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BOUNDS FOR PRODUCTS OF INTERVAL FUNCTIONS

JON C. HELTON

Since it is possible for aΠ
b(l + G) to exist and not be zero

when G is unbounded and 1 -J- G. is not bounded away from
zero, the conditions under which products of the form
I /7Γ[1 + G(xq-u Xq)] I are bounded or bounded away from zero
for suitable subdivisions {xq}% of [a, b] are important in many
theorems concerning product integrals. Conditions are ob-
tained for such bounds to exist for products of the form
77(1 + FG) and 77(1 + F + G), where F and G are functions
from R x R to R. Further, these results are used to obtain
an existence theorem for product integrals.

All integrals and definitions are of the subdivision-refinement type,
and functions are from the subset {(x, y):x<y} of R x R to R, where
R represents the set of real numbers. If D — {xq}% is a subdivision
of [a, δ] and G is a function, then D(I) = {[xq-l9 xq]}l and Gg =
G{xq-Uxq). The statements that G is bounded, GeOP°,GeOQ° and
G 6 OB° on [α, 6] mean there exist a subdivision D of [α, 6] and a
positive number B such that if J = {xq}% is a refinement of D, then

(1) \G(u)\ <B for ueJ(I),
(2) \Π r(l+ Gq)\ <B f o r l ^ r ^ s ^ n,
( 3 ) \Π8

r(l + Gq)\ > B for 1 ^ r ^ s ^ n9 and
(4) ^ ( / ) | G | < 5 ,

respectively. The notation {αv}?(9) represents a subdivision of an
interval [xq-l9 xq] defined by a subdivision {xq}% If G is a function,
then G e & on [α, δ] only if lim,.,^ + G(x, y) and limβ,^p — G(x, y) exist
and are zero for p e [α, 6], and GeS2 on [α, 6] only if lim^p + G(p, x)
and lim^j, — G(x, p) exist for p e [a, 6]. Further, G 6 OA° on [α, δ] only

if Γ G exists and Γ G - [G = 0 , and GeOM° on [α, δ] only if

^ ( l + G) exists for a^x<y^b and Γ| 1 + G - 77(1 + G) | = 0.
Jtt

Also, G G OQ1 and G € 05* on [α, δ] if there exists a subdivision D =
{̂ }? of [α, δ] such that

(1) ifl<;<7<=;w and xq_x < x < y < xq, then G e OQ° on [OJ, J/],
and

(2) if 1 ^ q ^ n, then either G e 05° on [ α ^ , xq] or G - 1 e OJ5°
on [ajff_lf«J,
respectively. The statement that G is almost bounded above by β
(or, almost bounded below by β) on [α, δ] means there exists a posi-
tive integer N such that if D is a subdivision of [α, δ] and % e H
only if u e D(I) and G(^) > £ (or, G(u) < /3) then H has less than JV
elements. Consult B. W. Helton [2] and J. S. MacNerney [4] for
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additional details.

THEOREM 1. If G is a function, then the following are equivalent:
(1) GeOB° on [a, 6], and
(2) if FeOP° on [a, b], then F + GeOP° on [a,b].

Proof (2 — 1). Let F be the function such that F(x,y) = 0 if
G(x, y)^0 and F(x, y) = - 2 if G(x, y) < 0. Hence, if J is a sub-
division of [a, b], then

which can be bounded only if G e OB°.

Proof (1 —»2). Suppose FeOP°. There exist positive numbers
5 and C with 5 > 1, a positive integer i and a subdivision D of
[α, &] such that if / = {xq}f is a refinement of D, then

(1) \Π r(l + Fq)\<B ίoγ l ^ r ^ s ^ w ,
(2) e x p [ 4 5 ^ ( 7 ) | G | ] < C ,
(3) if T is a collection of nonintersecting subsets of J(I), then

the number of t e T such that exp [ABΣt\G\] > 2 is less than i, and
(4) the number of u e J(I) such that | G(u) | > 1/45 is less than i.
Let J = {xq}o be a refinement of D and suppose 1 ^ r ^ s ^ w.

Let L = {[^_!, xq]Yr, and let H be the subset of L such that ueH
only if 11 + JP(^) | ^ 1/45. Further, let K be the collection of subsets
of L such that ke K only if there exist u,veH such that w precedes
v on [α, 6] and either

(1) k = {t\t precedes v and follows u} and k Π H — 0 ,
(2) M is the first element in H and k — {t\t precedes u}, or
(3) v is the last element in H and k — {t\t follows v}.

Let ueMonly if % e H and |G(u)| > 1/45, and let k eN only if k eK
and exp [45Σk\G\] > 2. Hence, M and N each has less than i ele-
ments. Also, if has at most one more element than H. Hence, K — N
can have at most i more elements than H — M. Let j , m and n
denote the number of elements in M, H — M and K — N, respectively,
and suppose U— {Jk^κk. Hence,

^ {ΠK[1/4B +\G\])> {ΠH.M[1/4B +\G\]}-{\Ππ(l + F + G)|}

^ {(1/4BYC} - {1/4B + 1/4B}- {| 77P(1 + i^ + G) \)

^ C{1/2B}™ • {ΠkeK\Πk[l + F][l + (1 + F)-*G] \)

{ΠkeK[\Πka + F)\][ΠΛ(1 + 4B\G\)]}

{ΠkeN[\77»(1 + -^)i][^(l + 4B|G|)]} .
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F)\][Πk(l + AB\G\)]}

rg C{1/2B}™ {BCY. {2BY

= BiCi+1(2B)n"m £ BiCi+1(2B)i .

S b

F exists, then FeOA° on [a, b] .
a

This result is due to A. Kolmogoroff [3, p. 669]. Further, related
results have also been obtained by W. D L. Appling [1, Th. 2, p.
155] and B. W. Helton [2, Th. 4.1, p. 304].

S b

F exists, then the following are equivalent:
(1) FeOP° on [α, &], and (2) [FeOP° on [a,b].

S b

F exists, FeOA0 [Lemma 1.1].
a

The result now follows by using Theorem 1.

COROLLARY 1.2. If FeOP° on [a,b], aΠ
b(l + F) exists and

| = 0, then aΠ
b(l + F + G) exists and is aΠ

b(l + F).

Indication of proof. A related result is proved by B. W. Helton
[2, Th. 5.6, p. 315]. This result follows by an argument similar to
the one used in that theorem since Theorem 1 implies that F + Ge OP°.

COROLLARY 1.3. If G is a function, then the following are
equivalent:

(1) GeOP° on [a, b], and
(2) if FeOB° on [a, b], then F + Ge OP0 on [α, &].

Proof. Theorem 1 establishes that (1) implies (2). Further, (2)
implies (1) since F = 0 belongs to OB°.

B. W. Helton has shown if G is a function from S x S to N such
that CfeOA° and GeOB°, then GeOM°, where S represents a
linearly ordered set and N represents a ring which has a multiplica-
tive identity element denoted by 1 and has a norm | | with respect
to which N is complete and | 1 | = 1 [2, Th. 3.4 (l->2), p. 301]. We
now use Theorem 1 to establish a related result. In particular, we
show that if F and G are functions from R x R to R such that Fe OM°,

FeOP°,FeS1Γ\S2 and GeOB° on [a, b] and Γ θ exists, then F +

GeOM° on [α, &].

LEMMA 2.1. If F and G are functions such that FeOM°,Fe
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OP°, Fe Sί and GeOB° on [α, b] and ε > 0, then there exists a sub-
division {yq}% of [α, b] such that if yq_γ < x < y < yq and H is a sub-
division of [x, y], then

\1-Πml)(l + F+G)\<e.

Further, if FeS2 and GeS2 on [α, 6], then there exists a subdivision
{sjo of [a, b] such that if zq_γ <; x < y ^ zq and H is a subdivision of
[x, y], then

|1 + F(x,y) + G(x,y) - Πmi)(l + F+ G)\ < ε .

Proof. Suppose F and G are functions such that FeOM°,Fe
OP^FeS, and GeOBΌ on [α, b] and ε > 0. It follows from Theorem
1 that F+ GeOP°. There exist a subdivision D1 = {%}" of [α, δ]
and a number Z? > 1 such that if / = {xq}t is a refinement of Du then

(1) I Π{(1 + Fq)\<B and 177f (1 + F , + G?) | < B for 1 ̂  i ^ j ^ n,
(2) \F(x,y)\<e/9B and ^ ( J ) |G|<ε/9S 3 if l^q^n9xq^<

x < y < xq and H is a subdivision of [α;, y], and
(3) Σq\(l + Fq)- ΠHq{I){l + F)\ < ε/9B, where fl, is a subdivi-

sion of [a?g_i, fl?ff] for ί = 1, 2, , w.
Suppose 1 ̂  g ̂  % and y g - 1 < x < y < yq. If H = {hq}l is a subdivision
of [x, y], then

F(x, y) - F(», y) - {/7;βl(l + Fg)

Fk + Gk)]}\

(α?, y) |

^ + <?*)!
< ε/9J5 + ε/95 + B2ε/9B* = ε/3B < e .

We now make the additional suppositions that Fe S2 and G e S2

on [α, 6]. There exists a subdivision E = {wg)lu+1 of [α, 5] such that
(1) #ff 6 (w2q, w2q+ί) for 1 ̂  q < u,
( 2 ) |F(y f f, ^ 2 g + 1 ) + G(yqf w2q+1) - F(yq, x) - G(yq, x) \ < ε/2 for 0 ^

g < u and xe(yq, w2q+1], and
( 3 ) I F(w2 f f, yff) + G(w2q, yq) - F(α;, yq) - G(x, yq) | < ε/2 for 0 < q ̂

u and xe [w2q, yq).
Let A == {̂ g}ott be the subdivision D1 U E of [α, 6]. Suppose 1 ̂  g ̂  3%,
2g_i ^ a? < y ^ ^g and H is a subdivision of [x, y\. If either ^ f f-1 <
x < y < zq or neither z ^ nor zq is in 2)^ then

11 + F(x, y) + G(x, y) - ΠHiI)(l + F + (?) |

^ |F(αj,»)| + |G(OJ,»)| + |1 - 77^(1 + F + G)\

< ε/9B + ε/953 + ε/3J5 < ε .
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If zq_x e Dl9 x = £g_i a n d H = {fcjj, then

11 + JX*, ?/) + G(x, y) - ΠH(I)(1 + F + G)\

<£ I F(x, y) + G(», i/) - F(x, K) - G{x, K) \

+ 11 + F(x, K) + G(x, W i l l - 77J [1 +

< e/2 + Be/SB < ε .

If zq e Όγ and y — zq1 the necessary inequality follows in a similar
manner. Therefore, D2 is the desired subdivision.

THEOREM 2. 1/ f7 αwd G are functions such that Fe OM°, Fe

OP°,FeSίnS2 and GeOB° on [a,b] and Γ G exists, then F+ Ge

OM° on [a, b].

Proof. We initially show that if e > 0 then there exists a sub-
division D of [α, b] such that if H = {xq}% is a refinement of D and
Hq is a subdivision of [#g-i, #J for q = 1, 2, , w, then

2 T | 1 + ^ + G β - ΠBq(I)(l + F+ G)\<ε.

Let ε > 0. It follows from Lemma 1.1 that Ge OA° and from Theorem
1 that J P + GeOP°. Thus, by employing the hypothesis and Lemma
2.1, there exist a subdivision Όγ — {yq}% of [a, b] and a number B > 1
such that if J = {#J<Γ is a refinement of A> then

(1) * , ( I ) | G | < B ,
(2) I/7ftl + Fq)\ <B for 1 ^ i £ j ^ n,
(3) ^ΓIGq - ΣLq{I)G\ < e/5 and 2?I(1 + Fq) - ΠLq(I)(l + F)\<ε/5,

where Lq is a subdivision of [xq_lf xq] for 1 ^ q ^ nf and
( 4 ) 11 - /7H(Z)(1 + F) | < ε/55 and 11 - /7H(I)(1 + F + G) | < ε/5B

for 1 ^ q ^ ^, α?g_! < x < y < #g and H a subdivision of [x, y].
Further, it also follows from Lemma 2.1 that there exists a sub-
division D2 = {zq}l of [α, 6] such that if 1 ^ q S v, zq_λ ^ x < y ^ zq

and H is a subdivision of [x, y], then

2

|1 + F(x, y) + G{x, y) - 77^,(1 + F + G) |

Let 7) = A U D2, and suppose ί7 = {xq}o is a refinement of D and
ίfg = {xqr}oig) is a subdivision of [xq_u xq] for 1 ^ q ^ ^ . Let P be the
set such that qeP only if [xq-uxq] has an end point in Dt, and let
Q — {i}̂  — P. Further, to simplify notation, let Fqr = jP(^,r_i, α?ffr),
G ς r - G ^ , ^ , a?ίr), Aqr = 77jz}(l + F f f i) and # g r - 77^ + 1 ( l + Fqk + Gg&).
Thus,

Fq

- Bq0\
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ΣveQ\l + Fq + Gq — Bq0\

2uε/10u + ΣqeQ\l + Fq + Gq

+ Σ:{JlAqrGqrBqr] I

ε/5 + ΣqeQ\l + Fg- Aq,n(q)+1\

I ^qeQ VTg Z, r = ι S±qr{jΓqrlJqr \

+ ΣqeQ\ΣVJlGqr - Σ:{SAqrGqrBqr\

3ε/5 + ΣqβQΣΐ<$\l - Aqr\ \Gqr\

+ ΣqΐqΣVJl\Aqr\\Gqr\\l-Bqr\

3ε/5 + (ε/5B)B + (ε/5B2)52 = ε .

Hence, if a ̂  x < y ̂  b and ε > 0, then there exist a subdivision
D of [a, b] and a number B such that iΐ H = {xq}% is a refinement of
Z) and Hq is a subdivision of [xq-u xq], then

(1) 177j(l + Fq + Gq)\ < B for 1 ̂  i ^ j ^ n, and
(2) I? 11 + F g + G, - //^(^(l + F + G) \< e/BK

Thus, if H and Hq are defined as above, then

|/7Γ(1 + Fq + Gff) - mΠHq{I)(l + F+G)\

£ B*Σ?\1 + Fq+Gq- ΠHq(I)(l + F+G)\

< B\εjB2) = ε .

Therefore, xΠ
y(l + F + G) exists.

It now follows that Γ | l + F + G - 77(1 + î 7 + G) \ = 0. Hence,

F + GeOM° on [α, 6].

THEOREM 3. If Fe OQ°, GeOB° and 1 + F + G is bounded away
from zero on [α, 6], rj/̂ ê  F + Ge OQ° on [a, 6J

Proof. There exist a subdivision 7) of [α, δ], a positive number
c < 1 and a positive integer m such that if J — {xq}% is a refinement
of D, then

( 1 ) |1 + F , + Gq\ >c for l^q^n,
( 2) I J7}(1 + Fg)\> c for l^i^j ^n, and
( 3 ) if JKΓ is any collection of nonintersecting subsets of J(7),

then the number of ke K such that Σk\G\jc> 1/2 is less than m.
Suppose J — {xq}o is a refinement of D and 1 ̂  r ^ s ̂  n. Let K —
{̂•} be the collection of nonintersecting subsets of {[α;̂ _1, xq]}s

r such
that

( 1 ) Jcλ= {[xQ-l9 xq]}m(&> where m(l) is the first integer such that
m(l) ^ r and | Gm(1) |/c ̂  1/2 and ̂ (1) is the largest integer such that
τι(l) < s, Σl% I Gq \/c ^ 1/2 and Σlι&+1 \ Gq \/c > 1/2 if such an integer
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exists and s otherwise, and
(2) kj = {[Xq-i, xq]}m{%, where m(j) is the first integer such that

m(j) > n(3 — 1) a n ( i I GmU) |/c < 1/2 and n(j) is the largest integer such
that n(j) £ s, Σl% \ Gq \/c ^ 1/2 and 2£$+11 Gq \/c > 1/2 if such an integer
exists and s otherwise.
Let U= \JkeKk and V= {[x^, xq]}'r - U. Note that K and V each
has a maximum of m elements. Thus,

Π r(l + Fq+ Gq)\

= {Πr\l + F+ G\}{nu\l + F+ G\)

^ e»Ππ[\l + F\ - \G\]

= e-ΠheX{Πk\l + F\){Πk[l -

^c*«ΊlkeK{Πka- \G\lc)}

S b

F exists, then the following are equivalent:
(1) FeOQ° on [a, 6], and (2) ^ F G O Q ° O^ [α, 6].

S b

F exists, FeOA° [Lemma 1.1]
a

The result now follows by using Theorem 3.

COROLLARY 3.2. // G is a function, then the following are equiv-
alent: (1) GeOQ1 on [α, 6], and (2) if FeOB° on [α, 6], then F +
GeOQ1 on [α, 6].

Indication of proof. Since F Ξ O is in 05°, (2) implies (1).
Further, it follows from Theorem 3 that (1) implies (2).

LEMMA 3.1. // 0 ̂  G ̂  1 and G g 0B° on [a, b], then -G $ 0Q°
on [α, 6].

Indication of proof. If H is a subdivision of [α, 6], then

/7*(7)(1 - G) = exp [^(z)ln(l - G)]

Thus, 77^(1 - G)~>0 as ΣH{I)G

COROLLARY 3.3. If G is a function, then the following are equiv-
alent: (1) GeOB0 on [a,b], and (2) i/ FeOQ1 on [a,b], then F +
GeOQ1 on [a, b].
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Proof. Since it follows from Theorem 3 that (1) implies (2), we
need only show that (2) implies (1). The function \G\ is almost
bounded above on [α, b] by 1/2. If this is not so, then a contradiction
follows by considering the function F such that

(1) F(x,y) = 0 if -1/2 ̂  G(x,y) ^ 0,
(2) F(x, y) = -G(», y) -1/2 if G(», y) < -1/2,
(3) F(x, y) = - 2 if 0 < G(α, ») ^ 1/2, and
(4) F(x, y)= - G(x, y) -3/2 if G(x, y) > 1/2.

Thus, although Fe OQ\ F + G&OQ1 since 11 + F + G| ^ 1 and the
number of intervals for which |1 + F + G\ = 1/2 is unbounded. Now,
if GgOB°, a contradiction follows from Lemma 3.1 by using the
function F such that

(1) F(x, y) = - 2 if G(x, y) ̂  0, and
( 2 ) F(α, y) = 0 if G(s, ») < 0.

THEOREM A. If G is a function, then the following are equiv-
alent:

(1) if [b\F\ = 0, tΛβn, FGeOB°,
Jα

(2) ί/ ί V l = 0, tλβn FGeOP0,

(3) if 1 \F\ = 0, then FGeOQ°, and
J a

(4) G is bounded on [α, 6].

Proof. It follows readily that (4) implies (1). Further, it follows
that (4) implies (2) and (3) by using Theorems 1 and 3, respectively.
If G(x, y) as x,y~* p~, G(x, y) as x,y-+p+, G(x, p) as x —> p~ and
G(p, x) as x—>p+ are bounded for each pe [a, 6], then it follows from
the covering theorem that G is bounded on [α, 6]. If one or more of
these bounds fail to exist for some pe[a,b], then there exists a
sequence {(yq, zq)}? of distinct subintervals of [a, b] such that | G(yq, zq) | >
q* for q = 1, 2, •••, and if {a?β}j is a subdivision of [α, &] and r is a
positive integer then there exist positive integers i and j such that
y > r and x^ ^ yy < zs ^ a?4. Contradictions to (1) and (2) now fol-
low by considering the function F such that

F(x,y) = [G(x,y)]/[q2\G(x,y)\]

if there exists a positive integer q such that x — yq and y — zq and

S δ

| JP | = 0, but FG is in neither OB° nor
α

OP°. Further, a contradiction to (3) follows by considering the func-
tion F such that F(x, y) = [—G{xf y)]"1 if there exists a positive
integer q such that x — yq and y — zq and JF(#, /̂) = 0 otherwise.
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LEMMA 5.1. If G is a function such that
( 1 ) G is almost bounded above by 1/3 on [α, 6], and
( 2) if Fe OP° on [α, 6], then FG e OPΌ on [α, 6],

then GeOB° on [a, b].

Proof. Suppose G$OB° on [a,b]. It follows from Theorem 4
that G is bounded on [α, 6] There exists a set {C(i)}T such that

( 1 ) C(i) is a finite set of nonoverlapping subintervals of [a, b]
which can be grouped into a collection D{i) of nonintersecting pairs
of adjacent intervals,

( 2 ) no interval in C(i + 1) has an end point which is also the
end point of an interval in C(q), q — 1, 2, , i,

(3 ) if (x, y) e C(ί), then G(x, y) < 1/3, and
( 4 ) Σc{i)\G\>i.

Let C= UΓ D(i), and let F be the function on [a, b] such that if
{(u, v), (r, s)} G C and GO, v) ^ G(r, s), then

( a ) F(u, v) = - 2 if G(>, v) < 0,
( b) F(u, v) = 2 if G(u, v) ^ 0,
(c ) F(r, x) ~ ~1 if r ~ v and r < x, and
(d ) F(x, s) = —1 iί s — u and a? < s,

and F(x,y) — 0 otherwise. Thus, FeOP° on [α, 6]. However,

[1 + F(u, v)G(u, v)][l + F(r, s)G(r, s)] ^ 1 + | G(u, v) |/3 .

Hence, since G is bounded and {Σc{i)\G\}T is unbounded, FG&OP°.
This is a contradiction, and therefore, GeOB° on [α, 6].

LEMMA 5,2. If G is a function such that
( 1 ) G is almost bounded below by 1/10 on [a, b], and
( 2) if Fe OP° on [a, b], then FG e OP° on [a, 6],

then G - leOJ5° on [a, b].

Proof. Suppose G— l£OB° on [α, 6]. It follows from Theorem
4 that G is bounded on [α, &]. There exists a set {C(i)}Γ satisfying
conditions (1) and (2) in Lemma 5.1 plus the additional conditions

( 3 ) if (x, y) e C(i), then G(x, y) > 1/10, and
( 4 ) ^ ( < J | G - l | > ί .

Let C = (JΓ D(i), where D{i) is defined as in Lemma 5.1. Note that
if {(u, v), (r, s)} 6 C and G(u, v) ^> G(r, s), then either

( 5) G(u, v) ^ 1 and |1 - G(u, v)\^\l- G(r, s)|, or
( 6 ) G(r, s) < 1 and either G(u, v) = G(r, s) or

\1-G(u,v)\<\l-G(r,s)\.

Let ί 7 be the function on [α, b] such that if {(u, v), (r, s)} e C and
G(^, v) ^ G(r, s), then
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(a) F(u, v) = - 2 and F(r, s) = 0 if (5) is true,
(b) F(u,v) = 1 and F(r,x) = -1/2 if (6) is true, r = v and

r < x, and
(c ) F(u, v) = 1 and F(x, s) = -1/2 if (6) is true, s = u and

a? < 8,

and F(x, y) = 0 otherwise. Thus, FeOPΌ on [α, δ] Observe that
if (5) is true, then

[1 + F(u, v)G(u, v)][l + F(r, s)G(r, s)] = -{1 + 2[G(w, v) - 1]} ,

and if (6) is true, then

[1 + F(u, v)G(u, v)][l + F(r, s)G(r, s)]

^ [1+ G(r,s)][l- G(r,s)/2]

Hence, since G is bounded and {2^, | G — 1 |}Γ is unbounded, FG 0θP°.
This is a contradiction, and therefore, G — leO2?° on [α, 6].

THEOREM 5. If G is a function, then the following are equivalent:
(1) GeOB* on [α, 6], and
(2) if Fe OP° on [a, 6], ίfcβrc FGeOP° on [a, b].

Proof (2 —> 1). If a ^ a < 6, then there exists a number /3 such
that a < β ^ b and either G e 05° on [α, /3] or G - 1 e 0B° on [α, /3].
If this is false and a ^ a < /3 < b, then it follows from Lemmas 5.1
and 5.2 that G is neither almost bounded above by 1/3 nor almost
bounded below by 1/10 on [a, β]; hence, there exist sequences {sp}Γ
and {rp}~ such that

(1) sp and rp are subintervals of [α, 6] with a common end point,
(2) sp precedes rp and rp+ι precedes sp, and
(3 ) G(sp) < 1/10 and G(rp) ^ 1/10.

Let H — {sp}T U {̂ }Γ, and let F be the function on [α, δ] such that
(1) F(x, y) = — 1 if there exists an interval (z, y)e H such that

x < y and G(z, i/) < 1/10,
(2) F(x, y) = 2 if (α?, ») e Jϊ and G(a?, j/) ^ 1/10, and
(3 ) F(x, y) — 0 otherwise.

Thus, F e OP° on [α, 6]. However, it follows that FGϊOP° on [α, 6]
since

[1 + F(sp)G(sp)][l + F(r,)G(r,)] > (.9)(1.2) - 1.08 .

Similarly, if α < β ^ 6, then there exists a number α: such that
a^a<β and either GeOB° on [α,/3] or G-leOB° on [α, £j.
It now follows that G e OS* on [α, 6] by using the covering theorem.
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Proof (1 ->2). Since OB°^OP°, if GeOB° and FeOP° on
[a?, 2/], then FGeOP0 on [α, #]. Note that

1 + FG=1 + F+F(G-1) .

Thus, it follows from Theorem 1 that if G~leOB° and FeOPΌ

on [α;, ?/], then FGeOP° on [&,#]. Therefore, (1) must imply (2).

COROLLARY 5.1. If G is a function, then the following are equiv-
alent:

(1) GeOP° on [a, b], and
(2) if Fe OB* on [a, b], ίΛen FGeOP° on [a, b].

Indication of proof. It follows that (1) implies (2) by using
Theorem 5 and that (2) implies (1) by considering the function F = 1.

LEMMA 6.1. // G is a bounded function such that
(1) G is almost bounded above by 1/3 on [a, 6], and
( 2 ) if Fe OQ° and is bounded on [α, b] and 1 + FG is bounded

away from zero, then FGe OQ° on [α, 6],
then GeOB° on [α, 6].

Proof. Suppose GίOB° on [α, &]. There exist a subdivision D
of [α, b] and a positive integer m such that if J is a refinement of
D and % e J(I) then | G(V) |/m < 1/2. Let H be the set such that ueH
only if there exists a refinement J of D such that % e /(J), and let
F be the function such that

(1) F(u) = - 2 if u e H and 0 ^ G(u) ^ 1/3,
( 2) FO) = 1/m if u e H and G(u) < 0, and
( 3 ) F(x, y) — 0 otherwise.

Since FeOQ° and 1 + FG is bounded away from zero, FGeOQ°.
However, it follows from Lemma 3.1 that FG$OQ°. This is a con-
tradiction, and therefore, GeOB°.

LEMMA 6.2. If G is a bounded function such that
(1) G is almost bounded below by 1/10 on [α, 6], and
( 2 ) if Fe OQ° and is bounded on [α, b] and 1 + FG is bounded

away from zero, then FGe OQ° on [a, &],
then G - leOB° on [a, b].

Proof. There exist a subdivision D of [a, b] and a number B
such that if J is a refinement of D and u e J(I) then | G(u) \ < B.
Let H be the set such that ue H only if there exists a refinement
J of D such that ueJ(I). Let i ^ and iί2 be the subsets of H such
that u e Hx only if G(u) ^ 1 and w e H2 only if G(V) > 1. For i= 1,2,
let Gi(x, y) - GO, y) if (α?, #) e H, and G ^ , #) = 0 if (a?, y) ί H,.
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Suppose Gx — 1$OB° on [a, &]. Let F be the function such that
(1) F(u) = - 2 if u 6 H, and G(w) < 5/12 or 7/12 < G(u) ^ 1,
(2) F(u) = - 3 if u e H, and 5/12 ^ G(w) ^ 7/12, and
(3) F(x, y) = 0 otherwise.

Since FeOQ° and 1 + FG is bounded away from zero, FGeOQ0.
However, it follows from Lemma 3.1 that FG&OQ°. This is a con-
tradiction, and therefore, G1 — leOB°.

Suppose G2 — lίOB° on [α, δ]. There exist a set {C(i)}T and
an integer m > 1 such that

(1) C(i) is a finite set of nonoverlapping subintervals of [α, δ]
which can be grouped into a collection D(i) of nonintersecting pairs
{(u, v), (r, s)} of adjacent intervals such that either G(u, v) > 1 or
G(r, s) > 1,

(2) no interval in C(i + 1) has an end point which is also the
end point of an interval in C(q), q = 1, 2, , i,

(3) if (a?, y) e C(i) then G(a, y) > 1/10 and G(x, y)/m < 1/2, and
(4) Σ0{i)\G2-l\>i.

Let C = UΓ D(i), and let I*7 be the function such that if {(u, v), (r, s)} e C
and G(u, v) ^ G(r, s) then F(^, v) = - 1/ra, F(r, a?) = l/(ra - 1) if r = v
and ί7^, s) = l/(m — 1) if s = u, and F(OJ, y) = 0 otherwise. Since
i^e OQ° and 1 + FG is bounded away from zero, FG e OQ°. However,
if {(u, v), (r, s)} e C and G(u, v) ^ G(r, s), then

0 < [1 + F(u, v)G(u, v)][l + F(r, s)G(r, s)]

^ [1 - G(w, v)/m][l + G(tt, v)/(m - 1)]

< 1 + [1 - G(u, v)]/m(m - 1) .

It follows from Lemma 3.1 that FG&OQ°. This is a contradiction,
and therefore, G2 - leOB°.

Thus, since G{ — l e OB° on [α, δ] for i = 1, 2, it follows that
G - l e 0 ΰ o on [α, δ].

THEOREM 6. // G is a bounded function, then the following are
equivalent:

(1) GeOB* on [a, δ], and
(2) if Fe OQ° and is bounded on [α, δ] and 1 + FG is bounded

away from zero, then FGeOQ° on [a,b].

Proof (2 —> 1). If a ^ a < b, then there exists a number /3 such
that a < β ^ δ and either G e OB° on [a, /9] or G - 1 e OB° on [a, β\.
If this is false, then it follows from Lemmas 6.1 and 6.2 that there
exist sequences {sp}? and {rjr and a set H defined as in Theorem 5.
Let Fbe a function on [α, δ] such that if (u, v) and (v, s) are intervals
in H such that G(u, v) ^ 1/10 and G(v, s) ^ 1/10, then
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(1) 1 + F{u, v)G(u, v) = 1/2 and F(v, β) = 0 if G(u, v) < -1/10,
( 2 ) F(x, v) = 1, - 1 / 2 ^ F(v, s)< 0 and 1 / 2 ^ 1 + F(v, s)G(v, s) ^

,95 if -1/10 ^ G(u, v) ^ 0, and
( 3 ) F(x, v) = - 3, -1/2 ^ F(v, s)< 0 and 1/2^1 + F(t;, s)G(v, s) ^

.95 if 0 < G(u, v) < 1/10,
and F(x, y) = 0 otherwise. Since i*7 is a bounded function in OQ°
such that 1 + FG is bounded away from zero, FGeOQ°. However,

I [1 + F(8p)G(ap)][l + F(rp)G(rp)] \ ^ .95 .

Hence, FG & OQΌ. Similarly, if a < β ^ b, then there exists a number
a such that a ^ a < β and either GeOB° on [α, /3] or G — 1 e OB°
on [α:, /9]. It now follows that Ge OB* on [a, b] by using the cover-
ing theorem.

Proof (1—>2). This follows from Theorem 3 by a procedure
similar to that used in Theorem 5.
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