Example 3. Let H be generated by $\mu_{n}=n(n-1 / 2) /(n+1)(n+2)$. We can regard H as the product of two Hausdorff matrices H_{α} and H_{β}, with generating sequences $\alpha_{n}=(n-1 / 2) /(n+1)$ and $\beta_{n}=n /(n+2)$, respectively. From Theorem 1 of [1], the sequence $t=\left\{t_{n}\right\}$, with $t_{0}=1, t_{n}=(-1)^{n}(1 / 2)(-3 / 2) \cdots(-n+3 / 2) / n!, n>0$ satisfies $t H_{\alpha}=0$. Therefore $t H=0$. Let B be the matrix with the sequence t as each row. Then

$$
(H B)_{n k}=\sum_{j=0}^{n} h_{n j} b_{j k}=t_{k} \sum_{j=0}^{n} h_{n j}=t_{k} \mu_{0}=0
$$

and

$$
(B H)_{n k}=\sum_{j=k}^{\infty} b_{n j} h_{j k}=\sum_{j=k}^{\infty} t_{j} h_{j k}=0, \quad \text { so that } \quad B \longleftrightarrow H .
$$

References

1. B. E. Rhoades, Some Hausdorff matrices not of type M, Proc. Amer. Math., Soc., 15 (1964), 361-365.
2. Commutants of some Hausdorff matrices, Pacific J. Math., 42 (1972), 715-719.

Indiana University

Corrections to

VERSUM SEQUENCES IN THE BINARY SYSTEM

Charles W. Trigg
Volume 47 (1973), 263-275
Line 12 should read "the universal verity of the conjecture [5, 6]". Instead of the universal verity of the conjecture [1, 2].

The first page should be 263 instead of 163.

