O-2-TRANSITIVE ORDERED PERMUTATION GROUPS

STEPHEN H. MCCLEARY

The group of all automorphisms of a chain Ω forms a lattice-ordered group $A(\Omega)$ under the pointwise order. Let G be an *l*-subgroup of $A(\Omega)$ which is o-2-transitive, i.e., for any $\beta < \gamma$ and $\sigma < \tau$, there exists $g \in G$ such that $\beta g = \sigma$ and $\gamma g = \tau$. It is shown that G is a complete subgroup of $A(\Omega)$ if and only if G is completely distributive if and only if G contains an element $\neq 1$ of bounded support. There is a discussion of the pathological groups in which these conditions are absent.

1. The dichotomy among o-2-transitive groups. The group $A(\Omega)$ or order-preserving permutations (automorphisms) of a chain Ω becomes a lattice-ordered group (*l*-group) when ordered pointwise, i.e., $f \leq g$ if and only if and only if $\beta f \leq \beta g$ for all $\beta \in \Omega$. We assume throughout this paper that (G, Ω) is an *l*-permutation group, i.e., that G is an *l*-subgroup of $A(\Omega)$ (simultaneously a subgroup and a sublattice).

Let $\overline{\Omega}$ be the completion by Dedekind cuts (without end points) of Ω . Each $g \in G$ can be extended uniquely to an order-preserving permutation (o-permutation) of $\overline{\Omega}$, which will also be denoted by g. For $\overline{\omega} \in \overline{\Omega}$, let $G_{\overline{\omega}}$ be the stabilizer subgroup $\{g \in G \mid \overline{\omega}g = \overline{\omega}\}$. $G_{\overline{\omega}}$ is a prime subgroup of G (i.e., a convex *l*-subgroup of G such that $g_1 \wedge g_2 = 1$, with $g_1, g_2 \in G$, implies $g_1 \in G_{\overline{\omega}}$ or $g_2 \in G_{\overline{\omega}}$). If G is transitive on Ω , then of course all G_{α} 's $(\alpha \in \Omega)$ are conjugate in G.

The author showed in [5, Theorem 7] that for a transitive *l*-subgroup G of $A(\Omega)$, the following are equivalent:

(1) G_{α} is a closed subgroup of G for one (hence every) $\alpha \in \Omega$, i.e., if $g = \bigvee_{i \in I} g_i$ with each $g_i \in G_{\alpha}$, then $g \in G_{\alpha}$.

(2) G is a complete subgroup of $A(\Omega)$, i.e., if in $G, g = \bigvee_{i \in I} g_i$, then also in $A(\Omega), g = \bigvee_{i \in I} g_i$.

(3) Sups in G are pointwise, i.e., if $g = \bigvee_{i \in I} g_i$ with each $g_i \in G$, then for each $\beta \in \Omega$, βg is the sup in Ω of $\{\beta g_i \mid i \in I\}$.

Moreover, it was shown in [5, Corollary 15] that in the presence of these conditions, we have

(4) G is a completely distributive l-group, i.e., $\bigwedge_{i \in I} \bigvee_{k \in K} g_{ik} = \bigvee_{f \in K^{I}} \bigwedge_{i \in I} g_{if(i)}$ for any collection $\{g_{ik} \mid i \in I, k \in K\}$ of G for which the indicated sups and infs exist.

The distributive radical D(G) is the intersection of the closed prime subgroups of G [1, Theorem 3.4]. $D(G) = \{1\}$ iff G is completely distributive [1, Corollary 3.8]; and at the opposite extreme, D(G) = Giff G has no closed prime subgroups $\neq G$. The support Supp (k) of $k \in G$ means $\{\omega \in \Omega \mid \omega k \neq \omega\}$; it is bounded if there exist $\beta, \gamma \in \Omega$ such that $\beta < \text{Supp}(k) < \gamma$ (i.e., $\beta < \sigma < \gamma$ for all $\sigma \in \text{Supp}(k)$). It is well known (see, for example, the proof of [2, Theorem 6]) that the elements of bounded support in an o-2-transitive *l*-permutation group G form an *l*-ideal L of G which is contained in all *l*-ideals \neq {1}. If G contains no element \neq 1 of bounded support, so that $L = \{1\}$, then with an eye on the next theorem, we shall say that G is a pathologically o-2-transitive group.

MAIN THEOREM 1. Suppose that (G, Ω) is an o-2-transitive l-permutation group. Then conditions (1), (2), (3), and (4) are all equivalent, and they fail if and only if G is pathological. Moreover, in the pathological case, G has no proper closed prime subgroups, so that the distributive radical D(G) = G.

Proof. First, assume that G has an element $\neq 1$ of bounded support. Then since G is o-2-transitive, given any nondegenerate interval Δ of Ω , G has an element $\neq 1$ with support a subset of Δ . Now suppose $g = \bigvee_{i \in I} g_i$, with $1 < g \in G \setminus G_{\alpha}$ and each $g_i \in G_{\alpha}$. Pick $1 > h \in G$ such that Supp $(h) \subseteq (\alpha g^{-1}, \alpha)$, where the usual notation is used for intervals of Ω . Then for each $i \in I$, $g_i \leq hg < g$ (since when $\eta \in \text{Supp}(h)$, $\eta g_i < \alpha < \alpha hg$), a contradiction. Therefore, G_{α} is closed, and the other conditions follow.

Now assume that G lacks elements $\neq 1$ of bounded support. We can express an arbitrary $1 < g \in G$ as $\bigvee_{i \in I} g_i$ with each $g_i \in G_{\alpha}$, as follows: For each $\beta \notin [\alpha g^{-1}, \alpha]$, we have either $\alpha < \beta \leq \beta g$, or else $\beta \leq \beta g < \alpha$, so we may use o-2-transitivity to pick $g_{\beta} \in G_{\alpha}$ such that $\beta g_{\beta} = \beta g$. Now $g = \bigvee (g_{\beta} \land g)$, for if $g_{\beta} \land g \leq h < g$ for each β , then Supp $(h^{-1}g) \subseteq [\alpha g^{-1}, \alpha]$, violating the hypothesis, since for $\beta \notin [\alpha g^{-1}, \alpha]$, we have $\beta g = \beta(g_{\beta} \land g) \leq \beta h \leq \beta g$. Since each $g_{\beta} \land g \in G_{\alpha}$, G_{α} is not closed in G.

It remains only to show that in the pathological case, G contains no proper closed prime subgroup, for then D(G) = G and G is not completely distributive. Suppose P is such a subgroup. In [6, Corollary 4], it is shown that every closed convex l-subgroup of an l-permutation group (G, Ω) must be $\bigcap \{G_{\overline{w}} \mid \overline{\omega} \in \overline{A}\}$ for some $\overline{A} \subseteq \overline{\Omega}$. (In [6], it is assumed that G is a complete subgroup of $A(\Omega)$, so that the $G_{\overline{w}}$'s will be closed, but no other use is made of completeness.) But in fact the $G_{\overline{w}}$'s are closed, for P is closed, and in any l-group, a prime subgroup containing a closed prime is itself closed [1, Lemma 3.3]. But it was shown above that no $G_{\alpha}, \alpha \in \Omega$, is closed; and in view of the following lemma, the proof also applies to $G_{\overline{w}}, \overline{\omega} \in \Omega$.

LEMMA 2. Let (G, Ω) be an o-2-transitive l-permutation group.

Let $\bar{\omega} \in \bar{\Omega}$, and let $\beta, \gamma \in \Omega$ with either $\bar{\omega} < \beta < \gamma$, or $\beta < \gamma < \bar{\omega}$. Then there exists $g \in G_{\bar{\omega}}$ such that $\beta g = \gamma$.

Proof. Suppose that $\bar{\omega} < \beta < \gamma$, and pick $\alpha \in \Omega$ such that $\bar{\omega} < \alpha < \beta < \gamma$. Use o-2-transitivity to pick $k \in G$ such that $\alpha k < \bar{\omega}$ and $\beta k = \gamma$, and take g to be $k \vee 1$. The other case is similar. This concludes the proofs of the lemma and the theorem.

Incidentally, conditions (1), (2), (3), and (4) still make sense when G is any subgroup (not necessarily an *l*-subgroup) of $A(\Omega)$; and if G is *o*-2-transitive and contains an element $\neq 1$ of bounded support, these conditions hold. (The first paragraph of the proof of Theorem 1 can easily be adapted to show that sups are pointwise. From this (2) and (1) follow as in [5], and (2) implies (4).)

If $\omega g \neq \omega$, $\{\gamma \in \Omega \mid \omega g^{-n} < \gamma < \omega g^n \text{ for some integer } n\}$ is called an *interval of support* of g; and in [5], G is said to be *depressible* if for every $g \in G$ and every interval of support \varDelta of g, there exists $k \in G$ such that $\omega k = \omega g$ if $\omega \in \varDelta$, but $\omega k = \omega$ if $\omega \notin \varDelta$. Convex *l*-subgroups of $A(\Omega)$ are automatically depressible.

PROPOSITION 3. Depressible o-2-transitive l-permutation groups are never pathological.

Proof. The following lemma establishes the existence of an element having a bounded interval of support, and depressibility does the rest.

LEMMA 4. Let (G, Ω) be an o-2-transitive l-permutation group. Then, for every positive integer $n, (G, \Omega)$ is o-n-transitive, i.e., if $\beta_1 < \cdots < \beta_n$ and $\gamma_1 < \cdots < \gamma_n$, there exists $g \in G$ such that $\beta_i g = \gamma_i$, $i = 1, \dots, n$.

Proof. Given $\beta_1 < \cdots < \beta_n$ and $\gamma_1 < \cdots < \gamma_n$, we may suppose by induction that there exists $h \in G$ such that $\beta_i h = \gamma_i$, $i = 1, \dots, n-1$. If $\beta_n h \ge \gamma_n$, we use o-2-transitivity to pick $k \in G$ such that $\beta_1 k = \gamma_{n-1}$ and $\beta_n h = \gamma_n$. Now $\beta_i(h \wedge k) = \gamma_i$, $i = 1, \dots, n$. If $\beta_n h < \gamma_n$, a similar argument works.

2. Pathologically o-2-transitive groups. The following example of a pathological group was given by Holland in [3, p. 433]. Let Ω be the reals and let G be the *l*-subgroup of $A(\Omega)$ consisting of those o-permutations g of Ω for which there exists a positive integer $n = n_g$ such that $(\omega + n)g = \omega g + n$ for all $\omega \in \Omega$. Lloyd [4, p. 399] used very special properties of this example to show that G is not completely distributive (cf. Theorem 1), but is *l*-simple (has no proper *l*-ideals). Are all pathological groups *l*-simple? The author has been unable to settle this question, but attempts to construct additional examples of pathological groups seem to lead inevitably to some sort of periodicity sufficient to guarantee l-simplicity, as in the following modification of Holland's example.¹

As in that example, let Ω be the reals. Now let H be the lsubgroup of $A(\Omega)$ consisting of those o-permutations h of Ω having the property that for all $\omega \in \Omega$, there exists a positive integer $n = n_{h,\omega}$ such that $(\omega + qn)h = \omega h + qn$ for all integers q. (For definiteness, let $n_{h,\omega}$ be the least positive integer having this property.) H contains the previous group G and is also pathologically o-2-transitive. H and G are not isomorphic as l-groups, for there exists $1 < z \in G$ (defined by $\omega z = \omega + 1$) such that every $g \in G$ commutes with some z^p , p > 0, whereas it can be shown that H contains no such element z.

Of course, still other examples can be obtained by letting Ω be the rationals (or other appropriate subgroup of the reals) and proceeding in either of the two ways already mentioned.

Lloyd's proof of the *l*-simplicity of the first example does not apply to the modification. However, all of the above examples can be shown to be *l*-simple by the following fairly similar argument, which will be phrased in terms of the modified group *H*. Let $\{1\} \neq L$ be an *l*-ideal of *H*. Since for every $1 < h \in H$, $\{\omega h - \omega \mid \omega \in \Omega\}$ has an upper bound, namely $0h - 0 + n_{k,0}$, we shall have L = H provided there exists $\varepsilon > 0$ such that the translation $\omega \to \omega + \varepsilon$ is exceeded by some $g \in L$. Now pick $1 < k \in L$ and $\alpha \in \Omega$ such that $\alpha k > \alpha$. Let *t* be the translation $\omega \to \omega + (\alpha k - \alpha)$, and let *p* be an integer such that $p(\alpha k - \alpha) > n_{k,\alpha}$. Let $k_1 = k$, let $k_i = t^{-1}k_{i-1}t$ ($i = 2, \dots, p$), and let $g = k_1 \cdots k_p \in L$. The reader can verify that $(\alpha + qn_{k,\alpha})g = \alpha g +$ $qn_{k,\alpha}$ for all integers *q*, so that $n_{g,\alpha} \leq n_{k,\alpha}$. Now $\alpha + n_{g,\alpha} \leq \alpha + n_{k,\alpha} <$ αg . Hence *g* exceeds the translation $\omega \to \omega + \varepsilon$, where $\varepsilon = \alpha g (\alpha + n_{g,\alpha})$.

As mentioned above, it may be the case that all pathologically o-2-transitive groups are l-simple. At any rate, any proper l-ideal must itself be a pathologically o-2-transitive group, as we proceed to prove.

An o-block of a transitive *l*-permutation group (G, Ω) is a nonempty convex subset Δ of Ω having the property that for any $g \in G$, either $\Delta g = \Delta$ or Δg does not meet Δ . The o-block system $\widetilde{\Delta}$ determined by Δ is the set of translates Δg ($g \in G$), a partition of Ω . If Δ contains more than one point and $\Delta \neq \Omega$, $\widetilde{\Delta}$ is proper. G is o-primitive if it has no proper o-block systems.

LEMMA 5. Let (G, Ω) be a transitive l-permutation group, and let L be a proper l-ideal of G which is intransitive on Ω . Then the

¹ Andrew Glass has recently shown that pathological groups need not be l-simple, and need not be periodic in any sense.

orbits of L form a proper o-block system of G.

Proof. The analogous statement for nonordered permutation groups is precisely Proposition 7.1 of [7]. Here the fact that L is an *l*-ideal forces the blocks to be convex.

THEOREM 6. Let (G, Ω) be a (pathologically) o-2-transitive l-permutation group, and let $\{1\} \neq L$ be an l-ideal of G. Then (L, Ω) is also (pathologically) o-2-transitive.

Proof. o-2-transitive groups are certainly o-primitive, so by the lemma, L must be transitive on Ω . Let $\alpha < \beta < \gamma$, all in Ω . Pick $1 \leq g \in G_{\alpha}$ such that $\beta g = \gamma$, and pick $1 \leq k \in L$ such that $\beta k \geq \gamma$. Then $1 \leq k \wedge g \leq k \in L$, so $k \wedge g \in L_{\alpha}$, and $\beta(k \wedge g) = \gamma$. Hence $\{\beta \in \Omega \mid \beta > \alpha\}$ is all one orbit of G_{α} , from which it follows easily that L is o-2-transitive. Certainly if G contains no element $\neq 1$ of bounded support, neither does L.

References

1. R. D. Byrd and J. T. Lloyd, Closed subgroups and complete distributivity in latticeordered groups, Math. Zeit., **101** (1967), 123-130.

2. C. Holland, The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J., 10 (1963), 399-408.

3. ____, Transitive lattice-ordered permutation groups, Math. Zeit., 87 (1965), 420-433.

4. J. T. Lloyd, Complete distributivity in certain infinite permutation groups, Michigan Math. J., 14 (1967), 393-400.

5. S. H. McCleary, *Pointwise suprema of order-preserving permutations*, Illinois J. Math., **16** (1972), 69-75.

6. _____, The closed prime subgroups of certain ordered permutation groups, Pacific J. Math., **31** (1969), 745-753.

7. H. Wielandt, Finite Permutation Groups, Academic Press, New York, N.Y., 1964.

Received May 24, 1973.

UNIVERSITY OF GEORGIA