THE LATTICE-ORDERED GROUP OF AUTOMORPHISMS OF AN α -SET

STEPHEN H. MCCLEARY

The group of all automorphisms of a chain Ω forms a lattice-ordered group $A(\Omega)$ under the pointwise order. It is well known that if G is the symmetric group on \aleph elements $(\aleph \neq 6)$, then every automorphism of G is inner. Here it is shown that if Ω is an α -set, every *l*-automorphism of $A(\Omega)$ (preserving also the lattice structure) is inner. This is accomplished by means of an investigation of the orbits $\bar{\omega}A(\Omega)$ of Dedekind cuts $\bar{\omega}$ of Ω .

The same conjecture for arbitrary chains Ω has been investigated in [6], [4], and [8]. Lloyd proved in [6] that when Ω is the chain of rational numbers (i.e., the 0-set), or is Dedekind complete, every *l*-automorphism of $A(\Omega)$ is inner. He also stated this conclusion for α -sets in general, but a lacuna in his proof has been pointed out by C. Holland.

2. o-2-transitive groups $A(\Omega)$. An automorphism of a chain Ω is simply a permutation g of Ω which preserves order in the sense that $\omega < \tau$ if and only if $\omega g < \tau g$. The group $A(\Omega)$ of all automorphisms of Ω forms a lattice-ordered group (*l*-group) when ordered pointwise, i.e., $f \leq g$ if and only if $\omega f \leq \omega g$ for all $\omega \in \Omega$. We identify each $g \in A(\Omega)$ with its unique extension to $\overline{\Omega}$, the conditional completion by Dedekind cuts of Ω , and thus consider $A(\Omega)$ as an *l*-subgroup of $A(\overline{\Omega})$, i.e., as a subgroup which is also a sublattice.

An *l*-subgroup G of $A(\Omega)$ is o-2-transitive if for all β , γ , σ , $\tau \in \Omega$ with $\beta < \gamma$ and $\sigma < \tau$, there exists $g \in G$ such that $\beta g = \sigma$ and $\gamma g =$ τ . Ω is o-2-homogeneous if $A(\Omega)$ is o-2-transitive. (To avoid pathology, we assume throughout that Ω contains more than two points.) Corollary 16 of [8] states, for the special case in which Ω is o-2-homogeneous, that every *l*-automorphism ψ of $A(\Omega)$ is induced by an inner automorphism π of the larger group $A(\overline{\Omega})$, say $\pi: h \to f^{-1}hf$, f a fixed element of $A(\overline{\Omega})$; and that Ωf is an orbit $\overline{\omega}A$ of $A(\Omega)$, for some $\overline{\omega} \in \overline{\Omega}$. Thus, as was essentially obtained by Lloyd in [6] by methods different from those in [8], we have

THEOREM 1 (Lloyd). If Ω is o-2-homogeneous, then every l-automorphism of $A(\Omega)$ is inner, provided that no orbit $\bar{\omega}A(\Omega)$, $\bar{\omega} \in \bar{\Omega} \backslash \Omega$, is o-isomorphic to Ω .

It may be that the proviso that no orbit $\bar{\omega}A(\Omega)$, $\bar{\omega} \in \bar{\Omega} \setminus \Omega$, be *o*-isomorphic to Ω is satisfied by every *o*-2-homogeneous Ω ; this is an

open question.¹ We shall find at any rate that the proviso holds when Ω is an α -set.

For any $\overline{\omega} \in \overline{\Omega}$, Ω o-2-homogeneous, the orbit $\overline{\omega}A(\Omega)$ is dense in $\overline{\Omega}$. For $g \in A(\Omega)$, form $\hat{g} \in A(\overline{\omega}A(\Omega))$ by first extending g to $\overline{\Omega}$ and then restricting to $\overline{\omega}A(\Omega)$. The map $g \to \hat{g}$ is an *l*-isomorphism of $A(\Omega)$ into $A(\overline{\omega}A(\Omega))$. We shall write $(A(\Omega), \overline{\omega}A(\Omega))$ when considering $A(\Omega)$ to act on $\overline{\omega}A(\Omega)$, and shall say that $(A(\Omega), \overline{\omega}A(\Omega))$ is entire if the *l*-isomorphism is onto $A(\overline{\omega}A(\Omega))$.

PROPOSITION 2. Suppose that $A(\Omega)$ is o-2-transitive on Ω , and let $\overline{\omega} \in \overline{\Omega} \setminus \Omega$. Then $A(\Omega)$ is also o-2-transitive on $\overline{\omega}A(\Omega)$.

Proof. Let $\overline{\beta}$, $\overline{\gamma}$, $\overline{\sigma}$, $\overline{\tau} \in \overline{\omega}A(\Omega)$, with $\overline{\beta} < \overline{\gamma}$ and $\overline{\sigma} < \overline{\tau}$. Since $A(\Omega)$ is o-2-transitive on Ω , we can pick $f \in A(\Omega)$ such that $\overline{\beta}f \leq \overline{\sigma}$ and $\overline{\gamma}f \geq \overline{\tau}$. Since $\overline{\sigma}, \overline{\beta}$, and $\overline{\beta}f$ all lie in the same orbit of $(A(\Omega), \overline{\Omega})$, we can pick $1 \leq g \in A(\Omega)$ such that $\overline{\beta}fg = \overline{\sigma}$; then $\overline{\gamma}fg \geq \overline{\gamma}f \geq \overline{\tau}$. Letting $r = fg \in A(\Omega)$, we have $\overline{\beta}r = \overline{\sigma}$ and $\overline{\gamma}r \geq \overline{\tau}$. Similarly, there exists $s \in A(\Omega)$ such that $\overline{\gamma}s = \overline{\tau}$ and $\overline{\beta}s \geq \overline{\sigma}$. Letting $t = r \wedge s$, we have $\overline{\beta}t = \overline{\sigma}$ and $\overline{\gamma}t = \overline{\tau}$. Hence $A(\Omega)$ is o-2-transitive on $\overline{\omega}A(\Omega)$.

3. Characters of points and holes of Ω . By a hole in Ω we shall mean an $\overline{\omega} \in \overline{\Omega} \backslash \Omega$. We now give some terminology from [2, pp. 142-4], assuming for convenience that Ω is o-2-homogeneous (and thus dense in itself). An ordinal number ω_{β} is regular if it is an initial ordinal and all of its cofinal subsets have cardinality \bigotimes_{β} . We say that the point or hole $\overline{\omega}$ has character $c_{\beta\tau}$ if ω_{β} is the unique regular ordinal which is o-isomorphic to a cofinal subset of $\{\sigma \in \Omega \mid \sigma < \overline{\omega}\}$ (or equivalently, if \bigotimes_{β} is the smallest cardinality of any cofinal subset of $\{\sigma \in \Omega \mid \sigma < \overline{\omega}\}$, and dually for ω_{τ} . Since orbits $\overline{\tau}A(\Omega)$ are dense in $\overline{\Omega}$, we can when convenient consider instead cofinal subsets of $\{\sigma \in \overline{\tau}A(\Omega) \mid \sigma < \overline{\omega}\}$. Of course, all elements of the orbit $\overline{\omega}A(\Omega)$ have the same character as $\overline{\omega}$; and one such orbit is Ω , so that all points have the same character.

PROPOSITION 3. Let Ω be o-2-homogeneous. Suppose there exists a hole $\bar{\omega}$ having the same character as the points in Ω , and suppose that the orbit $\bar{\omega}A(\Omega)$ contains all holes of this character. Then $(A(\Omega), \bar{\omega}A(\Omega))$ is entire.

Proof. If $\overline{\tau} \in \overline{\Omega}$, $h \in A(\overline{\omega}A(\Omega))$, then $\overline{\tau}$ and $\overline{\tau}h$ must have the same character. Since Ω consists of all $\overline{\tau} \in \overline{\Omega} \setminus \overline{\omega}A(\Omega)$ whose character is that of the points of Ω , we must have $\Omega h = \Omega$. The proposition follows.

The reader can prove the following rather easy proposition himself,

 $^{^1}$ C. Holland has recently discovered an o-2-homogeneous chain $\mathcal Q$ for which the proviso fails.

or he can refer to the proof of Theorem 5.

PROPOSITION 4. Let Ω be o-2-homogeneous. If there exists a hole $\bar{\omega}$ of character c_{00} , then $\bar{\omega}A(\Omega)$ is the set of all holes of character c_{00} . Hence if the points of Ω have character c_{00} , $(A(\Omega), \bar{\omega}A(\Omega))$ is entire.

4. α -sets. If Γ and Δ are subsets of a chain Ω , we write $\Gamma < \Delta$ if and only if $\gamma < \delta$ for all $\gamma \in \Gamma$, $\delta \in \Delta$. Let α be an ordinal number. An α -set is a chain Ω of cardinality \Re_{α} in which for any two (possibly empty) subsets $\Gamma < \Delta$ of cardinality less than \aleph_{α} , there exists $\omega \in$ Ω such that $\Gamma < \omega < \Delta$. If ω_{α} is a regular ordinal, then (assuming the generalized continuum hypothesis) there exists an α -set, and it is unique up to σ -isomorphism [2, pp. 179–181]. It is easy to deduce from the definition of an α -set (or see [2, p. 179], which is not so easy) that if Ω is an α -set, its points have character $c_{\alpha\alpha}$ (so that Ω is σ -2-homogeneous); that each hole has character $c_{\alpha\beta}$ or $c_{\beta\alpha}$ for some $\beta \leq \alpha$ with ω_{β} regular; and that each of these characters actually is the character of some hole. (Holes of a given nonsymmetric character can be obtained as limits of monotone transfinite sequences of points of Ω . For $c_{\alpha\alpha}$ holes, see Proposition 6.)

THEOREM 5. Let Ω be an α -set. Then every orbit of $(A(\Omega), \overline{\Omega})$ consists of the set of all holes of a given character (except for Ω , which consists of points).

Proof. We must show that any two holes of the same character lie in the same orbit of $A(\Omega)$. By duality, it suffices to show that for any two $c_{\beta\alpha}$ holes $\overline{\tau}_1$ and $\overline{\tau}_2$ ($\beta \leq \alpha$), the two sets $\Gamma_i = \{\sigma \in \Omega \mid \sigma < \overline{\tau}_i\}$, i = 1, 2, are o-isomorphic. Pick in Γ_i a strictly increasing cofinal sequence $\{\beta_i^n \mid n \in \omega_\beta\}$ indexed by ω_β . For each limit ordinal $\pi < \omega_\beta$, let $\overline{\gamma}_i^{\pi} = \sup \{\beta_i^n \mid n < \pi\} \in \overline{\Omega}$. Since ω_β is an initial number, any such $\overline{\gamma}_i^{\pi}$ has "left" character less than β , and hence is a hole with "right" character equal to α . Hence each $\Delta_i^{\pi} = \{\sigma \in \Omega \mid \overline{\gamma}_i^{\pi} < \sigma < \beta_i^{\pi}\}$ is an α -set. Also, each $\Delta_i^0 = \{\sigma \in \Omega \mid \sigma < \beta_i^0\}$ is an α -set, and for each ordinal $\lambda < \omega_\beta$, each $\Delta_i^{l+1} = \{\sigma \in \Omega \mid \beta_i^{\lambda} \leq \sigma < \beta_i^{\lambda+1}\}$ is an α -set. Hence for each $\mu < \omega_\beta, \Delta_i^{\mu}$ is o-isomorphic to Δ_2^{μ} . It is now easy to show that Γ_1 and Γ_2 are o-isomorphic.

The following result, which was pointed out to the author by Andrew Glass, can also be established by splicing together suitable α -sets.

PROPOSITION 6. Let Ω be an α -set, let Γ and Δ be subsets of cardinality less than \aleph_{α} , and let \mathcal{P} be an o-isomorphism from Γ onto Δ . Then \mathcal{P} can be extended to an automorphism Ω .

PROPOSITION 7. Let Ω be an α -set. Then each orbit $\bar{\omega}A(\Omega)$ has cardinality \aleph_{α} except for the orbit of $c_{\alpha\alpha}$ holes, which has cardinality $2^{\aleph \alpha}$.

Proof. By definition, card $(\Omega) = \aleph_{\alpha}$. By [1, Theorem 13. 23], card $(\overline{\Omega}) = 2^{\aleph \alpha}$. The number of distinct hole characters is no greater than \aleph_{α} . For any character $c_{\beta\alpha}$ or $c_{\alpha\beta}$ with $\beta < \alpha$, the number of holes of that character is of cardinality $\aleph \leq \aleph_{\alpha}$; and since the orbit of such holes is dense in $\overline{\Omega}$, $2^{\aleph} \geq \text{card}(\overline{\Omega}) = 2^{\aleph \alpha}$, so that $\aleph = \aleph_{\alpha}$. Hence $\{\overline{\omega} \in \overline{\Omega} \mid \overline{\omega} \text{ is not a } c_{\alpha\alpha} \text{ hole}\}$ has cardinality \aleph_{α} . Since card $(\overline{\Omega}) = 2^{\aleph \alpha}$, the number of $c_{\alpha\alpha}$ holes is also $2^{\aleph \alpha}$.

COROLLARY 8. No two orbits of $(A(\Omega), \overline{\Omega}), \Omega$ an α -set, are oisomorphic.

Proof. As mentioned after the definition of character, the character of $\bar{\omega}$ can be determined via the set $\bar{\omega}A(\Omega)$. Hence if $\bar{\omega}$ has character $c_{\alpha\beta}$ as determined by Ω , the points of the chain $\bar{\omega}A(\Omega)$ have character $c_{\alpha\beta}$ as determined by the chain $\bar{\omega}A(\Omega)$. Hence no two orbits associated with distinct characters can be *o*-isomorphic. Finally, Ω and the orbit of $c_{\alpha\alpha}$ holes cannot be *o*-isomorphic because they are of different cardinalities.

In view of Theorem 1, we have

MAIN COROLLARY 9. Every l-automorphism of the l-group $A(\Omega)$, Ω an α -set, is inner.

Since every chain can be o-embedded in a sufficiently large α -set [2, p. 181], we have

COROLLARY 10. Every chain can be embedded in a chain Ω such that every l-automorphism of $A(\Omega)$ is inner.

Since every *l*-group can be embedded in some $A(\Omega)$, Ω an α -set [3, Theorem 4], we also have

COROLLARY 11. Every l-group can be embedded in an l-group all of whose l-automorphisms are inner.

5. Representations. By a representation of an *l*-group G we mean *l*-isomorphism of G into some $A(\Sigma)$. In §2, o-2-transitive $A(\Omega)$'s were canonically represented as *l*-subgroups of $A(\bar{\omega}A(\Omega))$, $\bar{\omega} \in \bar{\Omega}$, and we identified $A(\Omega)$ with its image. Here we shall find that these constitute all the "nice" representations of $A(\Omega)$.

If G_i is an *l*-subgroup of $A(\Omega_i)$, i = 1, 2, an *o*-isomorphism from (G_1, Ω_1) onto (G_2, Ω_2) consists of an *o*-isomorphism ψ from Ω_1 onto Ω_2 and an *l*-isomorphism θ from G_1 onto G_2 such that $(\omega g)\psi = (\omega\psi)(g\theta)$ for all $\omega \in \Omega_1, g \in G_1$. In [4], Holland defined a transitive *l*-subgroup Gof $A(\Omega)$ to be weakly *o*-primitive if G is faithful on $\bar{\omega}G, \bar{\omega} \in \bar{\Omega}$, only when $\bar{\omega}G$ is dense in $\bar{\Omega}$. (For other formulations of the condition, see [4].) As a special case of [4, Theorem 7], we have

THEOREM 12 (Holland). Suppose that $A(\Omega)$ is o-2-transitive and let θ be a representation of $A(\Omega)$ as a weakly o-primitive l-subgroup of some $A(\Sigma)$. Then there is an o-isomorphism ψ from some $\bar{\omega}A(\Omega)$, $\bar{\omega} \in \bar{\Omega}$, onto Σ which, together with θ , furnishes an o-isomorphism from $(A(\Omega), \bar{\omega}A(\Omega))$ onto $((A(\Omega))\theta, \Sigma)$. In particular, the collection of $(A(\Omega), \bar{\omega}A(\Omega))$'s, $\bar{\omega} \in \bar{\Omega}$, constitute (up to o-isomorphism) all weakly oprimitive representations of $A(\Omega)$.

A representation θ of an *l*-group *G* is complete if it preserves arbitrary suprema and infima that exist in *G*, or equivalently, if $G\theta$ is a complete *l*-subgroup of $A(\Sigma)$ in the sense that arbitrary suprema (infima) that exist in $G\theta$ are also suprema (infima) in $A(\Sigma)$.

THEOREM 13. Theorem 12 remains valid if one considers complete transitive representations instead of weakly o-primitive representations.

Proof. First we show that each $(A(\Omega), \bar{\omega}A(\Omega)), \bar{\omega} \in \bar{\Omega}$, is indeed complete. For [8, Theorem 1] states that the stabilizer subgroup $A(\Omega)_{\bar{\omega}} = \{g \in A(\Omega) | \bar{\omega}g = \bar{\omega}\}$ is closed under arbitrary suprema and infima that exist in $A(\Omega)$, so that for $(A(\Omega), \bar{\omega}A(\Omega))$ the stabilizer subgroups of *points* are closed; and [7, Theorem 7] states that for transitive *l*-subgroups, this latter condition is equivalent to completeness.

Now let θ be any complete transitive representation of $A(\Omega)$ in some $A(\Sigma)$. Pick any $\sigma \in \Sigma$. Since $(A(\Omega))\theta$ is a complete subgroup of $A(\Sigma)$, the stabilizer subgroup $A(\Sigma)_{\sigma}$ is a closed prime subgroup of $A(\Sigma)$ (by [8, Theorem 1] again); while by [8, Theorem 11], every proper closed prime subgroup of $A(\Omega)$ is $A(\Omega)_{\overline{\omega}}$ for some $\overline{\omega} \in \overline{\Omega}$. Hence for some $\overline{\omega} \in \overline{\Omega}$, $(A(\Omega)_{\overline{\omega}})\theta = A(\Sigma)_{\sigma}$. Thus (see, for example, the proof of Lemma 14 of [4]) there exists an o-isomorphism ψ from $\overline{\omega}A(\Omega)$ onto Σ which, together with θ , furnishes an o-isomorphism from $(A(\Omega), \overline{\omega}A(\Omega))$ onto $((A(\Omega))\theta, \Sigma)$.

Unfortunately, there are generally other (neither weakly *o*-primitive nor complete) transitive representations of $A(\Omega)$, as is seen by the argument given in [4, p. 433] for Ω the reals.

In general there seems to be no guarantee that $(A(\Omega), \bar{\omega}A(\Omega))$'s will be nonisomorphic for distinct orbits of $A(\Omega)$, but by Corollary

8 we have

THEOREM 14. Let Ω be an α -set. Then the $(A(\Omega), \bar{\omega}A(\Omega))$'s are nonisomorphic for distinct orbits of $A(\Omega)$, and they constitute (up to o-isomorphism) all weakly o-primitive (alternately, all complete transitive) representations of $A(\Omega)$.

THEOREM 15. Let Ω be an α -set, and let Γ be the orbit of holes of character $c_{\alpha\alpha}$. If $\Delta = \Gamma$, or if $\Delta = \Omega$, then $(A(\Omega), \Delta)$ is entire, and Δ possesses an anti-automorphism. If $\Delta = \overline{\omega}A(\Omega)$, where $\overline{\omega}$ is a hole of character $c_{\beta\alpha}$ or $c_{\alpha\beta}$ ($\beta < \alpha, \omega_{\beta}$ regular), then $(A(\Omega), \Delta)$ is not entire, and the points of Δ are nonsymmetric, so that not even the intervals of the o-2-homogeneous chain Δ possess anti-automorphisms.

Proof. Proposition 3 and Theorem 5 establish that $(A(\Omega), \Gamma)$ is entire. Now let $\Delta = \bar{\omega}A(\Omega)$, $\bar{\omega}$ nonsymmetric. Pick any $\beta \in \Omega$ and any $c_{\alpha\alpha}$ hole $\bar{\gamma}$. Then $L(\beta) = \{\delta \in \Omega \mid \delta < \beta\}$ and $U(\beta) = \{\delta \in \Omega \mid \delta > \beta\}$ are α -sets, and similarly for $\bar{\gamma}$. By the uniqueness of α -sets, there exist o-isomorphisms f of $L(\beta)$ onto $L(\bar{\gamma})$ and g of $U(\beta)$ onto $U(\bar{\gamma})$. Define a map h by setting $\lambda h = \lambda f$ if $\lambda \in L(\beta)$, and $\lambda h = \lambda g$ if $\lambda \in$ $U(\beta)$. Since Δ is the set of all holes of a given character, $h \in A(\Delta)$, and by construction $\beta h = \bar{\gamma}$. Hence Ω and Γ lie in the same orbit of $A(\Delta)$, so that $(A(\Omega), \Delta) \neq (A(\Delta), \Delta)$.

Reversing the ordering of an α -set yields an α -set, so by the uniqueness of α -sets, Ω has an anti-automorphism, and it induces an anti-automorphism of Γ . Nonsymmetric holes have been discussed above.

COROLLARY 16. $\Pi = \Omega \cup \Gamma$ is o-2-homogeneous. The orbits of $A(\Pi)$ are, besides Π itself, precisely the orbits $\bar{\omega}A(\Omega)$ of $A(\Omega)$ for nonsymmetric $\bar{\omega}$. For each orbit Δ , $(A(\Pi), \Delta)$ is entire; and $(A(\Pi), \bar{\Omega})$ is entire. The representations $(A(\Pi), \Delta)$ constitute all the weakly o-primitive (alternately, complete transitive) representations of $A(\Pi)$. All l-automorphisms of $A(\Pi)$ are inner.

Proof. If $\alpha = 0$, so that Π is the reals, the conclusion (well known except for part about complete transitive representations) follows from Theorems 12, 13, and 1. Now suppose that $\alpha > 0$ and let $\Delta = \bar{\omega}A(\Omega)$, $\bar{\omega}$ nonsymmetric. By the proof of the theorem, all of Π lies in the same orbit Λ of $A(\Delta)$. Since Π consists of all holes in Δ of character $c_{\alpha\alpha}$, $\Pi = \Lambda$. By Proposition 2, Π is o-2-homogeneous. Since $A(\Omega) \subset A(\Pi)$ and Δ consists of all elements of $\bar{\Omega}$ of a given character, Δ is also an orbit of $A(\Pi)$. Since we have already established that Π is an orbit of $A(\Delta)$, $(A(\Pi), \Delta)$ is entire. Also, Π is the set of all points of $\overline{\Omega}$ of character $c_{\alpha\alpha}$, so $(A(\Pi), \overline{\Omega})$ is entire. (This extension of terminology to the nonhomogeneous chain $\overline{\Omega}$ causes no difficulties.) For the rest, apply Theorems 12, 13, and 1.

COROLLARY 17. If Ω is an α -set, then $A(\Omega)$ is self-normalizing in $A(\overline{\Omega})$.

Proof. If $g(A(\Omega))g^{-1} = A(\Omega)$ for $g \in A(\overline{\Omega})$, then Ωg must be a union of orbits of $A(\Omega)$. This implies that $\Omega g = \Omega$ (by the proof of Corollary 8), so that $g \in A(\Omega)$.

We say that a chain Ω (without a greatest element) has *initial* character c_{β} if \aleph_{β} is the smallest cardinality of any coinitial subset of Ω ; and dually for *final character*. In the definition of an α -set, permitting Γ or Δ to be empty forces both of these characters to be c_{α} .

PROPOSITION 18. Let $\aleph_{\alpha}, \aleph_{\beta}$, and \aleph_{γ} be regular cardinals, with $\beta, \gamma \leq \alpha + 1$. Then there exists a chain Ω , unique up to o-isomorphism, such that for any two nonempty subsets $\Gamma < \Delta$ of cardinality less than \aleph_{α} , there exists $\omega \in \Omega$ such that $\Gamma < \omega < \Delta$, and having initial character c_{β} and final character c_{γ} . (If β or $\gamma = \alpha + 1$, cardinality \aleph_{α} is required only for intervals of Ω , not for Ω itself.) Ω satisfies all of the results proved in this paper for α -sets, except for the anti-automorphisms of Theorem 15.

Proof. Let Σ be an α -set. To obtain final character c_{β} , $\beta < \alpha$, let $\overline{\sigma}$ be a hole of character $c_{\beta\alpha}$ and delete $\{\sigma \in \Sigma \mid \sigma > \overline{\sigma}\}$. To obtain final character $c_{\alpha+1}$, use $\Sigma \times \omega_{\alpha+1}$, ordered lexicographically from the right. Similar considerations regarding the initial character establish the existence of Ω . Uniqueness is proved in the manner of the proof of Theorem 5. The proofs of the results about α -sets require no change.

Let $L(\Omega) = \{g \in A(\Omega) \mid \text{there exists } \sigma \in \Omega \text{ such that } \omega g = \omega \text{ for all } \omega \leq \sigma\}$, an *l*-ideal of $A(\Omega)$; let $U(\Omega)$ be the dual; and let $B(\Omega) = L(\Omega) \cap U(\Omega)$. If Ω is o-2-homogeneous, these three *l*-ideals are proper and distinct, and even $B(\Omega)$ is o-2-transitive and has the same orbits as $A(\Omega)$. If we pick any one of these three types of *l*-ideals and substitute it for $A(\Omega)$ throughout the paper, all results remain true except that in Theorem 1 and Corollary 9 the *l*-automorphism of the ideal need not be inner, but merely induced by an inner automorphism of $A(\Omega)$. The proofs require only minor changes.

Finally, if Ω is an α -set, it is not the case that all group automorphisms of $A(\Omega)$ are inner. For let f be an anti-automorphism of the chain Ω . Then $g \to f^{-1}gf$ is a group automorphism of $A(\Omega)$, and since it interchanges $L(\Omega)$ and $U(\Omega)$, it is not inner. Its restriction to $B(\Omega)$ is a group automorphism of $B(\Omega)$ which can easily be shown

STEPHEN H. MCCLEARY

not to be inner. Are there group automorphisms of $L(\Omega)$ and $U(\Omega)$ which are not inner?

References

1. L. Gilman and M. Jerison, *Rings of Continuous Functions*, Van Nostrand, Princeton, N. J., 1960.

2. F. Hausdorff, Grundzüge der Mengenlehre, Veit and Co., Leipzig, Germany, 1914.

3. C. Holland, The lattice-ordered group of automorphisms of an ordered set, Michigan Math. J., **10** (1963), 399-408.

4. ____, Transitive lattice-ordered permutation groups, Math. Zeit., 87 (1965), 420-433.

5. A. Kurosch, The Theory of Groups, Chelsea, New York, 1960.

6. J. T. Lloyd, Lattice-ordered groups and o-permutation groups, Dissertation, Tulane University, 1964.

7. S. H. McCleary, *Pointwise suprema of order-preserving permutations*, Illinois J. Math., **16** (1972), 69-75.

8. _____, The closed prime subgroups of certain ordered permutation groups, Pacific J. Math., **31** (1969), 745-753.

Received May 24, 1973,

UNIVERSITY OF GEORGIA