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INVARIANT SUBSPACES, SIMILARITY AND ISOMETRIC
EQUIVALENCE OF CERTAIN COMMUTING

OPERATORS IN Lp

ROBERT E. WATERMAN

This paper is concerned with the problem of finding all
closed invariant subspaces of operators of the form Tf =
Mf — JMf and the determination of the similarity relation-
ships between such operators. The operator Tf is defined,
for suitable conditions on a complex-valued function / and

its derivative/', by Tfg{x) = f(x)g(x)- \Xff(t)g(t)dt for all g in
Jo

Lp. The main result asserts that the closed invariant sub-
spaces of Tf are precisely those subspaces that are generated
by the eigenfunctions of Tf. Conversely, any operator on
Lp whose closed invariant subspaces coincide with those of
M— J (i.e., Tf where fix)ss x) must be of the form Tg for
some function g. The closed invariant subspaces of Tf are
cyclic and the generating functions have a rather simple
description. The algebra of operators <g7, generated by M —
J, is maximal abelian. A corollary is that & is reflexive. It
is shown that Tf and Tg are isometrically equivalent in Lp

if and only if /' = g. Finally conditions are given for the
similarity of Tf and Tg.

We give a brief history of the problem of finding all closed
invariant subspaces of a given class of operators. The case of cyclic
hermitian operators is well-known; an exposition appears in Plesner [8].
The general case is accessible via multiplicity theory (see Plesner,
loc. cit.). Beurling [1], in an important paper, found all the closed
invariant subspaces of the shift operator on 4 through a detailed study
of certain analytic functions on the unit disc. Donoghue [3] found
all closed invariant subspaces of the simple Volterra operator J, defined

f, on L2(0, 1) and those of a certain weighted shift operator.
0

Kalisch [7] found all closed invariant subspaces of an extensive class
of integral operators (including J) on Lp(0y 1) for 1 < p < CXD . Here
we examine the invariant subspace structure of M — J (and more
generally, Tf — Mf — JMf,). In spite of appearing superficially the
same, the problem of finding all the closed invariant subspaces of
M — nJ (n an integer > 1) is quite different and considerably more
difficult. This problem has been solved by the author (using recent
results on Lp approximation by splines) and will appear elsewhere.

1* Definitions. We are concerned with bounded operators on
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Lp = Lp(0,1) for 1 < p < oo, Define (for suitable functions / and r)
the multiplication operator Mf, the Volterra operator J, and the sub-

S x
g (with respect

0

to Lebesgue measure) and Srg = gor (composition of g and r). For / €
Lp and g e Lq, where 1/p + 1/q = 1, we define the Banach inner

S I
fg. We write B(LP) for the algebra

0

of bounded operators on Lp and write T* to denote the Banach ad-
joint of TeB(Lp); i.e., T* is the unique member of B(Lg) such that
(Tf,g) == (/, T*#) for all / e L p and geLg. In particular, we have

S I
and Mf = Jlί). If TF is a closed invariant subspace of T e B(LP)

X

then we will refer to the restriction of T to W as the part of T on
TΓ or simply as a part of T. For α e [0,1] we will write ea to denote
the characteristic function χίatll of the interval [a, 1]. If i? £ [0, 1]
is a nonempty closed set we define W(E) to be the closed subspace
of Lp generated by the set of functions {ea: a e E}. We will say that
a complex-valued function / : [0,1]-*C is absolutely continuous on
[α, 6) if / is absolutely continuous on every closed interval contained
in [α, 6); the same convention will apply to the intervals (α, 6] and (α, 6).

If / is a complex-valued function whose derivative / ' exists a.e.
then we will write Tf to denote Mf — JMf,. We define ^ to be the
collection of all operators Tf such (i) f eL^ and / is absolutely
continuous on [0, 1), and (ii) the function kf(x) Ξ= (1 - x)qιPV\f{t)\qdt

Jo

belongs to L^. The fact that & £ B{LP) follows from a result in
[2]. In fact, Tfe^ implies that Mf and JMf, each belong to B(LP).
Condition (ii), above, implies that if Tf e ^ then / ' belongs to Lq(0, a)
(i.e., I \f\q < °o j for all α < 1; we will use this fact often in the
sequel. We also note that (i) and (ii) together do not imply that /
is absolutely continuous on [0,1]. Indeed, it may happen that Tfe^
while / fails to be continuous at x — 1, as the example f(x) =
sin(— log(l — x)) shows. We define J*f to be the subset of <g"
consisting of those operators Tfe^ such that / is 1-1 and absolutely
continuous on [0,1] and m {x e [0, 1]: f'(x) = 0} = 0 (where m denotes
Lebesgue measure).

Our first lemma details the important algebraic properties of ^ .
Part (ii) establishes the fact that <g* is indeed an (abelian) algebra.
The formula in part (iii) shows that P(Tr) = TP(r)f for any polynomial
P and any member Tr of ^ This operational calculus is easily
extended to more general functions. Part (iv) of the lemma plays a
crucial role in the proof of our main lemma (Lemma 4) on the invariant
subspaces of Tf. The formula appearing in part (iv) becomes somewhat
more transparent if one considers the special case r(x) == x.
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LEMMA 1. If Tr and Ts belong to <& then:
( i ) MrJ- JMr = JMr,J;
(ii) Tr and Ts commute and their product is equal to Trs which

also belongs to <£)
(iii) T? = Mn

r - nJMτ,M}~1 for all n e Z+;
(iv) if r(0) = 0 then (T?gy h) = n{rn~\ (MrJ*Mg - MgMrJ*)h) for

ne Z+ and all g e Lp and h e Lq.

Proof, (i) Let g e Lp. Then since r is absolutely continuous on
[0, x] for x < 1 we may integrate by parts to compute

\*r(t)g(t)dt + Γr'(<) [g(z)dzdt = φ) \Xg(t)dt ,
Jo Jo Jo Jo

which, since x < 1 and g e Lp were arbitrary, demonstrates that JMr +
JMrJ = i¥ r J .

(ii) Using part (i) to evaluate JMrJ we have

Γ rT s - M r s - MrJMs, - JΛίr,Ms + {JMr.J)MB,

- ilf,5 - JΛfr,Jlί; - JMrMs,

- M r s - JMirsy - T r s .

Similarly we may show that TsTr — Tsr and since Trs = Γ s r we have
proved that Tr and Γs commute with product equal to Trs. The fact
that Trs e ^ is a routine verification.

(iii) This follows immediately from part (ii).
(iv) Let T = T r. Since r(0) = 0 it is easily verified that Mrβ0 =

JMr,e0 and thus for % — 1 and any g e Lp and he Lq we have

(Γflf, h) = (Mrg, h)- (JMr,g, h)

- (MgJMr,eQ, h) - (JMr,MgeQ, h)

= (eQi (Mr,J*Mg - MaMrJ*)h) .

We now sketch the inductive step, where the adjoint of (i) is used
to evaluate the term Mr,{J*MrJ*) that arises in our computation.
Let N = JMr.. Then

= n(rn~\ {N*MgMr - N*MgN* - MgN*Mr)h)

+ n(rn~\ MgMr,(J*MrJ*)h)

- n(r*~ι, (N*MgMr - N*MgN* - M9MrN*)h)

= n{Nrn-\ Mg(Mr - N*)h) - n(rn, MgN*h)

= (n + l)(Nrn, Mgh) - (n + l)(rn, MgN*h)

= (n + l){r\ (Mr,J*Mg - MgMr,J*)h) .
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The next lemma provides us with a useful tool for deciding when
a densely defined "formal" operator (i.e., one given by a formula, such
as Mf — JMff) that is capable of being extended to an "abstract"
operator in B(LP) is actually defined everywhere in Lp by the given
formula. The rather straightforward proof, which may be based on
a standard theorem in analysis [4, p. 156], is left to the reader.

LEMMA 2. Let T be a function from Lp into the set of measurable
functions on [0, 1]. Suppose further that T is bounded and linear on
a dense subspace D of Lp and T(D) £ Lp. Then T maps Lp into Lp

and is linear (and bounded) if and only if fQ e Lp and {fn: n — 1,
2, •••}£!) and \\fn — /0||p—* 0 together imply that there exists a
subsequence {fnic} such that Tfnjc-+ Tf0 poίntwise a.e. on [0, 1].

The following elementary fact is used repeatedly in the sequel
and so we single it out as a lemma.

LEMMA 3. Let E be a nonempty closed subset of [0,1] and let
g e Lp. Then (J*g)(x) = 0 for all x in E implies that g = 0 a.e. on E.

Proof. Let h = — J*g and define F to be the set consisting of
those points x in E such that x is a limit point of E and hr(x) — g(x).
Clearly m(F) — m(E) and so if m(F) = 0 the lemma is trivial. If
m(F) > 0 and x belongs to F let {xn} g E be a sequence converging
to x. Then h(x) — h(xn) = 0 so that

g(x) = K'(x) = limM^L=-M^I = 0 ,
x - xn

which completes our proof.

2* Invariant subspaces* We now turn our attention to the
classification of the closed invariant subspaces of operators that belong
to the set Ssf. Our Main Lemma, which gives a characterization of
the functions that belong to a given closed invariant subspace of an
operator in Stf, is used repeatedly in much of what follows.

L E M M A 4 ( M A I N L E M M A ) . Let W be a closed invariant subspace

of Tf e Sf. Let E = {α e [0, 1]: ea e W) and K = inf E. Then

( i ) E is closed and nonempty,

(ii) if fQe W then f0 is a constant k{ a.e. on each component

(ci9 di) of the open set [K, 1]\E = UΓ=i (ci9 di) and fQ = 0 a.e. on [0, K].

Proof, (i) Since 1 e E we have E Φ 0. Let t ing xt —> x wi th

{Xi} S E one easily verifies t h a t \\ex. — ex\\p—+0. Thus xeE and so
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E is closed.
(ii) Without loss of generality we may suppose that /(0) — 0

since Tf and Γ(/_/(o)) — Tf — /(0) have the same invariant subspaces.
If K — 0 then trivially f0 = 0 a.e. on [0, JBΓ]. Thus we will assume
that K > 0 for the remainder of the proof. Let ae U where U —
(0, K) or U = (c<, dj is a component of [if, l]\£r. Then βα g T7 and so
by the Hahn-Banach Theorem there exists a continuous linear functional
S on Lp such that S(IF) = 0 and S(ea) Φ 0. According to the Riesz
Representation Theorem there exists an h in Lq such that Sg — (g, h)
for all g in Lp. Thus (T"fQ, h) = 0 for all ne Z+ and so Lemma 1 (iv)
gives us

(1) 0 - (/- ι, (M,,J*Mf0 - M/0Mf,J*)h)

for all % G ϋΓ+. Since /, by hypothesis, is continuous and 1-1, a
theorem due to J. L. Walsh [9, p. 39] implies that polynomials in /
are dense in the space of complex-valued continuous functions on [0,1]
and consequently are dense in Lv. Thus (1) and f'ΦO a.e. (since
Tf G j y ) together imply that

(2) fo(x)[1h(t)dt= [ fo(t)h(t)dt
Jx Jx

almost everywhere. Now

[h(t)dt =• [ea(t)h(t)dt = (eα, h) = Sea Φ 0
Jo JO

and thus, since \ h(t)dt is continuous, there exists an open interval

la S U containing a, such that I h(t)dt Φ 0 on Ia. This fact together

with (2) implies that f0 is absolutely continuous on 7β. Thus we may

differentiate both sides of (2) on Ia to obtain f[(x) \ h(t)dt — 0 a.e. on

Ia which in turn implies that /J = 0 a.e. on Ia. Since / 0 is absolutely
continuous on Ta we conclude that / 0 is equal to a constant mα on
Ia. Now let ε > 0 be given. Repeating the above argument at each
point a in Fe = [ε, iΓ — ε] (or jPe = [c< + ε, dt — ε] as the case may be),
and then using the compactness of Fβ, we obtain a finite covering of
Fe by open intervals Il9 , In such that fQ — m̂  on I^i = 1, , %).
It is easy to see that all the m/s must be equal and so f0 is a
constant Λε on Fe. The fact that / 0 is constant on ?7 follows easily
from the arbitrariness of ε > 0. Finally we must show that when
U = [0, K] we have / 0 = 0 on U. If K > 0 then e0 does not belong
to W and so there exists a continuous linear functional S = ( , ^) on
Lj, such that ιS(TF) — 0 and (β0, h) Φ 0. For all ae E we have
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0 = Sea = (β., h) = [h(t)dt = (J*h)(a)

and so by Lemma 3 we have h = 0 almost everywhere on E. Thus

( 3) 0 = S/o = \*fo(t)h(t)dt + Σ \dίfo(t)h(t)dt.
Jo i = i Jc t

Since ct and d4 belong to E for all i and since we have shown that
/o = ki on (ciy di) we have

(4) = kJi1 h(t)dt - Γ h(t)dt)

- fc,(Sfeβ< - Sedi) = 0

Thus, since f0 is a constant kQ on [0, JBΓ], (3) reduces to

0 = Sf0 = Γ
Jo

= fco(iSeo — Seκ) = fc0Se0

(since KeE implies Se^ = 0), But Se0 Φ 0 and so we must have

&o = 0 .

LEMMA 5. The spectrum, point spectrum and continuous spectrum
of the operator Tf e Jϊf are respectively the sets /([0,1]), /([0,1)) and
{/(I)}. The point spectrum is simple with the eigenfunction ea corres-
ponding to the eigenvalue f(a).

Proof. If a e [0,1) then a simple calculation shows that Tfea =
f{a)ea and so /([0,1)) £ Pσ(Tf) and /([0,1]) S *(T/). If c e C does
not belong to /([0,1]) then the function h = l/(/ — c) is absolutely
continuous on [0,1] and it is easy to see that Th e ^ By Lemma 1
(ii) we have T{f_c)Th = ΓAΓ(/_C) = Tλ(/_c) - l a n d so T(/_c) is boundedly
invertible on Lp. Since T{f-e) — Tf — c it follows that c is not in
the spectrum of Tf. Thus σ(Tf) = /([0,1]). Next suppose (!> -

= 0 for g e Lp and a e [0,1]. Then

(1) (/(*) - f(a))g(x) = \Xf'(t)g(t)dt
Jo

almost everywhere on [0,1] which implies that g is absolutely con-
tinuous on [0, α) and (α, 1]. If we differentiate (1) we find that g' = 0
a.e. on [0,1] and therefore g is equal to a constant k0 a.e on [0, a)
and g = kx a.e. on (α, 1]. Let a > 0. Then for almost every x e [0, a]
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0 = (T, - f{a))g{x) = ko(f(x) - f(a)) - ko(f(x) - /(0))

- /(α))

and since / is 1-1 we must have k0 — 0. Thus g — kγea which proves
that if a e [0, 1) the eigenvalue f(a) is simple and if a — 1 the operator
Tf — /(I) is 1-1. We observe that the range of Tf — /(I) is dense
in Lv since, for all a < 1, (Tf - f(l))ea = (f(a) - f(l))ea. But the range
of Tf - /(I) cannot be all of Lp since /(I) e ^(T/). Thus /(I) belongs
to CV7(ΪV). This also shows that Pσ(Tf) S /([0, 1)), which, together
with the reverse inclusion obtained earlier gives us the desired equality.

If Tf is an operator in j>/ and if E is an arbitrary nonempty
closed subset of [0, 1] then clearly the closed subspace W{E) is
invariant for Tf since W(E) is generated by certain eigenfunctions
of Tf. Indeed, W(E) is the closed linear span of the eigenfunctions
ea for a belonging to the set E. Our main result, which we now
state and prove, demonstrates that these are the only closed invariant
subspaces of Tf.

THEOREM 1. (Invariant Subspaces of Tf). The only closed inva-
riant subspaces of the operator Tf e S^ are those generated by the
eigenfunctions of Tf. Specifically, if W is a closed invariant subspace
of Tf then there exists a unique closed set E £ [0, 1] containing 1 such
that W — W(E). Consequently the lattice of closed invariant subspaces
of Tf is isomorphic to the lattice of closed subsets of [0, 1] that contain
the point 1.

Proof. Let W be an arbitrary closed invariant subspace of Tf.
Define E — {α e [0, l]:ea£ W}. By Lemma 4 (i) the set E is closed
and nonempty and clearly W(E) gΞ W since the generators of W(E)
all belong to W. For the reverse inclusion let S be an arbitrary
continuous linear functional on Lp such that S(W(E)) — 0. By the
Riesz Representation Theorem there exists an h e Lq such that Sg —
{g, h) for all g e Lp. Since 0 = Sea = (J*h)(a) for all aeE it follows
from Lemma 3 that h = 0 almost everywhere on E. Thus for any
g e W we have

Sg= \Kg{t)h{t)dt + Σ \dig(t)h(t)dt
J O n — l Jci

where K = inf E and the (ci9 dj 's are the components of [K, ±]\E. By
g(t)h(t)dt since g — 0 almost everywhere

0

on [0, K\. For the remaining integrals in (1) we again appeal to
Lemma 4 (ii) and use the fact that ci and d{ belong to E to conclude
that
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\dig(t)h(t)dt = hiSe,. - Sed.) = 0

where g = kζ a.e. on (ciy di). Thus Sg = 0 and consequently S(TΓ) = 0.
The Hahn-Banach Theorem now implies that W S W{E). The uniqueness
of the set E, provided 1 e E, is straightforward and so we omit the
details.

As an elementary application of Theorem 1 let us find the closed
invariant subspaces of the operator M+ J. Straightforward calculation
reveals that the spectrum of M + J is the closed unit interval, with
(0, 1] serving as residual spectrum and the point 0 as continuous
spectrum. Thus M + J is certainly not similar to M — J. Nonetheless
we can employ the operator M — J to get at the invariant subspace
structure of M + J as follows. Let S denote the substitution operator
defined by Sg(x) = g(l — x). Then S — S~ι is an invertible isometry
and one can verify directly that S(M — J)S — I — (M + J*). It follows
from Theorem 1 (since M — J belongs to j ^ ) that each and every
closed invariant subspace of M + J* is generated by a suitable subset
of its eigenf unctions. Finally, by taking ad joints, it is an easy matter
to determine the closed invariant subspaces of the operator M + J —
(M + J*)*. In fact, the lattice of closed invariant subspaces oί M + J
is antiisomorphic to the lattice of all closed subsets of [0,1] that
contain the point 0.

Our next result illustrates the manner in which certain subsets
of the complex plane may arise as the (pure) point spectrum of an
operator.

COROLLARY. Let E be a nonempty closed subset of [0,1] not
containing 1 and let T be the part of Tf e s$f on the closed invariant
subspace W(E). Then the lattice of closed invariant subspaces of T
is isomorphic to the lattice of all closed subsets of E. The spectrum
of T is the set f(E) and is purely point.

Proof. The statement about the lattice of invariant subspaces
of T follows easily from Theorem 1 and our hypothesis that 1 g E.
The claim regarding the spectrum of T is a slight generalization of
a result due to G. K. Kalisch [5].

The result of Kalisch referred to is that for any nonempty compact
subset of the real numbers there exists a bounded operator on a
separable Hubert space whose spectrum is purely point and equal to
the given set. A similar result can be obtained for the residual
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spectrum of an operator by considering suitable parts of the operator
M + J. For the continuous spectrum of an operator the above result is
well-known. We remark that all of this can be carried out for arbi-
trary nonempty compact subsets of the plane; i.eβ, given a nonempty
compact subset of the plane there exists a bounded operator on a
separable Hubert space whose spectrum is purely point (or purely
continuous or purely residual, as may be desired) and is equal
to the given set. The case of pure point spectrum is also due to
Kalisch.

We now state some algebraic results about the algebra cέ? starting
with the assertion that ^ is a maximal abelian algebra.

THEOREM 2. (Commutant of M — J) & is a maximal abelian
subalgebra of B(LP). In fact if T belongs to B(LP) and commutes
with M — J then T e c^\ i.e., <& is the commutant ofM — J relative
to B{LP).

Proof. By Lemma 1 (ii) we see that & is an abelian algebra.
If T belongs to B(LP) and commutes with M — J then for every
a e [0, 1) we have

(M - J)Tea = T(M - J)ea = aTea

which, according to Lemma 5, implies that Tea is some scalar multiple,
say h(a), of the function ea. Thus there exists a function h: [0, 1) —>
C such that Tea — h(a)ea for all a e [0, 1). For x e [0, 1) we may then
compute

- x)h{x) = \ h(x)ex(t)e0(t)dt
Jo

= (h(x)ex, eΰ) = (Te,, e0) = (ex, T*e0)

= [ex(t)(T*eΰ)(t)dt = [(T*eB)(t)dt .

Thus for all x < 1

(1) h(x) = i^—) [(T*eo)(t)dt .
\ 1 — x / }χ

Since T is in B(LP), its adjoint T* belongs to B{Lq) and consequently
T*eo belongs to Lq. Therefore, (1) implies that h is absolutely continuous
on [0, 1) and h! belongs to Lq(0, a) for all a < 1. Since Tea = h(a)ea

we have the set inclusions h([0, 1)) £ Pσ(T) £ σ(T) and it follows, upon
defining h(ΐ) arbitrarily, that h e L^. We now consider Th — Mh —
JMh,. Since heL^ the operator Mk is bounded. The operator JMh,
maps Lp into the measurable functions since h! e Lq(0, a) for all a < 1.
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Furthermore, on the dense subspace D of Lp generated by {ea: a e [0,1)}
it is clear that JMh, agrees with the bounded operator T—Mh—T. Finally
it is easy to verify that if {gn} £ D converges to geLp then there
exists a subsequence {gnjc} such that {JMh,g%k} converges to JMh,g
pointwise almost everywhere. In fact, the sequence {gn} itself has this
property, for if x < 1 we may use Holder's inequality to compute

\JMh,gn(x) - JMh,g{x)\ ^ [\h'(t)\ \gn(t) - g(t)\dt
Jo

-ffίί)!')1'

which implies that {JMh,gn} converges pointwise to JMh,g on [0, 1).
Thus all of the hypotheses of Lemma 2 are satisfied by JMh, and so
JMh, is bounded on Lp. It follows from [2] that

( l - %y * Π hr(t) \qdt«
Jo

and so Th belongs to <g* and clearly Th = T. Thus & is the corn-
mutant of M — J and consequently ^ is maximal abelian.

As an easy corollary of Theorem 2 we show that the algebra <&
is reflexive; i.e., we prove that ^ = Alg Lat <& where Lat ^ denotes
the family of all closed subspaces of Lp that are left invariant by
every member of ^ and Alg Lat ^ denotes the algebra of bounded
operators on Lp that leaves invariant every member of Lat ^ . The
inclusion ^ ϋ Alg Lat ^ is obvious. For the reverse inclusion let
T be bounded operator on Lp that leaves every member of Lat ^
invariant. Then the functions {ea: a e [0,1)} are all eigenfunctions of
T and consequently T commutes with M — J. By Theorem 2 we
conclude that T belongs to ^ and so ^ is reflexive.

Our next theorem is a partial converse of Theorem 1. We remark
that Theorem 1 can be extended to a slightly larger collection of
operators of the form Tf than those in the set s$f (by dropping the
requirement that / be continuous at x = 1, but insisting that the
closure of the range of / does not separate the plane), in which case
our next theorem would be a full converse.

THEOREM 3. (Partial Converse of Theorem 1). If the closed
invariant subspaces of TeB(Lp) are precisely those of the form W(E),
where E ranges over all nonempty closed subsets of [0, 1], then T =
The^ and

(i) h is 1-1 on [0, 1);
(ii) m {x: h!{x) = 0} = 0.
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Proof. Our hypothesis implies that T commutes with M — J
(since ea is an eigenfunction of T for all a in [0, 1)) and thus by
Theorem 2 we have T = 7\ e <£f. If 0 ^ a < b < 1 and Λ,(α) - Λ(6)
then TΛ would have an eigenspace of dimension ^ 2 at h(a) which
would contradict our hypothesis regarding the nature of the invariant
subspaces of T. Indeed, the linearly independent functions ea and χ[α>δ]

would belong to the eigenspace of T at h(a). Thus h must be 1-1
on [0, 1) which proves (i). Let F — {x: h'{x) — 0} and suppose that
m(F) > 0. We may assume, without any loss of generality that F £
[0, a] for some a < 1. Then clearly the closed subspace V — χFLp,
obtained by mapping g e Lp onto χFg, is invariant for Th and so by
our hypothesis we must have V = W(E) for some closed nonempty
subset E £ [0, 1]. But if some b < 1 belongs to E then ebe V which
is impossible since every function in χFLp vanishes on [α, 1]. Thus
E — {1} which implies that V = 0 and contradicts our assumption that
m(F) > 0. Hence m{F) — 0 and so (ii) is proved.

THEOREM 4. (Cyclicity of Invariant Subspaces of Tf). Every
closed invariant subspace W of the operator Tf e j y is cyclic. In fact,
if we define E — {a: ea e W) and K = inf E then a function s e Lp is
cyclic for W if and only if s has the following properties: (i) s — 0
almost ever where on [0, iΓ|, (ii) s is a constant k{ on each component
of [K, 1]\E and (iii) s is not ax. equal to a constant on any open
interval containing a point a e E\{0, 1}.

Proof. Let W be an arbitrary closed invariant subspace of Tf so
that by Theorem 1 we have W = W{E). Let s e Lp satisfy (i), (ii),
and (iii) and let Ws be the closed invariant subspace of Tf generated
by s and Tf. Applying Theorem 1 again gives us Ws = W(F) for
some closed set F = {ae [0, 1]: ea e Ws). We now proceed to show
that W = Ws by showing that E = F. We first observe that OeE
if and only if s Φ 0 a.e. in any neighborhood of x = 0. Similarly
0 G F if and only if s Φ 0 near x = 0. Thus 0 e E if and only if 0 e F.
Also, by definition, le E Γ] F. Suppose next that a & E (with a Φ 0
and α ^ 1). Then there exists an open interval / containing α, such
that T}s is constant on I for all ne Z+ and it follows that ea g TΓS.
Therefore, α ί F which proves that F Q E. For the reverse inclusion
let α e i? and α£{0, 1}. It a$F then upon applying Lemma 4 (ii) to
| 7 s = W{F) we see that there exists an open interval I containing a
such that s is constant on /. But this contradicts (iii) since ae E.
Thus we must have aeF and hence E £ F. For the converse we
note that if s is cyclic for W then, since W = T7(l?), properties (i)
and (ii) must hold for s. It is straightforward to show that if s does
not satisfy (iii) then s and Tf generate a subspace W(F) properly
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contained in W{E). Thus we have shown that conditions (i), (ii), and
(iii) are necessary and suίRcient for the cyclicity of s. To complete
our proof we will demonstrate the existence of a function satisfying
these conditions. Let {αjf=1 be a dense subset of E = {ea: ae W} and
define a function s by

Then clearly s satisfies conditions (i), (ii), and (iii) and is therefore
cyclic for W. In case the set E is perfect the function fχE is also
cyclic for W. However, if E is not perfect then E contains isolated
points; if there exists an isolated point p e E Π (0, 1) then it is readily
verified that fχE fails condition (iii) in a neighborhood of p and
consequently fχE is not cyclic for W.

3* Similarity and isometric equivalence* We begin our study
of the similarity and isometric equivalence of operators belonging to
the set sf with a lemma on the boundedness and isometric behavior
of certain substitution operators.

LEMMA 6. Let r: [0,1] —> [0,1] and s = r~ι be strictly increasing
absolutely continuous functions such that r(0) = 0 and r(ΐ) = 1. Then
(i) Sr e B(LP) if and only if s' e L^ (ii) Sr is an isometry of Lv into
itself if and only if Sr = /.

Proof, (i) Suppose Sr is bounded. If x < y then

\s(y) - β(α?) I

Thus for a.e. x0 in [0,1] we have

|8'(α>o)| - l i m \s(x) - s(xo)\/\x - xo\ ^ \\Sr\
x->x0

which shows that s' e L^. Conversely if s' e L^, and / e Lp is arbitrary
then

I I S , / 1 | ; = \l\f(r(t))\>dt = Γ l / W W ) ^ £ He'll. 11/II?
Jo Jo

which shows that Sr maps Lp into itself and is bounded,

(ii) If Sr is an isometry then for all x in [0,1]

Thus s(x) — x which implies that r(x) = s'^x) = x and Sr = I.
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Our next lemma provides necessary and sufficient conditions for
the absolute continuity of the composition r = g~ι ° / of g~ι and /
where g and / are 1-1 complex-valued absolutely continuous functions.
This result is used in the proofs of Theorems 5, 6, and 7 to establish
certain properties of the substitution operator Sr, which arises in our
investigation of the similarity and isometric equivalence of Tf and Tg.

LEMMA 7. Let f and g: [0, 1] —> C be 1-1 absolutely continuous
functions such that /(0) = g(Q) and /([0, 1]) = g([0, 1]). Define Eo =
{x:g'(x) — 0}. Then r = g~ι° f is absolutely continuous if and only
if for each set E £ [0, 1] of measure zero we have m(E0 Π r(E)) — 0.

Proof. Our hypothesis implies that r = g~x ° f and s = r"1 are
strictly increasing continuous functions mapping [0, 1] onto itself. A
well known theorem [4, p. 288] states that a real-valued function is ab-
solutely continuous if and only if it is continuous, of bounded variation
and carries sets of measure zero into sets of measure zero. Thus the
proof of the lemma is reduced to showing that the following two
conditions are equivalent:

(i) m(E) = 0 implies m(EQ Π r{E)) - 0,
(ii) m(E) = 0 implies m(r(E)) = 0.

Clearly (ii) implies (i) and so to complete the proof we show that the
reverse implication, (i) implies (ii), holds. If h is a complex-valued
absolutely continuous function on [0, 1] and if (a, b) £ [0, 1] let us
write V{a,b)h to denote the total variation of h on the interval (a, 6).
A standard theorem in analysis [4, p. 272] together with the fact that
V<a,b)f = V(r(a),r(b))g gives us

( 1 ) \ \f(t)\dt= \ \g'{t) \dt

whenever E is an interval in [0, 1]. It is now straightfoward to
verify that (1) holds for every measurable subset E in [0,1]. Now
suppose that (i) holds and let E £ [0, 1] be an arbitrary set of measure
zero. Then using (1) we obtain

0= \f(t)\dt
JE

= \ \g'(t)\dt
( 2 ) r ( £ >

\g'(t)\dt+\ \g'(t)\dt

= \ \g'(t)\dt

where the last equality follows from applying (i) to the set E which
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is assumed to have measure zero. Thus

0=\ \g\t)\dt

and since g' Φ 0 a.e. on El we conclude that m(r(E)\E0) = 0. On the
other hand, (i) says that m(r(E) Π EQ) = 0 so that

m(r(E)) = m(r(E) Π Eo) + m(r(E)\E0) = 0

which shows that (ii) holds, and completes our proof.

Our next result, which gives necessary conditions for the similarity
of two operators in s*f, is the workhorse for much of what follows.

LEMMA 8. If Tf and Tg belong to sf and are similar in Lpf

say VTfV'1 = Tg9 then:
(i) the functions r = g~x o f and s = r"1 are well-defined absolutely

continuous strictly monotone increasing functions mapping [0, 1] onto
itself;

(ii) there exists a function h: [0, 1) —> C, absolutely continuous and
nonvanishing on [0, 1), such that Vea = h(a)eria) for all a e [0, 1). In
fact, for all x e [0, 1)

- ( i

 1.Λ \\v*eo)(t)dt .
VI — r(x) I J*r(x)

Proof, (i) If Tf and Tg are similar in Lp then Tf and Tg must
have the same point spectrum and spectrum so Lemma 5 implies that
/([0, 1)) = g([0, 1)) and /([0, 1]) = g([0,1]). Since / and g are 1-1
continuous functions it follows that /(0) = c/(0) and /(I) = #(1) and
consequently the functions r = g~λ © / and s — r"1 are strictly monotone
increasing continuous functions mapping [0, 1] onto itself. Since / '
and g' are nonvanishing a.e. it follows that r' and sf also have this
property and so Lemma 7 implies that r and s are absolutely continuous.

(ii) Let a e [0,1). Then

T9(Vea) = VTfV-Ύe. = VTfea = f(a)Vea

which shows that Vea is an eigenfunction of Tg corresponding to the
eigenvalue f(a) = g{r(a)). By Lemma 5 we know that the point
spectrum of Tg is simple and so Vea must be some scalar multiple, say
h(a), of the eigenfunction er{a). Thus we have a function h: [0, 1) —>
C such that Vea = h(a)er{a) for all αe [0, 1). Also, h is nonvanishing
on [0,1) since V is invertible. For a e [0,1) we compute
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h(a)(l — r{a)) = \ h(a)eria)(t)e0(t)dt = (Vea, e0)
Jo

= (ea, V*e0) = \\v*eo)(t)dt .

The above computation shows that h is absolutely continuous on [0, 1).

THEOREM 5. {Isometric Equivalence of Tf and Tg). If Tf and
Tg belong to s^ then they are isometrically equivalent in Lp if and
only if f = g.

Proof. Suppose that V is a boundedly invertible isometry such
that VTfV~ι = Tg. Then by Lemma 8 the functions r = g~ι°f and
s = r~ι are well-defined strictly increasing absolutely continuous maps
of [0, 1] onto itself. We claim that for every nonempty closed subset
E S [0, 1]

(1) V[W(E)] = W{r{E)) .

To see this let h denote the function appearing in the statement of
part (ii) of Lemma 8. Then Vea = h{a)er{a) for all a in [0, 1) and
h(a) Φ 0. Since V is invertible we clearly have F(span ea) = span (Vea) =
span (βr(α)) Equation (1) now follows by taking the closures of the
above spans. Next we consider the operator

Vr = M[rt)iipSri Lp > Lp .

Using the absolute continuity of r this operator is easily seen to be
an isometry since for all hγ e Lp

= \\hι{t)\»dt= || A, | | 5 .
Jo

Similarly we see that Vs is an isometry and since

Vs = M{8,{x))i!pS8 — S8Mωr,(x))iip

it follows that Vr is boundedly invertible on Lp. For t e [0, 1] let Et

denote the projection of Lp{0, 1) onto W{[t, 1]) defined by Ethx = ethx

for all hx e Lp. Then for all h, e Lp and a.e. x in [0,1] we have

(SiEtSrhJix) = et(s(x)) h{x)

βMMx) (E

for all t in [0, 1]. Since V is an invertible isometry it is clear that
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\\VEtV~ι\\ = \\Et\\ = 1. The operator VE.V"1 is obviously idempotent
and by (1)

tV-^iO, 1) - (VEt)L,(0, 1) - FTF([ί, 1])

= W(r[t, 1]) - W([r(t), 1]) ,

so that VEtV~ι has range equal to W([r(t), 1]). A result due to G. K.
Kalisch [6, p. 94] now allows us to conclude that

(4) VEtV-1 = Er(t)

Upon combining (3) and (4) we obtain

(5)

for all t in [0, 1]. Another result of G. K. Kalisch [6, p. 95] now implies
that

(6) Mk=VrV

for some k e L^. Then for all hγ e Lp

Vh, = V-ιMkhx

= (Veo)(SA) - h(0)SX

which shows that V = h(0)S8. However,

implies that | h(0) \ — 1 and so Ss is an isometry. Lemma 6 (ii) now
tells us that S8 — I and so Tf = Tg. A routine argument now de-
monstrates that / = g.

THEOREM 6. (Similarity of Tf and Tg). If Tf and Tg belong to
Sf then they are similar in Lp if and only if /([0, 1)) = ^([0,1)) and
there exists a function h, absolutely continuous on [0, 1), such that the
operator Vh defined by Vh = S{f-iog)(Mh — JMh) is boundedly invertible
on Lp. In this case the similarity is implemented by Vh and we have

vhτfv^ = τg.

Proof, (i) Suppose Tf and Tg are similar and let V be a boundedly
invertible operator on Lp such that VTfV~x = Tg. By Lemma 8 the
functions r — g~ι o / and s = r~ι are strictly monotone and absolutely
continuous with r(0) = 0 and r(l) = 1. Let h denote the function in
the statement of Lemma 8 (ii) and define the operator Vh by Vh =
S8Th. An elementary calculation shows that Vhea = Vea for all ae
[0,1] and so Vh and V agree on the dense subspace D of Lp consisting
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of all linear combinations of the eβ's. Thus Vh extends uniquely to
a bounded operator, namely V, defined on all of Lp. In a sense this
is what we set out to prove. However, the proof of the corollary of
the present theorem will require the somewhat sharper result that V
is actually given by the formula for Vh, on all of Lp. We will
show this ultimately by using Lemma 2, but at this point we do
not know that Vh is defined on all of Lp. Indeed, to show this we
will need the fact that h! belongs to Lq(0, a) for all a < 1; but Lemma
8 (ii) merely implies that h' e L^O, a) for all a < 1. We begin by
showing that Vh is well-defined on L^ and agrees with V there. Let
#! G LM be arbitrary. For a < 1 Lemma 8 (ii) implies that K e 1^(0,
s(a)) and so, by Holder's inequality,

Clearly SΛMκQ\(a) * s finite for a.e. a e [0,1] and so Vhgι is well-defined
and is a measurable function which is finite a.e. on [0, 1]. Let {sn} gΞ
D be a sequence of step functions such that \\sn — gt \\p —> 0 and ||snIU <
11 #i I loo for all n. Since V is bounded we have Vsn-+ Vgι in Lp and
so there exists a subsequence, which we will also denote as {sn} for
simplicity, such that Vsn—>Vg1 almost everywhere. Similarly we may
assume that sn —• gx almost everywhere. Let a < 1 be arbitrary.
Then Isn/i'| ^ HflTiIUIΛ'| eL^O, s(α)) for all n and snh! —>gjιf a.e. on
[0, s(a)]. By Lebesgue's Dominated Convergence Theorem we conclude
that

S s(a) Γs(a)

snh' = \ gft .
o Jo

Thus SsJMh,sn converges to SsJMhfgι for all α < 1. Clearly SsMhsn —>
SsMh,gι a.e. and therefore Vhsn—+Vhgί a.e. on [0,1]. On the other
hand, Vhsn — Vsn—>Vgί a.e. and so it follows that Vkg1 = Vgx. Thus
Vh and V agree on LM. We are now able to demonstrate that h! e
Lq(0, a) for all a < 1. Define the function h by h(x) = h'(x)l\h'(x)\ if
h\x) Φ 0 and by h(x) = 1 otherwise. Then | h \ — 1 and fe'fc = | λf | almost
everywhere. Let gι&Lp be arbitrary and let {sn}^D such that | |sw —
βrillp"~>0 and sn—^g1 almost everywhere. By choosing a suitable sub-
sequence of {sn} we may also suppose that V{h\sn\) converges a.e. to
F(fe|0i|). For all neZ+ we have £ | sn \ e LM and therefore, since V =
Vh on L^y the sequence FΛ(Λi | sn |) converges a.e. to F(fc | ̂  |) e Lp. Clearly
SsMh{h\sn\)-> SsMh(h\gi\) a.e. and so

SsJMh,(h\sn\) = (SsMh - Vh)(h\sn\)

converges a.e. to
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SsMh{h\gA)-V{h\gι\) .

This last function is finite a.e. and so for almost every a in [0, 1]
we have

(1) lim [{a)\h'{t)sn(t)\dt = lim [ia)h'(t)h(t)\sn(t)\dt
n—*<χ> J 0 n-*oo J o

= lim[SsJMh,(h\sn\)](a)< co .
n-*oo

Since | h'sn | ^ 0 it follows from (1) that

(2) liτa[a\h'(t)8n(t)\dt < oo
n—>oo J o

for all a < 1. Now let α < 1 be arbitrary. Then (2) and Fatou's
Lemma together imply that

h'(t)9l(t)dt ύ\'\h'(t)\'\gι(t)\dt
JO

< oo .

Since g1 e Lp was arbitrary, the converse of Holder's inequality now
implies that h' e Lq(0, a). Finally, since a < 1 was arbitrary, we have
h! e Lq(0, a) for all a < 1. It now follows easily that Vh is defined
everywhere on Lp and satisfies all of the hypotheses of Lemma 2.
Hence Vh is bounded and, since Vh = V, boundedly invertible.

(ii) Finally, we consider the converse. If Vh is boundedly inver-
tible then it is straightforward to verify that Viι = (M{ιjh) — JMωhy)Sr

and that VhTfViι = Tg, demonstrating the similarity of Tf and Tg.

The following corollary lists necessary conditions, involving only
the functions / and g, for the similarity of Tf and Tg. Thus, since
the auxiliary function h appearing in Theorem 6 is dispensed with,
the corollary provides us with the means for the direct verification
of the similarity of a given Tf and Tg.

COROLLARY. If Tf and Tg belong to Sf and are similar in Lp

then, with r = g~ι © / and s = r"1, we have
( i ) Ta_r)Sr and T(1_s)Ss belong to B(LP);
(ii) (1 - r)(ryilP and (1 - s)(s')~1/ί? belong to L^;
(iii) rr and sf belong to 1/̂ (0, a) for all a < 1.

Proof. Let Vh denote the operator in the statement of Theorem
6 so that Vh1 = Tωh)Sr and is bounded. It is straightforward to verify
that TA(1_r) e B(LP) and hence
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belongs to B{LP). If we interchange the roles of Tf and Tg in
Lemma 8 and Theorem 6 then we can repeat the above argument
to show that T(1_S)SS e B(LP) which proves (i). The operators Vr =
M{r,)iipSr and F s = Miaf)iιPS8 are boundedly invertible isometries on Lp

with F71 = SsMαlrnυP and Fr 1 = SrMα/sni,P. Then by part (i) the
operators

1 (1_r)ikf(1yr/)l/p = T{1^r)SrSsMαιrr}llp

and

belong to B(LP). Since rreLι it is clear that the function

belongs to L^ which by [2] implies that JM[r/)nqeB(Lp). Thus the
operator

— 27

(1_r)(r/)-l/p + JM{r,)llq

belongs to B(LP). It follows that (1 — r)(r')~1/?) e L^. A similar argu-
ment shows that (1 — s)(s')~1/p e L^ and thus (ii) holds. For α < 1
the function 1 — s is bounded away from zero on the interval [0, r(α)\
and so (ii) implies that (sf)~llP e L^(0, r(α)). But, since sf is nonvanish-
ing a.e., sf(r(x)) = ljrr(x) and consequently r ' e L M ( 0 , α ) . A similar
argument shows that s' G LO O(0, α) for all α < 1 and completes the proof
of (iii).

We remark that the conditions r' 6 L^ and s' e L^ are sufficient
for the similarity of Tf and Γff. Indeed, one may then take h = 1
in Theorem 6. These conditions are apparently not too far removed
from also being necessary for similarity, as part (iii) of the corollary
illustrates.

As an application of the preceding corollary we consider the semi-
group ^~ of bounded operators Tα defined, for all α > 0, by Tα == Tχα.
The semi-group property is an immediate consequence of Lemma 1 (ii)
which says that TαTb = TχαTχb = Tχα+b = Tα+b. Lemma 5 and Theorem
1 imply that the spectrum and closed invariant subspaces of every
member of ̂  are identical. However, the following proposition shows
that no two distinct members of ^ are similar. This provides an
interesting contrast to the semi-group ^€ of multiplication operators
of the form Mxα(α > 0). Not only do all the members of ^f have
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the same spectrum and closed invariant subspaces; any two members
of ^/S are isometrically equivalent in Lp. In fact, the equivalence
of Mxa and M9ι may be implemented by

(SsM(i!r')Vp)Mxa(M{rnllpSr) = Mxh

where r = xalb and s = r"1.

PROPOSITION. The operators Ta and Tb in ^Γ are similar if and
only if a — b.

Proof. Let a ̂  b and suppose Ta and Tb are similar. Let f = xa

and g = xb. Then r = g~ιof = af'δ and r' = (a/b)x~ι+alb. Part (iii) of
the corollary implies that — 1 + α/6 ^ 0, or equivalently, a >̂ 6. Thus
α — 6.

Our final theorem is the analog, for certain operators in sf, of
the well known theorem about the similarity of matrices with 1-
dimensional root spaces; viz., two such matrices are similar if and
only if their eigenvalues are the same.

THEOREM 7. If Tf and Tg belong to jzf with f and gf continuous
and nonvanishing then Tf and Tg are similar in Lp if and only if
their point spectra coincide.

Proof. If the point spectra of Tf and Tg are equal then by
Lemma 5 we have /([0, 1)) — g([0, 1)) and since / and g are 1-1 con-
tinuous functions it follows that /(0) = g(0) and /(I) = #(1). Thus
r = g~ιo f and s = r~ι are well-defined and our present assumptions
on / ' and gf imply that r and s satisfy the hypothesis of Lemma 7.
Hence r and s are absolutely continuous and it is clear that r' and
s' belong to L^. By Lemma 6 (i) the operators Sr and Ss are bounded
and clearly S71 = Ss. An easy computation now shows that SsTfSr —
Tfos = Tg which completes our proof.
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