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COTORSION THEORIES

STEPHEN D. BRONN

In this paper A is a ring with unit, and Mod-A denotes
the category of unitary right A-modules. The aim of the
paper is to dualize the concept of torsion and develop the
corresponding idea of cotorsion.

One generalization of torsion was given by Goldman,
using what he called a kernel functor. These kernel functors
are here dualized to give cokernel functors. Cokernel functors
are categorized over Mod-A.

The final section investigates what information the cotor-
sion functors can reveal about the homological properties of
the rings under discussion.

l Definition. An I-functor is a pair (F, λ) where F is an
additive covariant functor from Mod-A to Mod-A and λ is a natural
transformation from the identity functor on Mod-A to F.

Thus if M and N are A-modules and / e Hom^(M, N) we have
the commutative diagram

M f—>N

F{M) ~^L F{N) .

That is XNf = F(f)XM.
An A-module M is said to be:

( i ) F-reduced if λ^ is a monomorphism.
(ii) Indivisible if χM = 0.
(iii) i^-cotorsion if XM is an isomorphism.
(iv) -F-cί-strong if DM — cokernel of λ^ is indivisible.
In addition the I-functor (F, X) is said to be:
(a) epi if λ^ is an epimorphism for every Me Mod-A.
(b) idempotent if F(M) is F-cotorsion for every M e Mod-A.
(c) restricted idempotent if F(M) is i^-cotorsion whenever M is

.F-reduced
(d) d-strong if every Me Mod-A is î -cZ-strong.
The cotorsion completion functor of Matlis [4] is an example of

a d-strong I-functor. This I-functor is idempotent if and only if the
homological dimension of Q (A is an integral domain and Q is the
quotient field of A in this case) is one as an A-module.

If A is a commutative ring and S is a multiplicatively closed set
of elements from A then the localization of every module at S is an
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/-functor. If every element of S is a nonzero divisor this /-functor
is idempotent and d-strong.

The following proposition follows directly from the definitions.

PROPOSITION 1.1. Let (F, λ) be an I-functor.
(a) Every F-cotorsion module is F-τeduced.
(b) Every submodule of an F-reduced module is also F-reduced.
(c) Every quotient "module of an F-divίsible module is also F-

divisible.
(d) Hom4 {M, N) = 0 whenever M is F-divisible and N is F-

r educed.
(e) The additive condition is unnecessary if (F, λ) is an epi

I-functor or if (F, λ) is idempotent and d-strong.

PROPOSITION 1.2. Let (F, λ) be an I-functor and M be an F-d-
strong A-module. For every A-module N we denote by βN the group
homorphism from Hom^ (F(M), N) to Hom4 (M, N) defined by com-
position with λ3/.

(a) If N is F-reduced βN is a monomorphism.
(b) If N is F-cotorsion βN is an isomorphism.

Proof, (a) Suppose that N is .F-reduced and that g is in the
kernel of βN. Thus g\M = 0. Let u3I: F(M) —> DM be the cokernel of
λ¥. There exists h e Hom,4 (DM, N) such that huM = g. By 1.1

Hoin, (Z>_v, N) = 0

and therefore h — 0. Hence g — 0 and so βN is a monomorphism.
(b) By the preceding part we need only show that βN is onto if

N is F-cotorsion. Let g e Homyl (Λf, JV), since N is F-cotorsion λ γ has
an inverse λ^1. Let h = XγF(g). Now hXv — \j1F(g)XM = X^ιXNg — g
hence βy is onto.

PROPOSITION 1.3. Let J be a directed set and B{, ieJ, be a family
of A-modules indexed by J. Whenever (F, λ) is an I-functor on Mod-A
then:

(a) limBi is F-reduced if each Bi<f ieJ, is F-reduced.
ieJ

(b) lim B% is F-divisible if each B{, ieJ, is F-divisible.
ieJ

(c) lim Bt is F-cotorsion if each Biy i eJ, is F-cotorsion and if
ieJ

(F, λ) is d-strong and restricted idempotent.

Proof. Let M = lim B5 and N = lim B3 with respect to the defining
j eJ j eJ
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homomorphisms P { : M—*Bi and g{: Bi—>N for ieJ.
(a) Suppose that each BifieJ, is ^-reduced. If XeMod-A and

h e Hom^ (X, M) such that λ^ft = 0 then 0 = F{Pi)XMh = λ^.P^ for
each i e J . But λ 5 i is a monomorphism thus P4A = 0 for each ieJ
and hence h = 0 which means that λ^ is a monomorphism.

(b) Suppose that each Bi9 i e J, is indivisible. Now XNq{ =
Fl(qi)XBi = 0 for each ieJ and therefore λ^ = 0.

(c) Suppose that each Bif ieJ, is F-cotorsion and that (F, λ) is
cί-strong and restricted idempotent. Thus XB. has an inverse X^\ for
each ieJ and so there exists h e Hom^ (F(M), M) such that PJi =
XilFiPi) for each i e J . Now P^λ M = λϊίίXPJλ* = λ^λ5 iP< = P< for
each i e J and thus Λλ^ = 1M. By (a) M is F-reduced and since (F, λ)
is restricted idempotent it follows that F{M) is F-cotorsion and thus
by 1.2 βF{M) is an isomorphism. Since XMhXM = XM1M = λ^ = l^ifjλΛ
it follows that λ f̂e = 1 ^ ^ and thus λ^ is an isomorphism and M is
JP-CO torsion.

We now make a definition which allows us to compare J-functors.

DEFINITION. If (F, X) and (G, a) are I-functors on Mod-A and μ
is a natural transformation from F to G such that μX = oc we say
that μ is an 7-morphism. If in addition μM is an isomorphism for
each M e Mod-A we say that μ is an /-isomorphism and that (F, X)
and (G, oc) are equivalent /-functors.

THEOREM 1.4. Let (F, λ) and (G, a) be I-functors on Mod-A where
(F,X) is d-strong and G(M) is F-cotorsion for every Me Mod-A.
There exists an I-morphism μ from (F, X) to (G, a).

Proof. Let ΛfeMod-A, now G(M) is F-cotorsion so by 1.2 there
exists a unique μM e Ή.omA(F(M), G(M)) such that μMXM = aM* Suppose
now that / e Hom^ (M, N). Thus μNF{f)XM = μNXNf = aNf = G{f)aM =
G{f)μMXM. But G(iV) is F-cotorsion hence by 1.2 / ^ F ( / ) = G{f)μM

which means that μ is an /-morphism.

2 The purpose of this section is to show that F(A) is a ring for
most /-functors (F, X).

THEOREM 2.1. Let (F, X) be an I-functor on Mod-A such that A
is F-d-strong and F(A) is F-cotorsion.

(a) F(A) is a ring with unit and XA is a ring homomorphism.
(b) Every F-cotorsion module M e Mod-A is also a right F(A)-

module.
(c) Whenever M and N are right F(A)-modules and N is F-

reduced as a right A-module then Hom^ (M, N) = HomFU)(M, N).
(d) F(A) is commutative if A is commutative.
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Proof. Let M be any F-cotorsion right A-module and let xeM.
Define ux e Hom^ (A, M) by ux(r) = xr for every re A. By 1.2 there
exists wx e Hom^(F(A), M) such that wβλ^ = ux.

(i) Clearly ux + Uy = ux+y and so by 1.2 m, + wy — wx+y for every
α?, yeM.

(ii) Let α? e M, s e î (A) and set ?/ = wx(s). wxw8XA(r) — wx{sr) —
wx(s)r — yr — ny{r) = wy\A(r) for every r e i . Thus by 1.2 wβwβ = w,.

Now JP(A) is F-cotorsion so by (i) and (ii) F(A) becomes a ring
under the multiplication xy = WaX]/) where x, yeF(A). By the same
taken M is a right F(A)-module.

If r, s e A let x = λ^(r), then λ^(rs) — λ^(r)s = α s = wβ(s) = wx\A(s) =
λ^(r)λ^(s) and therefore λ̂  is a ring homomorphism. Clearly λ^(l) is
the unit of F(A).

Suppose now that M and N are right .P(A)-modules and that N
is JP-reduced when considered as a right A-module. Let / e Hom^ (M9

N) and xeM. Define h, geΈLomΛ (F(A), N) by g(s) = f(x)s and
fe(s) = /(a s) for s e F(A). It is easily seen that gXA = Λλ̂  so by 1.2
g — h. That is / is a right ί7(A)-module homomorphism and so
Hom^ (M, N) = ΉomFU)(M, N).

Now assume that A is commutative. Let r e A, x e F(A) and set
y = λ^(r). Define g e Hom^ (F(A)) by r̂(s) = sXA(r) = sy = ws(y) =
us(r) = sr for s e F{A). Now ̂ rλ̂  = w ^ and so by 1.2 g — wy and
therefore XA(r)s = sXA(r) for every r e A, s e F{A).

Define hx e Ή.omA(F(A), F(A)) by hx(s) = sx - xs where x e F(A).
Now hxXA = 0 by the previous paragraph and so by 1.2 h9 = 0 which
means that ίXA) is commutative. This completes the proof of the
theorem.

DEFINITION. Let (F, λ) be an J-functor such that A is F-ώ-strong
and F(A) is F-cotorsion. By 2.1 F(A) is a ring with unit XA(1) where
1 is the unit of A. We define a new /-functor (F, X) on Mod-A by
F{M) = ikί®^F(A) for every ikfeMod-A and λ(τ/) = 2/(g)λ^(l) for
every yeM.

THEOREM 2.2. Let (F, X) be an idempotent, d-strong I-functor
on Mod-A. (F9 X) and {F, X) are equivalent I-functors on Mod-A if
and only if F(M) is F-cotorsion for every module MeMod-A.

Proof. If (F, X) and (F, X) are equivalent I-functors then F(M)
and F(M) are isomorphic for every ΛfeMod-A. But F(M) is F-
cotorsion and thus F(M) is F-cotorsion.

Conversely suppose that F{M) is F-cotorsion for every Me Mod-A.
By 1.4 there exists an I-morphism μ from (F, λ) to (F, λ). By 2.1
F(ikf) is a right F(A)-module for every module Me Mod-A. Thus



COTORSION THEORIES 359

there exists aM e Hom^ (F{M), F{M)) such that aM(y (g) s) = XM(y)s for
every # e ikf, s G ̂ (A). NOW ocMμMxM — xM and F(M) is F-cotorsion
thus by 1.2 ocMμM — 1F[M) for every Me Mod-A.

Let # € M and s G F(A) μMaM(y ® s) = μM(XM(y)s = μM(Ku(y))s by
2.1 thus ^tfM = lj;(Jf, and hence μ is an /-isomorphism.

3. In this section the kernel functor of Goldman [3] is dualized.
Stenstrom (6) studied a particular type of this kernel functor in one
attempt to extend the work of Matlis [4].

DEFINITION. A cokernel functor on Mod-A is an epi I-functor
(F, X) on Mod-A such that whenever g e Hom^ (ikf, N) is an epimorphism
then the following diagram is a pushout

M °—>N

F(M) —^-> F(N) .

PROPOSITION 3.1. Every cokernel functor is idempotent and d-
strong.

Proof. Let (F, X) be a cokernel functor on Mod-A. (F, λ) is
clearly d-strong since it is an epi J-f unctor. Suppose that Me Mod-A
and N — F(M). Now F{XM)XM — XNXM thus F{XM) = λ^ since λ^ is an
epimorphism. This means that

M—-M-—>F(M)

F{M) —^-> F(F{M))

is a pushout and therefore λ^ is an isomorphism. Hence (F, X) is
idempotent.

PROPOSITION 3.2. Let (F, X) be an epi I-functor on Mod-A. The
following statements are equivalent:

( i ) (F, X) is a cokernel functor.
(ii) F is a right exact functor.
(iii) (F, X) is idempotent and any homomorphic image of an F-

cotorsion module is also F-cotorsion.

Proof. The equivalence of (i) and (ii) follows from Mitchell [5]
Chapter 1, Proposition 13.2*.

Suppose that (F, X) is a cokernel functor. By 3.1 (F, X) is idem-
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potent. If g e Hom^ (M, N) is an epimorphism and M is i^-cotorsion
then

M ° >N

\λM UN

F{M) —^U F(N)

is a pushout where λ^ is an isomorphism. Thus by Mitchell [5]
Chapter 1, Propositions 7.2* and 20.2* λ^ is an isomorphism. This
shows that (i) implies (iii).

Conversely assume (iii). Let g e Hom^ (M, N) be an epimorphism
and let u:G-+M be the kernel of g. Let v: F(M) -— X be the cokernel
of XMu. Since F(M) is F-cotorsion it follows that X is also F-cotorsion.
Since g is the cokernel of u there exists h e HomA (N, X) such that
hg = vXM. Thus by 1.2 there exists / 6 Hom^ (F(N), X) such that
f\N = h. Therefore, fF(g) = v and so F(g): F(M) -> F(N) is the
cokernel of \Mu. Hence by Mitchell [5] Chapter 1, Proposition 13.2*

M ° >N

F(M) ~ ^U F(N)

is a pushout and so (F, λ) is a cokernel functor.

THEOREM 3.3. If (F, λ) is a cokernel functor on Mod-A then
{F, λ) and (F, λ) are equivalent I-functors.

Proof. Let J = kernel of \A. By 3.1 and 2.1 F{A) is a ring and
J is a 2-sided ideal of A. Also F(A) is ring isomorphic to A/J.

Let ikf be any free right jP(A)-module. M can be embedded in a
direct product of copies of F(A). By 1.3 a direct product of copies
of F(A) is F-cotorsion and so by 1.1 M is F-reduced. But λ^ is an
epimorphism thus M is F-cotorsion.

If N is any right F(A)-moάule then N is the homomorphic image
of a free F(A)-module M and so by 3.2 JVis jP-cotorsion. If Ue Mod-
A then F(U) is a right F(A)-module and so F{U) is jP-cotorsion.
Thus by 2.2 (F, λ) and (F, λ) are equivalent /-functors.

If / is any 2-sided ideal of A then M—+M<ξ$A A/J is easily seen
to define a cokernel functor on Mod-A. Combining this with 3.3 we
have a complete classification of all cokernel functors.

4* We now investigate the relationship between homological
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properties of F(A) and those of A where (F, λ) is an /-functor on
Mod-A, much in the same manner as Turnidge [7].

LEMMA 4.1. Let (F, λ) be a restricted idempotent, d-strong I-
functor such that A is F-reduced. If every F-reduced right A-module
is flat then A is left semi-hereditary.

Proof. Every direct product of F-reduced modules is F-reduced
by 1.3 and submodules of F-reduced modules are also F-reduced by
1.1. Thus every torsionless right A-module is F-reduced since A is
F-reduced and therefore every torsionless right A-module is flat.
Hence by [2, Thm. 4.1] A is left semi-hereditary.

We will need to refer to a restricted idempotent, d-strong /-functor
where A is F-reduced frequently throughout this section. We therefore
call such an /-functor special for easy reference.

LEMMA 4.2. Suppose that (F, λ) is a special I-functor on Mod-A.
Every F-reduced right A-module is also F-reduced.

Proof. Let Me Mod-A be F-reduced. Since (F, λ) is restricted
idempotent, F(M) is F-cotorsion and hence by 2.1 is a right F(A)-
module. Thus there exists uM e ΊlomA (F(M), F(M)) such that uM(y (x) r) —
XM(y)r for every yeM reF(A). That is uM\M = λ^ and since λ^ is a
monomorphism so is λ^. Therefore M is F-reduced.

The following theorem investigates the weak dimension (WD) of
F-reduced modules if the global weak dimensions (GWD) of F{A) and
A are known.

THEOREM 4.3. Let (F, λ) be a special I-functor on Mod-A such that
F(A) is flat as a right A-module. If GWD F(A) ̂  m and GWD A ^
n + 1 where m and n are nonnegative integers such that m ^ n then
WD M <̂  n for every F-reduced right A-module M.

Proof. Let Me Mod-A be F-reduced. Since GWD
thus F{M) = M®A F{A) has weak dimension ^ m as an F(A)-module.
Hence by [1, Prop. VI 4.12] M(&AF{A) has weak dimension <; m as
an A-module.

Let B — cokernel λ^: M —> M(&AF{A). This gives rise to exact
sequences

Tor£+1 {B, X) > Ύoxί (M, X) > Ύovi {M®A F(A), X) >
Tori (/?, X)

for every nonnegative integer k and left A-module X. If k > n then
k + 1 > n + 1 and k > m. Thus T o r ^ (B, X) = 0 = Tor£ {M®A F{A),
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X) so Tor£ (M, X) = 0 and therefore WD M ̂  n.

COROLLARY 4.4. Let (F, λ) be a special I-functor on Mod-A such
that F(A) is flat as a right A-module and GWD F(A) = 0. The
following statements are equivalent:

( i ) A is left semi-hereditary.
(ii) G W D A ^ l .
(iii) Every F-reduced right A-module is flat.
(iv) Every F-reduced right A-module is flat.

Proof, (i) =* (ii) follows from [1, Prop. VI 2.9]
(ii) ==> (iv) is a consequence of 4.3.
(iv) => (iii) is immediate from 4.2.
(iii) => (i) is immediate from 4.1.

THEOREM 4.5. Let {F, λ) be a special I-functor on Mod-A. If
F(A) is protective as a right A-module and is a semi-simple Artinian
ring, the following statements are equivalent:

(i) A is right hereditary.
(ii) M is protective for every F-reduced Me Mod-A.

Proof. Since (F, λ) is special every right ideal of A is F-reduced
by 1.1. Thus (ii) => (i) is immediate.

(i) => (ii). Let l i e Mod-A be F-reduced. By 4.2 M is F-reduced
so we have an exact sequence

0 > M > M®A F(A) > B > 0 .

Now F(A) is semi-simple Artinian so M(&AF{A) is a protective
F(A)-mod\ύe. F(A) is a protective A-module and thus M(&AF{A) is
a projective A-module. Therefore, by [1, I Thm. 5.4] M is a protective
A-module.

We now investigate a relationship between the global dimension
(GD) of F(A) and the injective dimension (ID) of jP-cotorsion modules
over a commutative ring.

THEOREM 4.6. Let A be a commutative ring and (F, λ) a special I-
functor on Mod-A such that F(A) is flat as an A-module. If GD F(A) ^
n where n is a nonnegative integer then ID M ̂  n for every F-cotor-
sion Me Mod-A. In addition if GWD F(A) ̂  m where m is a non-
negative integer then WDikf ^ m for every F-cotorsion Me Mod-A.

Proof. Let Me Mod-A be F-cotorsion. By 2.1 M is an F(A)-
module and by [1, Prop. VI 4.1.3 and 4.1.2] we have isomorphisms
ExtJ.u) (X®A F(A), M) ~ ExtJ (X, M) and Tor£ (M, X) ~ Torf-4) {My
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X ®A F{A)) for every X e Mod-A. Since GD F(A) ^ n and GWD F(A) £
m it follows that ID M ^ n and WD M ^ m.

COROLLARY 4.7. Let A be a commutative ring and (F, λ) a special
I-functor on Mod-A such that F(A) is flat as an A-module and such
that All is F-cotorsion for every nonzero ideal I of A. Then GWD A :g
GWD F(A).

Proof. Assume GWD F(A) = m. Then by 4.6 WD A/1 ^ m for
every ideal / of A. Hence GWD A <^ m.

An example of a special /-functor of the type in the preceding
corollary is the cotorsion completion functor of Matlis [4] which is
given by M—> Ext*4(iίΓ, M) for every Me Mod-A where A is an integral
domain and K = Q/A where Q is the quotient field of A.
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