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TENSOR AND DIRECT PRODUCTS

CARY W E B B

Let R be an associative ring with 1, E a unitary right
module, and (Fi)iBl a family of unitary left modules. Let
/'• E<g)RTlFi-*Tl(E(g)RFi) be the canonical map. THEOREM.
/ is bijective (surjective) for all families (Ft) iff E is finitely
presented (finitely generated). Theorem. If R is a Dedekind
domain or is commutative artinian and every Ft is flat, then
/ is injective. COROLLARY. If R is a Dedekind domain or is
commutative artinian, every Ft is flat and E (g)Λ F* is reduced,
then E®R\[Ft is reduced. THEOREM. If R is a Dedekind
domain or is commutative artinian, Ej is flat, / is injective
for every Ej (e.g. Ej projective) and E is pure in Π EJ9 then
/ is injective. THEOREM. If R is a Dedekind domain and E
is flat then / is injective for E iff / is injective for Horn (F,
E) for all modules F. THEOREM. If R is a Dedekind domain
and / is injective for E for all families (Ft) then E is reduced.
THEOREM. If R is commutative and / is always injective then
R must be artinian. The converse holds for serial rings.

Introduction* If E is a right module and (Fi)iBΪ is a family of

left modules over an associative ring R with 1 then it is always true
that the groups EφB((BieIFi) and (Bi*i(E&BFi) a r e isomorphic.
However, it is not hard to see that the groups E(&RJ[ieI Ft and
Hiei (E($$R Fi) are not necessarily isomorphic (e.g. if R is the integers
let E be the rationals, I the natural numbers and, for a fixed prime
p, Fn the cyclic group of order pn. This example is found in ([8],
p. 257, Ex. 10).

It is our purpose to study the relationship between the groups
EQsΊIiejFi and ΐ[ieJ(E®BFi). We will do so in terms of the
natural homomorphism

f EQtτiFt > Π (E®R Ft)
iel iel

which sends a generator a ® (!/*)< e J of EφR ILβx-P* onto (x^vdiei i n

In §§1 and 2 we investigate the properties of / over an arbitrary
ring. It is relatively easy to show that / is surjective (bijective)
for all families (Fi)ieI if and only if E is finitely generated (finitely-
presented). In §§3 and 4 we study the more difficult problem of when
/ is injective. In §3 the ring is a Dedekind domain. In §4 the ring
is commutative artinian.

We will always denote by R an associative ring with 1, by E a
right ϋί-module, and by (Fi)ieI a family of left J5-modules. Modules
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580 CARY WEBB

are all unitary.
We will often use the notions of flatness and purity. Briefly, a

left iϋ-module F is said to be flat if the functor ( ) 0 ^ F is exact.
A submodule E' of a right iϋ-module E is said to be pure if ( ) ® β F

is exact on 0 -> E' -^-> E -̂ —i E/E' -+ 0 for every right module F.
Over a domain it is well known that torsion free modules are

flat iff the domain is Priifer. It is also known that over a domain,
Ef is pure in Έ means τEr = E' f]rE for all r e R iff the domain is
Priifer. For this last fact see [13].

Many of our arguments involve a diagram chase. At these points
we usually will be able simply to cite the following.

Snake Lemma [2, Ch. 1, §1, No. 4, Prop. 2]. Suppose

G — " — , H — ' • — , K

l Is l
G'

is a commutative diagram of abelian groups with exact rows. Then
this diagram can be embedded in the following commutative diagram
with top and bottom row not necessarily exact.

ker a ——• ker b --—> ker c

i I
i 1 U2 1 7 VZ 1
1 > coker a > coker o > coker c

The following are true of this diagram
( i ) vι°uι = 0. If v! is injective then the top row is exact.
(ii) v2°u2 = 0. If v is surjective the bottom row is exact.
(iii) If v! is injective and v is surjective there exists a unique

homomorphism d such that the sequence (v,l9 vl9 d, u2, v2) is exact.
For convenience we will omit writing the indexing set whenever

there is no possibility of confusion. For example, we will write Π - ^
0 Fi and (i^), omitting the index set I. fg and fp will denote, res-
pectively, finitely generated and finitely presented. Instead of writing
-27 ® RF we will simply write E(x) F. Often an obvious homomorphism
will not be defined explicitly or even named. Z will be the ring of
integers, Q the field of rational numbers, and, for a positive integer
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n, Z(n) will denote the cyclic group of order n.
This study is a doctoral dissertation prepared under the direction

of Professor Edgar Enochs and submitted to the University of Kentucky.

!• Surjectivity and bijectίvity*

PROPOSITION 1.1. If E is fg and projectίve then f is bijective.

Proof. If E' is fg and free then for some positive integer n,
Ef ^ Rn. We have the canonical isomorphisms

Ef <g> Π Ft ~ Rn (x) Π F< ~ (Π Ft)*

and

Π {E'& Ft) ~ Π (R*®Ft) ~ UFf .

So / is just the canonical isomorphism (Π Ft)
n & Π F*.

If E is fg and projective then E is a direct summand of such
an E'. We show later (Prop. 2.1) that if / is injective for Ef then
/ is injective for any summand of EΫ.

PROPOSITION 1.2. / is surjective (for all families (Ft)) iffEisfg.

Proof. Suppose E is fg, n is a positive integer, and Rn —» E —• 0
is exact. Consider the commutative diagram with exact rows

v
0

f is bijective (Prop. 1.1). The snake lemma tells us / is surjective.
On the other hand, suppose E is not fg. Let I — E (E considered

as a set), F, = BR. Write E = {αj. Then (xt (x) l ) i e 7 e Π (E ® Fd
is not in imf. So / is not surjective.

REMARK 1. In order to show E fg all we need to show is that /
is surjective for all families (Ft) with Ft = RR

REMARK 2. The part of Proposition 1.2 that supposes E fg is
found in [3, Gh. II, Ex. 2].

If g and h are injective homomorphisms of right, respectively,
left i?-modules, having domains E and F, respectively, we denote
im (g®h) as [E(g)F].

PROPOSITION 1.3. / is bijective (for all families (Ft)) iff E is fp.
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Proof. Suppose E is fp and 0—>iΓ—> L-+ E—* 0 is a finite pre-
sentation of E. Consider the commutative diagram with exact rows

ί Λ l Λ lf

0 —

fί is surjeetive because K is fg (Prop. 1.2). f% is bijective because
L is fg and free (Prop. 1.1). By the snake lemma, therefore, / is
bijective.

On the other hand, suppose / is bijective for all families (Fi).
Since / is surjective, E is fg (Prop. 1.2). So we have an exact
sequence 0-+K—+L-+E—> 0 where L is fg and free. By Remark 1
following Prop. 1.2 to show K fg it suffices to show / is surjective
for K for all families (.Fi), Ft = BR.

For such a family consider the commutative diagram with exact
rows

K <g) Π Fi > L (x) Π Fi > F, (g) Π Fi • 0

i Λ i/2 \f

0 > Π (K® Ft) >U(L0Fi) > Π (E® F{) > 0 .

f2 is bijective because L is fg and free (Prop. 1.1). / is bijective
by assumption. Therefore, by the snake lemma, f1 is surjective.

REMARK 1. It is found in [3, Ch. II, Ex. 2] that if R is right
noetherian and E fg then / is bijective. More generally, [2, Ch. 1,
Ex. 8] states that if E is fp then / is bijective.

REMARK 2. The first half of the proof of Prop. 1.3 shows that
if / is injective for E then / is injective for any quotient of E by
a fg submodule.

2* Injectivity.

PROPOSITION 2.1. Suppose J is a set and E5 is a right R-module
for every j e J. Let E ^ φ E3 . Then f is injective for E iff f is
injective for every E$. If Έ' is pure in E and f is injective for E
then f is injective for E\

Proof. It is easy to see that if J is finite and / is injective for
every Es then / is injective for E. Suppose J is infinite,

z = Σ ®λ ® Vι e E (g) Π Fi ,
λ



TENSOR AND DIRECT PRODUCTS 583

and f(z) = 0. Let J' be the support of {xλ}*=1. Consider the com-
mutative diagram

Π Ft-Ϊ-* Π

( θ #;) 0 Π F< - ^ Π ((

where # and h are the obvious injective homomorphisms. If zf =
ΣLi a?* (£) 2/j e (φj, i^ ) (x) Π ^ then g{zf) = «. But since J ' is finite,
/ ' is injective Therefore zf — 0, hence z — 0. So / is injective.

For the remainder of the proposition suppose / is injective for E
and Ef is pure in E. Consider the commutative diagram with exact
rows

0 > E'®TJFi > E^JlFi

v v
0 >H{E'®Fi) >TL(E®Fi) .

Since / is injective the snake lemma says / ' is injective.

REMARK. It is not hard to see that if E' is a pure submodule
of E and / is injective for Ef and EjEf then / is injective for E.
Merely apply the snake lemma to the following commutative diagram
with exact rows

0 > E'φΐlFi > E <g) Π Ft > E/E' <g> Π Ft > 0

j i i
0 >1l(E'®Fi) > Π (E ® Ft) > Π (E/ΣT <g> Ft) > 0 .

PROPOSITION 2.2. If E is the quotient of a projective by a fg
submodule then f is injective.

Proof. If E is free and E & φ R then we have the canonical
isomorphisms

and

So / is the injection Θ Π f i - Π Θ ^
If E is projective then E is a summand of a free module. Hence
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/ is injective for E (Prop. 2.1). The proposition now follows from
Remark 2 following Prop. 1.3.

We want to use the following result of Matlis.

THEOREM 2.3. (Matlis, [12].) If R is right noetherian and E is
injective then E is the direct sum of indecomposable, injective sub-
modules.

It will be useful to consider / when every Fi of the family
is flat. Such a family will be called a flat family.

PROPOSITION 2.4. / is injective for all flat families (Fi) iff R
is right noetherian and f is injective for all indecomposable injective
E for all flat families

Proof. Suppose / is injective for all flat families (Ft) and E is
a r ight ideal of R. Recall t h a t to show E is fg it suffices to show
/ is surjective for E for all families (Ft) with Fi = RR (Remark 1,
following Prop. 1.2). So suppose (F^ is such a family. Consider the
commutative diagram with exact rows

E®UFi > # <g> Π Ή > R/E ®ΐlFi > 0

lf
 I Λ 1 Λ

0 >U(E®Fi) > Π (R <g> Fi) > Π (RIE®Fi) >0

fi is bijective. f2 is injective by supposition. By the snake lemma
/ is surjective.

For the converse, suppose (Ft) is a flat family and Ef = φ E3 is
the injective envelope of E where E3 is indecomposable injective. By
Prop. 2.1, / is injective for Ef. Consider the commutative diagram
with exact rows

0 >i

\f V
r\ τ~r / jp /r>, Tp \ ΊΓT / Tpt

(The top row is exact because over a right noetherian ring the direct
product of flat left modules is flat, [3, Ch. VI, Ex. 4].) Since / ' is
injective the snake lemma says / is also injective.

3* Dedekind domains* Let K be the field of fractions of a
domain R. If R is a Dedekind domain the indecomposable injective
ϋJ-modules are K and, for primes P, the P-primary components of
KIR [9, Thm. 7]. Adopting the notation that is standard when R
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is the ring of integers we will denote the P-primary component of
K/R as R(P°°).

In order to establish that Dedekind domains possess the property
of Prop. 2.4 we prove the following lemma.

LEMMA 3.1. If S is a multiplicative subset of an arbitrary
commutative ring R, E = S^R and (F4) is a family of torsion free
R-modules then f is injective.

Proof. If 0 e S then S~'R = 0. So assume 0 £ S. We have the
canonical isomorphisms [2, Ch. II, §2, no. 7, Prop. 18], S^R (g) HF^
S~ι(U Ft) and Π (S-'R (x) F<) ~ Π (S"1^-). So we can think of / as the
canonical map S^QI F,) > Π (S^F,). Suppose MyJ/s) = (yjs) = 0.
Then for every i e I there exists U e S such that t^ = 0. Since U Φ 0,
y{ = 0. Hence / is injective.

PROPOSITION 3.2. If R is a Dedekind domain then f is injective
for all flat families (Ft).

Proof. By Prop. 2.4 and Prop. 2.1 it suffices to show / is injective
for K and K/R. But since we have the following commutative diagram
with exact rows

0 >R®U.Fi >K®HFi >K/R®UFi >0

0 >H(R®Fi) >U(K®Fi) >U(K/R®Fi) >0

where f1 is bijective we know from the snake lemma that f2 is
injective iff / 3 is injective. That f2 is injective is Lemma 3.1. The
proof is now complete.

Since a Priifer domain is Dedekind iff it is noetherian we have
an immediate corollary.

COROLLARY 3.3. If R is a Priifer domain then f is injective for
all flat families (Fi) iff R is Dedekind.

There is an interesting generalization of Prop. 3.2. We need the
following lemma whose proof is immediate from the definitions.

LEMMA 3.4. If R is a Priifer domain and (Fif gi) is an inverse
system of flat R-modules then lim Fi is a pure submodule of Π FΊ-

THEOREM 3.5. If R is a Dedekind domain and (Fi9 g3-) is an
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inverse system of flat R-modules then the canonical homomorphism

F:E® lim F{ > lim (E (x) Ft)

is injective.

Proof. Clearly (E (x) Fi9 id (x) g{) is an inverse system and F is
a homomorphism. To show F injective consider the commutative
diagram

E <g) lim Fi »lim (E (g) Ff)

where u and v are the obvious maps, u is injective (Lemma 3.4).
/ is injective (Prop. 3.2). By the Snake lemma F must also be
injective.

REMARK. Suppose R is any ring for which / is injective for all

flat families (Fi). Then it is easy to see that F is injective for the

inverse system of flat left modules (F{) iff lim Fi is pure in Π F%

Just chase the following commutative diagram

Tp /θ\ 1-ΪVVΛ ΊP v ΊP /O\ TT ΊP

hi (x) lim r i > hi (X) \\ a $

lim (E® F^ >TL(E®Fi).

In Prop. 2.2 we established that / is injective whenever E is
projective. We will see later (Thm. 3.13) that this cannot be ex-
tended to the case when E is flat. But when R is a Dedekind domain
we do have the following generalization.

THEOREM 3.6. If R is a Dedekind domain, {E3)jBJ is a family
of flat R-modules such that f is injective for every E5 (e.g. E5 is
projective), and E is isomorphic to a pure submodule of Π Ej9 then
f is injective for all families (F{).

Proof. Consider the following diagram where all maps are the
obvious ones
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Π i S Ώ . i ΐ [ ( Π . i ® ) Π Π
J I I J I J

'
\'

fx and f2 are injective (Prop. 3.2) and / 3 is injective by hypothesis.
Therefore, / 4 ° / s ° Λ = Λ ° / is injective. Hence / is injective. Now
apply Prop. 2.1.

REMARK 1. We have not used any specific property of Dedekind
domains in Thm. 3.6. The theorem holds for any ring for which /
is injective for flat families

REMARK 2. If in Thm. 3.6, J is infinite then Π/ Z is not free
(e.g. [8, Thm. 19.2]). Indeed it is not hard to see that in any
presentation of Π J Z there are infinitely many defining relations [8,
p. 95, Ex. 6]. Thus Thm. 3.6 genuinely enlarges the class of modules
E as described in Prop. 2.2 for which / is injective.

COROLLARY 3.7. If R is a Dedekind domain, (Ed)jeJ is an inverse
system of flat R-modules such that f is injective for every Ej (e.g. E3-
is projective), and E = lim Ej then f is injective.

Proof. By Lemma 3.4, lim Eό is pure in Π Ej Now apply

Thm. 3.6. *
There is a characterization of modules E for which / is injective

in terms of groups of homomorphisms. First a crucial result of D.
Lazard.

THEOREM 3.8. (Lazard, [11].) A right R-module E is flat iff E
is the direct limit of fg free modules.

DEFINITION 3.9. If R is commutative and E and F are iϋ-modules
we will call the module Hom^ (E, F) the F-dual of E.

The i?-dual of E is commonly called, simply, "the dual of E".
Henceforth we will omit the R when writing Hom^ {E, F).
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THEOREM 3.10. If R is a Dedekind domain and E is a flat R-
module then f is injective for E iff f is injective for all E-duals.

Proof. If / is injective for all i?-duals then / is injective for
the J^-dual of R, Hom {R, E) ** E.

Suppose, on the other hand, that / is injective for E. To show
/ is injective for all E'-duals it suffices to consider the j^-duals of
flat modules since if T is the torsion submodule of an arbitrary module
F then Hom (F, E) ** Hom (F/T, E). But if F is flat then F & limFj

where Fd is fg and free, say of rank %. Therefore, Hom (F, E) *=&
Hom (limi^ , E) ^ lim Hom (Fh E) where Hom (Fh E) e* Έnκ Since /

is injective for Hom (Fj9 E) (Prop. 2.1) and Hom (Fh E) is flat, / is
injective for lim Hom (Fj9 E) (Cor. 3.7). Hence / is injective for

Hom(jP, E). *~

REMARK 1. Suppose R is a Dedekind domain, (E3) is family of
flat modules, Er is a pure submodule of the flat module E, and / is
injective for E and every Eό. Then (a) / is injective for 0 Es (Prop.
2.1), (b) / is injective for Π Eό (Thm. 3.6), and (c) / is injective
for E' (Prop. 2.1). By Thm. 3.10 we also know (a') / is injective for
all 0 ^-duals, (b') / is injective for all Π EΓά\x?λ$, and (c') / is
injective for all £"-duals. ((a) and (a') are actually special cases of
(c) and (c') respectively.) It is perhaps worthwhile to note that
(a'), (b')> and (c') can be proved directly by noting the following
where F & lim Fλ is an arbitrary flat module, Fλ is free and of finite

rank nλ.
( i ) Hom (F, 0 Ej) is pure in Hom (F, Π Eά).
(ii) / i s injective for Hom (F, Π E3) ** Π Horn (F, E3) ™ Π lim Ep

by Cor. 3.7 and Thm. 3.6. *
(iii) Hom (F, E') ^ lim (E')n* is pure in Hom (F, E) & lim En* and

/ is injective for limEn* by Cor. 3.7.

REMARK 2. It is known that the Z-dual of a countable direct
product of copies of Z is free [6]. Thus E = Hom (F, Z) when F is
such a product does not enlarge beyond our previous knowledge our
class of flat groups E for vrhich / is injective.

In general when E is flat and / is injective for E it seems
largely unknown what the 2?-duals are. (Hom (ΐl°°Z, Z) w 0°° Z is the
only example we know.) Thus it is unclear how and if Thm. 3.10
does in fact enlarge the class of flat groups E for which / is injective.
The identity of such i<7-duals seems a matter of general and independent
interest.
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It is an easy consequence of [3, Ch. I, Ex. 8] that any right
module over a right noetherian ring possesses a maximal injective
submodule. The complement of this maximal injective submodule
has no injective submodules. Therefore, over a Dedekind domain, an
arbitrary module E can be written as a direct sum EX@E2@ Ez

where Ex is a direct sum of Jβ(P~)'s, E2 is a direct sum of quotient
fields K, and E% has no injective submodules. Since injectivity =
divisibility over a Dedekind domain [9, Thm. 6], it is consistent with
terminology in abelian groups to say E3 is reduced. We claim that
if / is injective for E then E is reduced, i.e., 2 ^ 0 E2 = 0. We need
the following lemmas.

LEMMA 3.11. If R is a Dedekind domain, P is a prime ideal
omd a e R — P then R/Pn is a-divisible for every positive integer n.

Proof. Define (Pn: a) = {b e R: ba e Pn}. To show

g: R/Pn > R/Pn

given by b + Pn > ab + Pn is bijective note that (Pn: a) = Pn. Thus
g is injective. But R/Pn has a (finite) composition series. Hence g
must be surjective.

LEMMA 3.12. If R is a Dedekind domain with prime ideal P,
F = IΪ2=i (R/Pn), and h is the canonical homomorphism R (x) F-+ i£(x)
F then h is not surjective.

Proof. Note that K (x) F is divisible. If im h were divisible then
for an arbitrary 0 Φ peP there would exist 1 (x) (6»)n=i εR ® F such
that 1 (x) (1 — pbn)n=i e ker h. But ker h is torsion [3, Ch. VII, Prop.
4.6], (One can see this directly.) Thus there is 0 Φ teR such that
t(l — pbn) = 0 for all n. Setting xn = 1 — pb'n where b'neR and b'n +
Pn — bn, we have txn e P \ Let m be the largest integer such that
tePm. If t $ P, let m = 0. We claim xm+1 e P.

If not there is y e R such that xm+1 y — 1 = s e P. So yxm+11 =
(1 + s)t = ί + st 6 P m + 1 . Thus ί G P m + 1 . Contradiction.

Since xm+1 = 1 — pb'm+u 1 = xm+1 + ί)6'w+1 e P. Contradiction. So
im Λ could not have been divisible.

THEOREM 3.13. If R is a Dedekind domain and f is injective
for E then E must be reduced.

Proof. By Prop. 2.1 it suffices to show for a given prime ideal
P there exists a family (Ft) such that / is not injective for K and
/ is not injective for R(P°°). We do this by choosing Fn = R/Pn, n =
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1, 2, . . . , and showing K(g)Fn = R(P~) <g)Fn = 0 but K® IK-!* 1 . =*
0 ^Λ(P-) (gJΠ^i Λ

Since i?(P~) and ϋΓ are divisible, R(P°°)(g)Fn = K®Fn - 0.
Set -F = Π?=i ί7* a n ( i denote by T the torsion submodule of F.

We have the exact sequence

>0

where K and F/T are nonzero flat modules. Since K (g) F/T Φ 0, K(g)
F Φ 0 by exactness.

Suppose Q is a prime different from P, m is a positive integer
and aeQm — P. Then i<\ is α-divisible for every n (Lemma 3.11).
So F is α-divisible. Hence R(Q°°) (x) F = 0. Therefore, i2(P°°) (x) F «
ίΓ/iί (x) F.

To show iΓ/i? ® F ^ 0 consider the exact sequence

R(g)F-^->K(g)F >K/R®F >0

where h is the obvious map. Lemma 3.12 says h is not surjective.
By exactness K/R (x) F Φ 0.

REMARK. Over a Dedekind domain a reduced module that is not
flat is either (1) a direct sum of a flat module and a finite direct
sum of modules of type RjPn where P is prime, or (2) has an infinite
proper chain of direct summands each summand itself a finite direct
sum of modules of type R/Pn [9, Thm. 9].

Since / is injective for any module of type R/Pn (Prop. 1.3),
injectivity for modules of type (1) reduces to injectivity of reduced
flat modules. Although we have some important examples of reduced
flat modules for which / is injective, / need not be injective for such
a module. This is shown by Prop. 3.15.

It is also true that / need not be injective for modules of type
(2). This is shown by Prop. 3.14.

PROPOSITION 3.14. Suppose p is a prime integer and

Then f is not injective for E. (Obviously E is of type (2).)

Proof. Choose a prime q different from p. Let F = Π"=i Z(qn)
and denote by S and T the torsion subgroups of E and F respectively.
Consider the exact sequence

Since E/S and E/T are nonzero and flat, EjS®FIT Φ 0. By exact-
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ness, E (g) F Φ 0.
To complete the proof note that E (x) Z(qn) = 0 for every integer n.

REMARK. It is easy to check that Π Z(p) where p ranges over
the primes is another group of type (2) for which / is not injective.

PROPOSITION 3.15. Suppose E is a reduced torsion free abelian
group that is divisible for a prime integer p. Then f is not injective
for E.

Proof. Since E is p-divisible, E (x) Z{pn) — 0 for all positive
n. Therefore Π~=i (E (g) Z(p*)) = 0.

If F = Π"=i Z(pn) and T is the torsion subgroup of F consider
the exact sequence

E(g)F >E(g)F/T >0 .

Since E and F/T are nonzero and torsion free E®F/TφQ. By exact-
ness, E (x) F Φ 0.

Since E® ΠϊU Z(pn) Φ 0 and Π {E®Z{pn)) = 0,

/: E ® Π W) » Π (^ ® Z{pn))

is not injective.

REMARK 1. There are many examples of reduced torsion free
groups that are divisible for a prime p. For a prime q different from
p, the g-adic integers are such a group. The integers localized at
q, Zq, is another common example.

Concerning Zq, if E is any torsion free group of rank 1 whose
type is (kl9 kz, •••), then E is reduced and divisible for p iff the kn

corresponding to p is oo but at least one other kn is finite. (For the
notion of type and a discussion of torsion free groups of rank 1 see
[7].)

REMARK 2. We do not know if for every prime integer p, E is
not ^-divisible then / is injective. However, we have since shown
this is true for rank 1 torsion free groups.

We have following interesting corollary to Thm. 3.13.

COROLLARY 3.16. If R is a Dedekind domain and (Ft) is a flat
family such that E 0 Ft is reduced then E (x) Π F< is reduced.

Proof. JKE^Fi) is reduced and / is injective (Prop. 3.2).
Therefore E®ΐlFi is reduced.
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REMARK. A special case is when E is reduced. Then E (x) Π R
is reduced where the product is arbitrary

4* Commutative artinian rings* Matlis [12, Thm. 3.11] has
shown that over a commutative artinian ring all indecomposable
injective modules are fg. And we have seen that / is injective for
all flat families {F^) iff R is right noetherian and / is injective for
all flat families (Ft) whenever E is indecomposable injective (Prop.
2.4). Therefore, by Prop. 1.3 we know the following

THEOREM 4.1. Over a commutative artinian ring f is injective
for all flat families (Ft).

REMARK 1. It is possible to prove this theorem by purely ele-
mentary methods, without resorting to Matlis' result.

REMARK 2. Thm. 4.1 endows commutative artinian rings with
the property that was necessary to prove Thm. 3.6. (See Remark 1,
following that theorem.) We have, therefore, the following

THEOREM 4.2. If R is commutative artinian, {E3) is a family
of flat modules, f is injective for E3 , and E is a pure submodule
of Π Ej, then f is injective for all families (Ft).

REMARK. Thm. 4.2 can be derived in a different way by noting
that over a commutative artinian ring every flat module is projective
[1] and that the direct product of projective modules is projective [4].

We do not know that if R is commutative artinian then / is
always injective. But if / does have this property R must be
commutative artinian. To prove this we need two lemmas. A mul-
tiplicative subset of R will always be assumed to possess 1 and not
0. If reR then (r) will denote the ideal generated by r.

LEMMA 4.3. Suppose S is a multiplicative subset of the commu-
tative ring R. Then

Sf](Π (*)) Φ 0 iff S~'R (x) Π R/(s) = 0 .
seS sεS

Therefore, if f is injective we have SO (Π esW) Φ 0 for all mul-
tiplicative subsets S of R.

Proof. For convenience we will write R/(s) as s and omit the
index set of products and intersections when this set is obviously S.
Note that S^R (g) Π s ** S^fll β)» naturally.
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If teSn(C) 00) and x/u e S^(U s) then x/u = tx/tu = 0/tu = 0.
So S ί l ( n 00) Φ 0 implies SrγR ® Π s - 0 .

If, on the other hand, S^R (x) Π s = 0 then (1 + (s))s e S/l = 0
in S^HΠ *0 So there exists ί e S such that ί e Π (s). Hence

s n ( n 00) ̂  0 .

For the rest, note that for s e S, S^R (x) s = 0. So Π (S" 1^ (x)
s) = 0. Hence if / is injective, it must be true that S~*R (x) Π s = 0.
Therefore, by the first part of the lemma, S Γ\ (Γ) (s)) Φ 0 .

LEMMA 4.4. If R is a commutative ring such that for every
prime ideal P, (R — P) Π (Γϊsep (s)) Φ 0, then every prime ideal is
maximal. In particular, if R is a domain then R is a field.

Proof. If t e (R - P) n ( f W 00) then t + Pefis.P ((s) + P)/P.
So t + P e ((£2) + P)/P. Hence there exists reR such that t - rt2 =
t(l - rt) eP. So 1 - rt e P. This says t + P is a unit in #/P.

If seR-P then ί + P e ((s) + P)/P. Since t + P is a unit in JS/P,
(s) + p r= # . Choose b e R such that sb-leP. Then (s + P)(b + P) =
1 + P, i.e., s + P is a unit in R/P. Hence P is maximal.

THEOREM 4.5. If R is a commutative ring and f is always
injective then R is artinian.

Proof. By Lemma 4.3 (R - P) Π (Πs,p 00) Φ 0 for all prime ideals
P. Therefore, every prime ideal is maximal (Lemma 4.4). But R
must be noetherian (Prop. 2.4). Since R is noetherian with every
prime ideal maximal, it is a standard result that R must be artinian.

Since an artinian domain is necessarily a field we have the following
immediate corollary.

COROLLARY 4.6. If R is a domain and f is always injective
then R is a field.

As already remarked we do not know if the converse to Thm.
4.5 is true. There are, however, important classes of artinian rings
over which / is injective. For example, suppose R is a proper quo-
tient of a Dedekind domain. Then any ϋJ-module can be considered
as a module, say E, over a Dedekind domain, this module having
nontrivial annihilator. A classical result of Prϋfer [10, Thm. 6] tells
us that E is a direct sum of cyclic submodules. Since / is injective
on each summand (Prop. 1.3), / is injective on all of E (Prop. 2.1).

A proper quotient of a Dedekind domain is a direct sum of rings
each of whose lattices of ideals is finite and totally ordered by inclusion.
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Any ring, not necessarily commutative, whose left and right free
modules of rank 1 have unique composition series has been called a
serial ring [5].

THEOREM 4.7. (Eisenbud and Griffith, [5].) // R is a serial
ring then any right R-module is a direct sum of submodules with
unique composition series.

In particular every module over a serial ring is a direct sum of
finitely generated submodules. We have as an immediate consequence
of this and Propositions 1.3 and 2.1, the following.

PROPOSITION 4.8. If R is a serial ring then f is always injective.
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