
S((x, s), \delta) \cap \gamma^{-1}(y, t) \subset\left(\gamma^{\prime}\right)^{-1}(y, t) \subset S((x, s), \varepsilon) \cap \gamma^{-1}(y, t)
$$

for each $(y, t) \in J^{\prime} \times W^{\prime}$, so that γ^{\prime} is 0-regular at (x, s). By [3, (4.2)] γ is 0-regular, and (by [3, (4.3)(b)]) (2) γ is a (product) bundle map with fiber $[0,1]$.

For each $t \in R^{p-1}$ and component K (see (1)), $\gamma \mid\left(\bar{K} \cap\left(\Gamma^{2} \times\{t\}\right)\right.$) is a product bundle map over $J_{i} \times(t)$ with fiber [0, 1], so that $\lambda^{-1}(0, t)$ is a deformation retract of $L \cap\left(\Gamma^{2} \times\{t\}\right) \approx D^{2}$. Thus $\lambda^{-1}(0, t)$ is connected. Since $\lambda^{-1}(0, t)$ contains no homeomorph of S^{1} (3.1(a)), and $\lambda^{-1}(0, t)-\{\alpha(t)\}$ is a 1-manifold with boundary points the $2 w$ $(\xi(L)=1-w)$ points of $\lambda^{-1}(0, t) \cap \Omega$ (2.1), it follows that $\lambda^{-1}(0, t)$ is homeomorphic to the union of $2 w$ arcs disjoint except for their common endpoint $\alpha(t)$. As a result $\alpha(t) \in \bar{K} \cap\left(\Gamma^{2} \times\{t\}\right)$, so that each \bar{K} contains imag α, i.e., B_{λ}.

Let $K_{i}(i=1,2, \cdots, 2 w)$ be the components K enumerated so that for any $t \in R^{p-1}$, (int $\left.K_{i}\right) \cap\left(\Gamma^{2} \times\{t\}\right.$) are the components of

$$
(\text { int } L) \cap\left(\left(\Gamma^{2} \times\{t\}\right)-\lambda^{-1}(0, t)\right)
$$

in counterclockwise order around $\alpha(t)$ with $\lambda\left(\bar{K}_{i}\right)=J_{i} \times R^{p-1}$. Let
$\Lambda_{i}=\bar{K}_{i} \cap \operatorname{int} L$, let $\psi=\psi_{w} \times c$ (see (2.1)), and let Δ_{i} be the closures of the components of ψ^{-1} (int $J_{i} \times R^{p-1}$) enumerated in analogous fashion.

By (2) there is an orientation-preserving homeomorphism μ_{i} of Λ_{i} onto $R \times J_{i} \times R^{p-1}$ with $\pi \circ \mu_{i}=\lambda \mid \Lambda_{i}$. Let ν_{i} be the homeomorphism of $R \times J_{i} \times R^{p-1}$ onto itself defined by

$$
\nu_{i}(x, y, t)=(x, y, t)-\mu_{i}(\alpha(t))+(0,0, t),
$$

and let $\zeta_{i}=\nu_{i} \circ \mu_{i}$. Then $\zeta_{i}(\alpha(t))=(0,0, t)$, so that

$$
\zeta_{i}\left(B_{2}\right)=\{0\} \times\{0\} \times R^{p-1}
$$

There is an analogous orientation-preserving homeomorphism ξ_{i} of Δ_{i} onto $R \times J_{i} \times R^{p-1}$ with $\pi \circ \xi_{i}=\psi \mid \Delta_{i}$ and $\xi_{i}\left(B_{\psi}\right)=\{0\} \times\{0\} \times R^{p-1}$.

Let $\Phi=(\operatorname{int} L) \cap \lambda^{-1}\left(\{0\} \times R^{p-1}\right)$, and let $Y_{i}\left(\right.$ resp., $\left.\Psi_{i}\right)$ be the closure in Φ (resp., $\psi^{-1}\left(\{0\} \times R^{p-1}\right)$) of the component in $\Phi-\beta_{\lambda}$ (resp., $\left.\Psi^{-1}\left(\{0\} \times R^{p-1}\right)-B_{\psi}\right)$ meeting both Λ_{i} and $\Lambda_{i+1}\left(\right.$ resp., Δ_{i} and $\left.\Delta_{i+1}\right)$, where i and $i+1$ are interpreted $\bmod 2 w$. In case $w=1$ there are two such components, and Υ_{i} is so chosen that, for each $t \in R^{p-1}$, a counter-clockwise path around $\alpha(t)$ from Λ_{i} to Λ_{i+1} passes through r_{i}. Then $\left(\xi_{i}\right)^{-1} \circ \zeta_{i}$ (also $\left.\left(\xi_{i+1}\right)^{-1} \circ \zeta_{i+1}\right)$ defines a homeomorphism of r_{i} onto ψ_{i} with $\left(\xi_{i}\right)^{-1} \circ \zeta_{i}\left(B_{\lambda}\right)=B_{\psi}$. Let $\rho: \Phi \approx \psi^{-1}\left(\{0\} \times R^{p-1}\right)$ agree with $\left(\xi_{i}\right)^{-1} \circ \zeta_{i}$ on r_{i}.

Let σ_{i} be the layer homeomorphism of $R \times\{0\} \times R^{p-1}$ onto itself which is the restriction of $\xi_{i} \circ \rho \circ \zeta_{i}^{-1}$, (on $\zeta_{i}\left(\gamma_{i-1}\right), \sigma_{i}$ agrees with the identity map) and let τ_{i} be its first coordinate map. Let ϕ_{i} be the homeomorphism of $R \times J_{i} \times R^{p-1}$ onto itself defined by $\phi_{i}(x, y, t)=$ $\left(\tau_{i}(x, t), y, t\right)$, and let $\chi_{i}=\left(\xi_{i}\right)^{-1} \circ \phi_{i} \circ \zeta_{i}$. Then $\chi_{i}: \Lambda_{i} \approx \Delta_{i}$, they agree with ρ, and they thus define χ : int $L \approx C \times R^{p-1}$; since $\pi \circ \zeta_{i}=\lambda \mid \Lambda_{i}$ and $\pi \circ \xi_{i}=\psi \mid \Delta_{i}$, where $\pi: R \times J_{i} \times R^{p-1} \rightarrow J_{i} \times R^{p-1}$ is projection, $\psi \circ \chi=\lambda \mid$ int L. This is the desired conclusion.
4. The Proof of the theorem.

Remark 4.1. According to the Rank Theorem [3, (1.6)] $B_{f} \subset R_{p-1}(f)$, and we prove (1.1) under the weaker hypothesis that $\operatorname{dim}\left(B_{f} \cap f^{-1}(y)\right) \leqq 0$ for each $y \in N^{p}$.

Proof. Let X be the complement of the set on which f has the desired structure; then $X \subset B_{f}$ is closed. We suppose that

$$
\operatorname{dim} f(X) \geqq p-1
$$

and will obtain a contradiction.
Since f is $C^{3}, \operatorname{dim}\left(f\left(R_{p-2}(f)\right)\right) \leqq p-2[2$, p. 1037]. If, for every
$x \in M^{p+1}-f^{-1}\left(f\left(R_{p-2}(f)\right)\right)$, there is an open neighborhood

$$
U_{x} \subset M^{p+1}-f^{-1}\left(f\left(R_{p-2}(f)\right)\right)
$$

of x with \bar{U}_{x} compact and $\operatorname{dim}\left(f\left(U_{x} \cap X\right)\right) \leqq p-2$, it follows from the fact that $\left\{U_{x}\right\}$ has a countable subcover that $\operatorname{dim}(f(X)) \leqq p-2$. Thus, there is an $\bar{x} \in M^{p+1}-f^{-1}\left(f\left(R_{p-2}(f)\right)\right)$ such that, (1) for every open neighborhood $U \subset M^{p+1}-f^{-1}\left(f\left(R_{p-2}(f)\right)\right)$ of $\bar{x}, \operatorname{dim}(f(U \cap X)) \geqq$ $p-1$.

By [1, p. 87, (1.1)] there are open neighborhoods U of \bar{x} and V of $f(\bar{x})$ and C^{r} diffeomorphisms $\sigma: R^{2} \times R^{p-1} \approx U$ and $\rho: V \approx R \times R^{p-1}$ such that $\rho \circ f \circ \sigma=g$ is a C^{r} layer map and $\sigma(0,0)=\bar{x}$. By hypothesis $\operatorname{dim}\left(B_{g} \cap g^{-1}(y, t)\right) \leqq 0$ for each $(y, t) \in R \times R^{p-1}$.

Since $\sigma^{-1}(X) \subset B_{g}, B_{g} \subset R_{p-1}(g)$ (by the Rank Theorem [3, (1.6)]), $R_{p-1}(g) \cap\left(R^{2} \times(t)\right)=R_{0}\left(g_{t}\right)$, and $\operatorname{dim}\left(g_{t}\left(R_{0}\left(g_{t}\right)\right)\right) \leqq 0$ by Sard's Theorem (e.g. [2, p. 1037]), (2) $\operatorname{dim}\left(g\left(B_{g}\right) \cap\left(R^{2} \times\{t\}\right)\right) \leqq 0$ and

$$
\operatorname{dim}\left(g\left(\sigma^{-1}(X)\right) \cap(R \times\{t\})\right) \leqq 0
$$

On the other hand, (by (1)) $\operatorname{dim}\left(g\left(\sigma^{-1}(X)\right) \geqq p-1\right.$, so there is an $r>0$ such that

$$
\Lambda=\left(\mathrm{Cl}[S(0, r)] \times R^{p-1}\right) \cap \sigma^{-1}(X)
$$

has $\operatorname{dim} g(\Lambda) \geqq p-1$. If $\pi: R \times R^{p-1} \rightarrow R^{p-1}$ is projection, then $\operatorname{dim}(\pi(g(\Lambda))) \geqq p-1$ (by (2) and [6, p. 91]), and there is an open ($p-1$)-cell $T \subset \pi(g(\Lambda))$ [6, p. 44] with \bar{T} compact. Thus (3)

$$
\Lambda \cap\left(R^{2} \times\{t\}\right) \neq \varnothing \quad \text { for each } t \in T
$$

Let $W \subset T$ and the spoke sets $L_{j}(j=1,2, \cdots, q)$ be as given by (2.2) for g, any $a \in T, E=\Lambda \cap\left(R^{2} \times \bar{T}\right)$, and (say) $\varepsilon=1$. If (4) (i) the cardinality $w(t) \geqq 1$ of $B_{g} \cap\left(R^{2} \times\{t\}\right) \cap\left(\mathbf{U}_{j} L_{j}\right) \quad(t \in \operatorname{int} W)$ is bounded above by $\left|\sum_{j} \xi\left(L_{j}\right)\right|$, choose $s \in$ int W such that $w(s)$ is maximal and let $\left(x_{i}, s\right)(i=1,2, \cdots, w(s))$ be these points. Otherwise, (4) (ii) there are $s \in \operatorname{int} W$ and distinct points $\left(x_{i}, s\right)(i=1,2, \cdots$, $\left.\left|\sum_{j} \xi\left(L_{j}\right)\right|+1\right)$ of $B_{g} \cap\left(R^{2} \times\{t\}\right) \cap\left(\bigcup_{j} L_{j}\right)$. Let w^{\prime} be $w(s)$ in case (4) (i) and $\left|\sum_{j} \xi\left(L_{j}\right)\right|+1$ in case (4) (ii). Let $\varepsilon>0$ be less than $d\left(x_{h}, x_{i}\right)$ for $h \neq i$ and $d\left(B_{g}, \cup_{j} \Omega_{j}\right)$, and let $W^{\prime} \subset \operatorname{int} W$ and $\left\{L_{k}^{\prime}\right\}$ be as given by (2.2) for $g, a=s, E=\bigcup_{j} L_{j} \cap B_{g}$, and this ε. Thus (5) the $\left(x_{i}, s\right)$, are in distinct spoke sets L_{k}^{\prime}.

By hypothesis and by (2), the hypothesis of (3.1) (e) is satisfied, so that by (3.1) (d) and (e) $\xi\left(L_{j}\right)=0$ if and only if $L_{j} \cap B_{g}=\varnothing$. We may thus omit those L_{j} and L_{k}^{\prime} with $\xi\left(L_{j}\right)=0=\xi\left(L_{k}^{\prime}\right)$. From (3.1) (b) each $\xi\left(L_{j}\right)<0$ and $\xi\left(L_{k}^{\prime}\right)<0$, and from (5) and (3.1) (d) the cardinality c of $\left\{L_{k}^{\prime}\right\}$ satisfies $w^{\prime} \leqq c \leqq\left|\sum_{k} \xi\left(L_{k}^{\prime}\right)\right|$. Since each L_{k}^{\prime} is
contained in some $L_{j}, \sum_{j} \xi\left(L_{j}\right)=\sum_{k} \xi\left(L_{k}^{\prime}\right)$ by (2.3), and so $w^{\prime} \leqq$ $\left|\sum_{j} \xi\left(L_{j}\right)\right|$; this contradicts (4) (ii), and hence (4) (i) must be true.

For $t \in W^{\prime}, w(t) \geqq c$ by (3.1) (d), while $c \geqq w(s)$ by (4) (i), so that $w(t)=w(s)$. Thus (by (3.1) (d)) each $B_{g} \cap\left(R^{1} \times\{t\}\right) \cap L_{k}^{\prime}$ is a single point for $t \in W^{\prime}$, and since B_{g} is closed, there is a homeomorphism $\alpha_{i}: W^{\prime} \approx L_{k}^{\prime} \cap B_{g}$ with $\pi \circ \alpha_{i}$ the identity map on W^{\prime}. By (3.2) $\bigcup_{k}\left(\sigma^{-1}(X) \cap L_{k}^{\prime}\right)=\varnothing$. But this set contains $\Lambda \cap\left(R^{2} \times W^{\prime}\right)$, contradicting (3).

Remark 4.2. In case $p=1, C^{3}$ may be replaced by C^{2} and the argument can be shortened considerably. In that case (4.1) results from [12, p. 103, Theorem 1] (cf. [18, pp. 7-8]), and (4.1) in case B_{f} is discrete is [10, p. 28, (4.3.1)] and [9]. Considerable information relating to open maps $f: M^{2} \rightarrow N^{1}$ is given in [5], [8], and [10].
4.3. Proof of (1.2). The hypotheses of (1.1) are satisfied (with C^{2} if $p=1$). In case $p=1, X=\varnothing$, so that at each $x \in M^{p+1}, f$ at x is locally topologically equivalent to $\psi_{d(x)}$. In case $p \geqq 2$, for each $x \in M^{p+1}-X$ with $d(x) \neq 1$ (i.e., $x \in B_{f}$), $\operatorname{dim} B_{f}=p-1 \geqq 1$ in a neighborhood of x; the assumption that $\operatorname{dim} R_{p-1}(f) \leqq 0$ contradicts the Rank Theorem [3, (1.6)]. Thus $B_{f} \subset X$, so that

$$
\operatorname{dim} f\left(B_{f}\right) \leqq p-2
$$

That f is locally topological equivalent to ρ or to τ is now a consequence of $[3,(4.7)]$.

References

1. P. T. Church, Differentiable open maps on manifolds, Trans. Amer. Math. Soc., 109 (1963), 87-100.
2. On points of Jacobian rank k. II, Proc. Amer. Math. Soc., 16 (1965), 1035-1038.
3. P. T. Church and J. G. Timourian, Differentiable maps with O-dimensional critical set, I, Pacific J. Math., (to appear).
4. -, Real analytic open maps, Pacific J. Math., 41 (1972), 615-630.
5. W. C. Fox, The critical points of peano interior functions defined on 2-manifolds, Trans. Amer. Math. Soc., 83 (1956), 338-370.
6. W. Hurewicz and H. Wallman, Dimension Theory, 2nd edition, Princeton University Press, Princeton, N. J., 1948.
7. J. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, Virginia, 1965.
8. M. Morse, Topological Methods in the Theory of Functions of a Complex Variable, Princeton University Press, Princeton, N. J. 1947.
9. W. D. Nathan, Open mappings on 2-manifolds, Pacific J. Math., 41 (1972), 495-501. 10. -, Open Mappings on Manifolds, Ph. D. dissertation, Syracuse University, Syracuse, 1968.
10. N. Steenrod, The Topology of Fiber Bundles, Princeton University Press, Princeton, N. J., 1951.
11. Y. K. Toki, A topological characterization of pseudo-harmonic functions, Osaka Math. J., 3 (1951), 101-122.

Received June 21, 1972. Work of the first author supported in part by NSF Grant GP-6871, and that of the second author by NSF Grant GP-8888 and NRC Grant A7357.

Syracuse University

University of Tennessee
AND
University of Alberta

