BOUNDS FOR PRODUCTS OF INTERVAL FUNCTIONS

Jon C. Helton

Abstract

Since it is possible for ${ }_{a} \Pi^{b}(1+G)$ to exist and not be zero when G is unbounded and $1+G$ is not bounded away from zero, the conditions under which products of the form $\left|\Pi_{1}^{n}\left[1+G\left(x_{q-1}, x_{q}\right)\right]\right|$ are bounded or bounded away from zero for suitable subdivisions $\left\{x_{q}\right\}_{0}^{n}$ of $[a, b]$ are important in many theorems concerning product integrals. Conditions are obtained for such bounds to exist for products of the form $\Pi(1+F G)$ and $\Pi(1+F+G)$, where F and G are functions from $R \times R$ to R. Further, these results are used to obtain an existence theorem for product integrals.

All integrals and definitions are of the subdivision-refinement type, and functions are from the subset $\{(x, y): x<y\}$ of $R \times R$ to R, where R represents the set of real numbers. If $D=\left\{x_{q}\right\}_{0}^{n}$ is a subdivision of $[a, b]$ and G is a function, then $D(I)=\left\{\left[x_{q-1}, x_{q}\right]\right\}_{1}^{n}$ and $G_{q}=$ $G\left(x_{q-1}, x_{q}\right)$. The statements that G is bounded, $G \in O P^{\circ}, G \in O Q^{\circ}$ and $G \in O B^{\circ}$ on $[a, b]$ mean there exist a subdivision D of $[a, b]$ and a positive number B such that if $J=\left\{x_{q}\right\}_{o}^{n}$ is a refinement of D, then
(1) $|G(u)|<B$ for $u \in J(I)$,
(2) $\left|\Pi_{r}^{s}\left(1+G_{q}\right)\right|<B$ for $1 \leqq r \leqq s \leqq n$,
(3) $\left|\Pi_{r}^{s}\left(1+G_{q}\right)\right|>B$ for $1 \leqq r \leqq s \leqq n$, and
(4) $\Sigma_{J(I)}|G|<B$,
respectively. The notation $\left\{x_{q r}\right\}_{0}^{n(q)}$ represents a subdivision of an interval $\left[x_{q-1}, x_{q}\right]$ defined by a subdivision $\left\{x_{q}\right\}_{0}^{n}$. If G is a function, then $G \in S_{1}$ on $[a, b]$ only if $\lim _{x, y \rightarrow p}+G(x, y)$ and $\lim _{x, y \rightarrow p}-G(x, y)$ exist and are zero for $p \in[a, b]$, and $G \in S_{2}$ on $[a, b]$ only if $\lim _{x \rightarrow p}+G(p, x)$ and $\lim _{x \rightarrow p}-G(x, p)$ exist for $p \in[a, b]$. Further, $G \in O A^{\circ}$ on $[a, b]$ only if $\int_{a}^{b} G$ exists and $\int_{a}^{b}\left|G-\int G\right|=0$, and $G \in O M^{\circ}$ on $[a, b]$ only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$ and $\int_{a}^{b}|1+G-\Pi(1+G)|=0$. Also, $G \in O Q^{1}$ and $G \in O B^{*}$ on [$\left.a, b\right]$ if there exists a subdivision $D=$ $\left\{x_{q}\right\}_{0}^{n}$ of $[a, b]$ such that
(1) if $1 \leqq q \leqq n$ and $x_{q-1}<x<y<x_{q}$, then $G \in O Q^{\circ}$ on $[x, y]$, and
(2) if $1 \leqq q \leqq n$, then either $G \in O B^{\circ}$ on $\left[x_{q-1}, x_{q}\right]$ or $G-1 \in O B^{\circ}$ on $\left[x_{q-1}, x_{q}\right.$],
respectively. The statement that G is almost bounded above by β (or, almost bounded below by β) on $[a, b]$ means there exists a positive integer N such that if D is a subdivision of $[a, b]$ and $u \in H$ only if $u \in D(I)$ and $G(u)>\beta$ (or, $G(u)<\beta$) then H has less than N elements. Consult B. W. Helton [2] and J. S. MacNerney [4] for
additional details.
Theorem 1. If G is a function, then the following are equivalent:
(1) $G \in O B^{\circ}$ on $[a, b]$, and
(2) if $F \in O P^{\circ}$ on $[a, b]$, then $F+G \in O P^{\circ}$ on $[a, b]$.

Proof $(2 \rightarrow 1)$. Let F be the function such that $F(x, y)=0$ if $G(x, y) \geqq 0$ and $F(x, y)=-2$ if $G(x, y)<0$. Hence, if J is a subdivision of $[a, b]$, then

$$
\left|\Pi_{J(I)}(1+F+G)\right|=\Pi_{J(I)}(1+|G|)
$$

which can be bounded only if $G \in O B^{\circ}$.
Proof $(1 \rightarrow 2)$. Suppose $F \in O P^{\circ}$. There exist positive numbers B and C with $B>1$, a positive integer i and a subdivision D of [a,b] such that if $J=\left\{x_{q}\right\}_{0}^{w}$ is a refinement of D, then
(1) $\left|\Pi_{r}^{s}\left(1+F_{q}\right)\right|<B$ for $1 \leqq r \leqq s \leqq w$,
(2) $\exp \left[4 B \Sigma_{J(I)}|G|\right]<C$,
(3) if T is a collection of nonintersecting subsets of $J(I)$, then the number of $t \in T$ such that $\exp \left[4 B \Sigma_{t}|G|\right]>2$ is less than i, and
(4) the number of $u \in J(I)$ such that $|G(u)|>1 / 4 B$ is less than i.

Let $J=\left\{x_{q}\right\}_{0}^{w}$ be a refinement of D and suppose $1 \leqq r \leqq s \leqq w$. Let $L=\left\{\left[x_{q-1}, x_{q}\right]\right\}_{r}^{s}$, and let H be the subset of L such that $u \in H$ only if $|1+F(u)| \leqq 1 / 4 B$. Further, let K be the collection of subsets of L such that $k \in K$ only if there exist $u, v \in H$ such that u precedes v on $[a, b]$ and either
(1) $k=\{t \mid t$ precedes v and follows $u\}$ and $k \cap H=\varnothing$,
(2) u is the first element in H and $k=\{t \mid t$ precedes $u\}$, or
(3) v is the last element in H and $k=\{t \mid t$ follows $v\}$.

Let $u \in M$ only if $u \in H$ and $|G(u)|>1 / 4 B$, and let $k \in N$ only if $k \in K$ and $\exp \left[4 B \Sigma_{k}|G|\right]>2$. Hence, M and N each has less than i elements. Also, K has at most one more element than H. Hence, $K-N$ can have at most i more elements than $H-M$. Let j, m and n denote the number of elements in $M, H-M$ and $K-N$, respectively, and suppose $U=\bigcup_{k \in K} k$. Hence,

$$
\begin{aligned}
& \left|\Pi_{L}(1+F+G)\right| \\
& \quad \leqq\left\{\Pi_{H}[|1+F|+|G|]\right\} \cdot\left\{\left|\Pi_{U}(1+F+G)\right|\right\} \\
& \quad \leqq\left\{\Pi_{M}[1 / 4 B+|G|]\right\} \cdot\left\{\Pi_{H-M}[1 / 4 B+|G|]\right\} \cdot\left\{\left|\Pi_{U}(1+F+G)\right|\right\} \\
& \quad \leqq\left\{(1 / 4 B)^{j} C\right\} \cdot\{1 / 4 B+1 / 4 B\}^{m} \cdot\left\{\left|\Pi_{U}(1+F+G)\right|\right\} \\
& \quad \leqq C\{1 / 2 B\}^{m} \cdot\left\{\Pi_{k \in K}\left|\Pi_{k}[1+F]\left[1+(1+F)^{-1} G\right]\right|\right\} \\
& \quad \leqq C\{1 / 2 B\}^{m} \cdot\left\{\Pi_{k \in K}\left[\left|\Pi_{k}(1+F)\right|\right]\left[\Pi_{k}(1+4 B|G|)\right]\right\} \\
& \quad=C\{1 / 2 B\}^{m} \cdot\left\{\Pi_{k \in N}\left[\left|\Pi_{k}(1+F)\right|\right]\left[\Pi_{k}(1+4 B|G|)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\Pi_{k \in K-N}\left[\left|\Pi_{k}(1+F)\right|\right]\left[\Pi_{k}(1+4 B|G|)\right]\right\} \\
& \quad \leqq C\{1 / 2 B\}^{m} \cdot\{B C\}^{i} \cdot\{2 B\}^{n} \\
& \quad=B^{i} C^{i+1}(2 B)^{n-m} \leqq B^{i} C^{i+1}(2 B)^{i} .
\end{aligned}
$$

Lemma 1.1. If $\int_{a}^{b} F$ exists, then $F \in O A^{\circ}$ on $[a, b]$.
This result is due to A. Kolmogoroff [3, p. 669]. Further, related results have also been obtained by W. D. L. Appling [1, Th. 2, p. 155] and B. W. Helton [2, Th. 4.1, p. 304].

Corollary 1.1. If $\int_{a}^{b} F$ exists, then the following are equivalent: (1) $F \in O P^{\circ}$ on $[a, b]$, and (2) $\int F \in O P^{\circ}$ on $[a, b]$.

Indication of proof. Since $\int_{a}^{b} F$ exists, $F \in O A^{\circ}$ [Lemma 1.1]. The result now follows by using Theorem 1.

Corollary 1.2. If $F \in O P^{\circ}$ on $[a, b],{ }_{a} \Pi^{b}(1+F)$ exists and $\int_{a}^{b}|G|=0$, then ${ }_{a} \Pi^{b}(1+F+G)$ exists and is ${ }_{a} \Pi^{b}(1+F)$.

Indication of proof. A related result is proved by B. W. Helton [2, Th. 5.6, p. 315]. This result follows by an argument similar to the one used in that theorem since Theorem 1 implies that $F+G \in O P^{\circ}$.

Corollary 1.3. If G is a function, then the following are equivalent:
(1) $G \in O P^{\circ}$ on $[a, b]$, and
(2) if $F \in O B^{\circ}$ on $[a, b]$, then $F+G \in O P^{\circ}$ on $[a, b]$.

Proof. Theorem 1 establishes that (1) implies (2). Further, (2) implies (1) since $F \equiv 0$ belongs to $O B^{\circ}$.
B. W. Helton has shown if G is a function from $S \times S$ to N such that $G \in O A^{\circ}$ and $G \in O B^{\circ}$, then $G \in O M^{\circ}$, where S represents a linearly ordered set and N represents a ring which has a multiplicative identity element denoted by 1 and has a norm $|\cdot|$ with respect to which N is complete and $|1|=1$ [2, Th. $3.4(1 \rightarrow 2)$, p. 301]. We now use Theorem 1 to establish a related result. In particular, we show that if F and G are functions from $R \times R$ to R such that $F \in O M^{\circ}$, $F \in O P^{\circ}, F \in S_{1} \cap S_{2}$ and $G \in O B^{\circ}$ on $[a, b]$ and $\int_{a}^{b} G$ exists, then $F+$ $G \in O M^{\circ}$ on $[a, b]$.

Lemma 2.1. If F and G are functions such that $F \in O M^{\circ}, F \in$
$O P^{\circ}, F \in S_{1}$ and $G \in O B^{\circ}$ on $[a, b]$ and $\varepsilon>0$, then there exists a subdivision $\left\{y_{q}\right\}_{0}^{u}$ of $[a, b]$ such that if $y_{q-1}<x<y<y_{q}$ and H is a subdivision of $[x, y]$, then

$$
\left|1-\Pi_{H(I)}(1+F+G)\right|<\varepsilon
$$

Further, if $F \in S_{2}$ and $G \in S_{2}$ on $[a, b]$, then there exists a subdivision $\left\{z_{q}\right\}_{0}^{v}$ of $[a, b]$ such that if $z_{q-1} \leqq x<y \leqq z_{q}$ and H is a subdivision of $[x, y]$, then

$$
\left|1+F(x, y)+G(x, y)-\Pi_{H(I)}(1+F+G)\right|<\varepsilon
$$

Proof. Suppose F and G are functions such that $F \in O M^{\circ}, F \in$ $O P^{\circ}, F \in S_{1}$ and $G \in O B^{\circ}$ on $[a, b]$ and $\varepsilon>0$. It follows from Theorem 1 that $F+G \in O P^{\circ}$. There exist a subdivision $D_{1}=\left\{y_{q}\right\}_{0}^{u}$ of $[a, b]$ and a number $B>1$ such that if $J=\left\{x_{q}\right\}_{0}^{n}$ is a refinement of D_{1}, then
(1) $\left|\Pi_{i}^{j}\left(1+F_{q}\right)\right|<B$ and $\left|\Pi_{i}^{j}\left(1+F_{q}+G_{q}\right)\right|<B$ for $1 \leqq i \leqq j \leqq n$,
(2) $|F(x, y)|<\varepsilon / 9 B$ and $\Sigma_{H(I)}|G|<\varepsilon / 9 B^{3}$ if $1 \leqq q \leqq n, x_{q-1}<$ $x<y<x_{q}$ and H is a subdivision of $[x, y]$, and
(3) $\quad \Sigma_{q}\left|\left(1+F_{q}\right)-\Pi_{H_{q}(I)}(1+F)\right|<\varepsilon / 9 B$, where H_{q} is a subdivision of $\left[x_{q-1}, x_{q}\right]$ for $q=1,2, \cdots, n$.
Suppose $1 \leqq q \leqq u$ and $y_{q-1}<x<y<y_{q}$. If $H=\left\{h_{q}\right\}_{0}^{r}$ is a subdivision of $[x, y]$, then

$$
\begin{aligned}
\mid 1- & \Pi_{H(I)}(1+F+G) \mid \\
= & \mid 1+F(x, y)-F(x, y)-\left\{\Pi_{q=1}^{r}\left(1+F_{q}\right)\right. \\
& \left.+\sum_{q=1}^{r}\left[\Pi_{j=1}^{q-1}\left(1+F_{j}\right)\right]\left[G_{q}\right]\left[\Pi_{k=q+1}^{r}\left(1+F_{k}+G_{k}\right)\right]\right\} \mid \\
\leqq & \left|1+F(x, y)-\Pi_{q=1}^{r}\left(1+F_{q}\right)\right|+|F(x, y)| \\
& +\sum_{q=1}^{r}\left|\Pi_{j=1}^{q-1}\left(1+F_{j}\right)\right|\left|G_{q}\right|\left|\Pi_{k=q+1}^{r}\left(1+F_{k}+G_{k}\right)\right| \\
< & \varepsilon / 9 B+\varepsilon / 9 B+B^{2} \varepsilon / 9 B^{3}=\varepsilon / 3 B<\varepsilon .
\end{aligned}
$$

We now make the additional suppositions that $F \in S_{2}$ and $G \in S_{2}$ on $[a, b]$. There exists a subdivision $E=\left\{w_{q}\right\}_{0}^{2 \dot{u}+1}$ of $[a, b]$ such that
(1) $y_{q} \in\left(w_{2 q}, w_{2 q+1}\right)$ for $1 \leqq q<u$,
(2) $\left|F\left(y_{q}, w_{2 q+1}\right)+G\left(y_{q}, w_{2 q+1}\right)-F\left(y_{q}, x\right)-G\left(y_{q}, x\right)\right|<\varepsilon / 2$ for $0 \leqq$ $q<u$ and $x \in\left(y_{q}, w_{2 q+1}\right]$, and
(3) $\left|F\left(w_{2 q}, y_{q}\right)+G\left(w_{2 q}, y_{q}\right)-F\left(x, y_{q}\right)-G\left(x, y_{q}\right)\right|<\varepsilon / 2$ for $0<q \leqq$ u and $x \in\left[w_{2 q}, y_{q}\right)$.
Let $D_{2}=\left\{z_{q}\right\}_{0}^{3 u}$ be the subdivision $D_{1} \cup E$ of $[a, b]$. Suppose $1 \leqq q \leqq 3 u$, $z_{q-1} \leqq x<y \leqq z_{q}$ and H is a subdivision of $[x, y]$. If either $z_{q-1}<$ $x<y<z_{q}$ or neither z_{q-1} nor z_{q} is in D_{1}, then

$$
\begin{aligned}
& \left|1+F(x, y)+G(x, y)-\Pi_{H(I)}(1+F+G)\right| \\
& \quad \leqq|F(x, y)|+|G(x, y)|+\left|1-\Pi_{H(I)}(1+F+G)\right| \\
& \quad<\varepsilon / 9 B+\varepsilon / 9 B^{3}+\varepsilon / 3 B<\varepsilon .
\end{aligned}
$$

If $z_{q-1} \in D_{1}, x=z_{q-1}$ and $H=\left\{h_{q}\right\}_{0}^{r}$, then

$$
\begin{aligned}
\mid 1+ & F(x, y)+G(x, y)-\Pi_{H(I)}(1+F+G) \mid \\
\leqq & \left|F(x, y)+G(x, y)-F\left(x, h_{1}\right)-G\left(x, h_{1}\right)\right| \\
& +\left|1+F\left(x, h_{1}\right)+G\left(x, h_{1}\right)\right| \mid 1-\Pi_{2}^{r}\left[1+F\left(h_{q-1}, h_{q}\right)\right. \\
& \left.+G\left(h_{q-1}, h_{q}\right)\right] \mid \\
< & \varepsilon / 2+B \varepsilon / 3 B<\varepsilon .
\end{aligned}
$$

If $z_{q} \in D_{1}$ and $y=z_{q}$, the necessary inequality follows in a similar manner. Therefore, D_{2} is the desired subdivision.

Theorem 2. If F and G are functions such that $F \in O M^{\circ}, F \in$ $O P^{\circ}, F \in S_{1} \cap S_{2}$ and $G \in O B^{\circ}$ on $[a, b]$ and $\int_{a}^{b} G$ exists, then $F+G \in$ $O M^{\circ}$ on $[a, b]$.

Proof. We initially show that if $\varepsilon>0$ then there exists a subdivision D of $[a, b]$ such that if $H=\left\{x_{q}\right\}_{0}^{n}$ is a refinement of D and H_{q} is a subdivision of $\left[x_{q-1}, x_{q}\right]$ for $q=1,2, \cdots, n$, then

$$
\Sigma_{1}^{n}\left|1+F_{q}+G_{q}-\Pi_{H_{q}(I)}(1+F+G)\right|<\varepsilon .
$$

Let $\varepsilon>0$. It follows from Lemma 1.1 that $G \in O A^{\circ}$ and from Theorem 1 that $F+G \in O P^{\circ}$. Thus, by employing the hypothesis and Lemma 2.1, there exist a subdivision $D_{1}=\left\{y_{q}\right\}_{0}^{u}$ of $[a, b]$ and a number $B>1$ such that if $J=\left\{x_{q}\right\}_{0}^{n}$ is a refinement of D_{1}, then
(1) $\Sigma_{J(I)}|G|<B$,
(2) $\left|\Pi_{i}^{j}\left(1+F_{q}\right)\right|<B$ for $1 \leqq i \leqq j \leqq n$,
(3) $\sum_{1}^{n}\left|G_{q}-\Sigma_{L_{q}(I)} G\right|<\varepsilon / 5$ and $\Sigma_{1}^{n}\left|\left(1+F_{q}\right)-\Pi_{L_{q}(I)}(1+F)\right|<\varepsilon / 5$, where L_{q} is a subdivision of $\left[x_{q-1}, x_{q}\right.$] for $1 \leqq q \leqq n$, and
(4) $\left|1-\Pi_{H(I)}(1+F)\right|<\varepsilon / 5 B$ and $\left|1-\Pi_{H(I)}(1+F+G)\right|<\varepsilon / 5 B^{2}$ for $1 \leqq q \leqq n, x_{q-1}<x<y<x_{q}$ and H a subdivision of $[x, y]$.
Further, it also follows from Lemma 2.1 that there exists a subdivision $D_{2}=\left\{z_{q}\right\}_{0}^{v}$ of $[a, b]$ such that if $1 \leqq q \leqq v, z_{q-1} \leqq x<y \leqq z_{q}$ and H is a subdivision of $[x, y]$, then

$$
\left|1+F(x, y)+G(x, y)-\Pi_{H(I)}(1+F+G)\right|<\varepsilon / 10 u
$$

Let $D=D_{1} \cup D_{2}$, and suppose $H=\left\{x_{q}\right\}_{0}^{n}$ is a refinement of D and $H_{q}=\left\{x_{q r}\right\}_{0}^{n(q)}$ is a subdivision of $\left[x_{q-1}, x_{q}\right]$ for $1 \leqq q \leqq n$. Let P be the set such that $q \in P$ only if $\left[x_{q-1}, x_{q}\right]$ has an end point in D_{1}, and let $Q=\{i\}_{1}^{n}-P$. Further, to simplify notation, let $F_{q r}=F\left(x_{q, r-1}, x_{q r}\right)$, $G_{q r}=G\left(x_{q, r-1}, x_{q r}\right), A_{q r}=\Pi_{j=1}^{r-1}\left(1+F_{q j}\right)$ and $B_{q r}=\Pi_{k=r+1}^{n(q)}\left(1+F_{q k}+G_{q k}\right)$. Thus,

$$
\begin{aligned}
& \sum_{q=1}^{n}\left|1+F_{q}+G_{q}-\Pi_{H_{q}(I)}(1+F+G)\right| \\
& \quad \leqq \Sigma_{q \in P}\left|1+F_{q}+G_{q}-B_{q 0}\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{q \in Q}\left|1+F_{q}+G_{q}-B_{q 0}\right| \\
< & 2 u \varepsilon / 10 u+\sum_{q \in Q} \mid 1+F_{q}+G_{q}-\left[A_{q, n(q)+1}\right. \\
& \left.+\sum_{r=1}^{n(q)} A_{q r} G_{q r} B_{q r}\right] \mid \\
\leqq & \varepsilon / 5+\sum_{q \in Q}\left|1+F_{q}-A_{q, n(q)+1}\right| \\
& +\sum_{q \in Q}\left|G_{q}-\sum_{r=1}^{n(q)} A_{q r} G_{q r} B_{q r}\right| \\
< & 2 \varepsilon / 5+\sum_{q \in Q}\left|G_{q}-\sum_{r=1}^{n=(q)} G_{q r}\right| \\
& +\sum_{q \in Q}\left|\sum_{r=1}^{n(q)} G_{q r}-\sum_{r=1}^{n=(q)} A_{q r} G_{q r} B_{q r}\right| \\
< & 3 \varepsilon / 5+\sum_{q \in Q} \sum_{r=1}^{n(q)}\left|1-A_{q r}\right|\left|G_{q r}\right| \\
& +\sum_{q \in Q} \sum_{r=1}^{n(q)}\left|A_{q r}\right|\left|G_{q r}\right|\left|1-B_{q r}\right| \\
< & 3 \varepsilon / 5+(\varepsilon / 5 B) B+\left(\varepsilon / 5 B^{2}\right) B^{2}=\varepsilon .
\end{aligned}
$$

Hence, if $a \leqq x<y \leqq b$ and $\varepsilon>0$, then there exist a subdivision D of $[a, b]$ and a number B such that if $H=\left\{x_{q}\right\}_{o}^{n}$ is a refinement of D and H_{q} is a subdivision of $\left[x_{q-1}, x_{q}\right]$, then
(1) $\left|\Pi_{i}^{j}\left(1+F_{q}+G_{q}\right)\right|<B$ for $1 \leqq i \leqq j \leqq n$, and
(2) $\quad \sum_{1}^{n}\left|1+F_{q}+G_{q}-\Pi_{H_{q}(I)}(1+F+G)\right|<\varepsilon / B^{2}$.

Thus, if H and H_{q} are defined as above, then

$$
\begin{aligned}
& \left|\Pi_{1}^{n}\left(1+F_{q}+G_{q}\right)-\Pi_{1}^{n} \Pi_{H_{q}(I)}(1+F+G)\right| \\
& \quad \leqq B^{2} \Sigma_{1}^{n}\left|1+F_{q}+G_{q}-\Pi_{H_{q}(I)}(1+F+G)\right| \\
& \quad<B^{2}\left(\varepsilon / B^{2}\right)=\varepsilon .
\end{aligned}
$$

Therefore, ${ }_{x} \Pi^{y}(1+F+G)$ exists.
It now follows that $\int_{a}^{b}|1+F+G-\Pi(1+F+G)|=0$. Hence, $F+G \in O M^{\circ}$ on $[a, b]$.

Theorem 3. If $F \in O Q^{\circ}, G \in O B^{\circ}$ and $1+F+G$ is bounded away from zero on $[a, b]$, then $F+G \in O Q^{\circ}$ on $[a, b]$.

Proof. There exist a subdivision D of $[a, b]$, a positive number $c<1$ and a positive integer m such that if $J=\left\{x_{q}\right\}_{0}^{n}$ is a refinement of D, then
(1) $\left|1+F_{q}+G_{q}\right|>c$ for $1 \leqq q \leqq n$,
(2) $\left|\Pi_{i}^{j}\left(1+F_{q}\right)\right|>c$ for $1 \leqq i \leqq j \leqq n$, and
(3) if K is any collection of nonintersecting subsets of $J(I)$, then the number of $k \in K$ such that $\Sigma_{k}|G| / c>1 / 2$ is less than m. Suppose $J=\left\{x_{q}\right\}_{0}^{n}$ is a refinement of D and $1 \leqq r \leqq s \leqq n$. Let $K=$ $\left\{k_{j}\right\}$ be the collection of nonintersecting subsets of $\left\{\left[x_{q-1}, x_{q}\right]\right\}_{r}^{s}$ such that
(1) $k_{1}=\left\{\left[x_{q-1}, x_{q}\right]\right\}_{m(1)}^{n(1)}$, where $m(1)$ is the first integer such that $m(1) \geqq r$ and $\left|G_{m(1)}\right| / c \leqq 1 / 2$ and $n(1)$ is the largest integer such that $n(1)<s, \sum_{m(1)}^{n(1)}\left|G_{q}\right| / c \leqq 1 / 2$ and $\sum_{m(1)}^{n(1)+1}\left|G_{q}\right| / c>1 / 2$ if such an integer
exists and s otherwise, and
(2) $k_{j}=\left\{\left[x_{q-1}, x_{q}\right\}_{m(j)}^{n(j)}\right.$, where $m(j)$ is the first integer such that $m(j)>n(j-1)$ and $\left|G_{m(j)}\right| / c<1 / 2$ and $n(j)$ is the largest integer such that $n(j) \leqq s, \sum_{m(j)}^{n(j)}\left|G_{q}\right| / c \leqq 1 / 2$ and $\sum_{m(j)}^{n(j)+1}\left|G_{q}\right| / c>1 / 2$ if such an integer exists and s otherwise.
Let $U=\bigcup_{k \in K} k$ and $V=\left\{\left[x_{q-1}, x_{q}\right]\right\}_{r}^{s}-U$. Note that K and V each has a maximum of m elements. Thus,

$$
\begin{aligned}
& \left|\Pi_{r}^{s}\left(1+F_{q}+G_{q}\right)\right| \\
& \quad=\left\{\Pi _ { V } | 1 + F + G | \left\{\left\{I_{U}|1+F+G|\right\}\right.\right. \\
& \quad \geqq c^{m} \Pi_{U}[|1+F|-|G|] \\
& \quad=c^{m} \Pi_{k \in K}\left\{\Pi_{k}|1+F|\right\}\left\{\Pi_{k}\left[1-|G|(|1+F|)^{-1}\right]\right\} \\
& \quad \geqq c^{2 m}\left[\Pi_{k \in K}\left\{I_{k}(1-|G| / c)\right\}\right. \\
& \quad \geqq c^{2 m} \Pi_{k \in K}\left[1-\Sigma_{k}|G| / c\right] \geqq c^{2 m} / 2^{m} .
\end{aligned}
$$

Corollary 3.1. If $\int_{a}^{b} F$ exists, then the following are equivalent: (1) $F \in O Q^{\circ}$ on $[a, b]$, and (2) $\int F \in O Q^{\circ}$ on $[a, b]$.

Indication of proof. Since $\int_{a}^{b} F$ exists, $F \in O A^{\circ}$ [Lemma 1.1]. The result now follows by using Theorem 3.

Corollary 3.2. If G is a function, then the following are equivalent: (1) $G \in O Q^{1}$ on $[a, b]$, and (2) if $F \in O B^{\circ}$ on $[a, b]$, then $F+$ $G \in O Q^{1}$ on $[a, b]$.

Indication of proof. Since $F \equiv 0$ is in $O B^{\circ}$, (2) implies (1). Further, it follows from Theorem 3 that (1) implies (2).

Lemma 3.1. If $0 \leqq G \leqq 1$ and $G \notin O B^{\circ}$ on $[a, b]$, then $-G \notin O Q^{\circ}$ on $[a, b]$.

Indication of proof. If H is a subdivision of $[a, b]$, then

$$
\begin{aligned}
\Pi_{H(I)}(1-G) & =\exp \left[\Sigma_{H(I)} \ln (1-G)\right] \\
& =\exp \left[-\Sigma_{H(I)} \Sigma_{1}^{\infty} G^{i} / i\right] .
\end{aligned}
$$

Thus, $\Pi_{H(I)}(1-G) \rightarrow 0$ as $\Sigma_{H(I)} G \rightarrow \infty$.
Corollary 3.3. If G is a function, then the following are equivalent: (1) $G \in O B^{\circ}$ on $[a, b]$, and (2) if $F \in O Q^{1}$ on $[a, b]$, then $F+$ $G \in O Q^{1}$ on $[a, b]$.

Proof. Since it follows from Theorem 3 that (1) implies (2), we need only show that (2) implies (1). The function $|G|$ is almost bounded above on $[a, b]$ by $1 / 2$. If this is not so, then a contradiction follows by considering the function F such that
(1) $F(x, y)=0$ if $-1 / 2 \leqq G(x, y) \leqq 0$,
(2) $F(x, y)=-G(x, y)-1 / 2$ if $G(x, y)<-1 / 2$,
(3) $\quad F(x, y)=-2$ if $0<G(x, y) \leqq 1 / 2$, and
(4) $F(x, y)=-G(x, y)-3 / 2$ if $G(x, y)>1 / 2$.

Thus, although $F \in O Q^{1}, F+G \notin O Q^{1}$ since $|1+F+G| \leqq 1$ and the number of intervals for which $|1+F+G|=1 / 2$ is unbounded. Now, if $G \notin O B^{\circ}$, a contradiction follows from Lemma 3.1 by using the function F such that
(1) $F(x, y)=-2$ if $G(x, y) \geqq 0$, and
(2) $F(x, y)=0$ if $G(x, y)<0$.

Theorem 4. If G is a function, then the following are equivalent:

$$
\begin{equation*}
\text { if } \int_{a}^{b}|F|=0, \text { then } F G \in O B^{\circ} \tag{1}
\end{equation*}
$$

(2) if $\int_{a}^{b}|F|=0$, then $F G \in O P^{\circ}$,
(3) if $\int_{a}^{b}|F|=0$, then $F G \in O Q^{\circ}$, and
(4) G is bounded on $[a, b]$.

Proof. It follows readily that (4) implies (1). Further, it follows that (4) implies (2) and (3) by using Theorems 1 and 3, respectively. If $G(x, y)$ as $x, y \rightarrow p^{-}, G(x, y)$ as $x, y \rightarrow p^{+}, G(x, p)$ as $x \rightarrow p^{-}$and $G(p, x)$ as $x \rightarrow p^{+}$are bounded for each $p \in[a, b]$, then it follows from the covering theorem that G is bounded on $[a, b]$. If one or more of these bounds fail to exist for some $p \in[a, b]$, then there exists a sequence $\left\{\left(y_{q}, z_{q}\right)\right\}_{1}^{\infty}$ of distinct subintervals of $[a, b]$ such that $\left|G\left(y_{q}, z_{q}\right)\right|>$ q^{3} for $q=1,2, \cdots$, and if $\left\{x_{q}\right\}_{0}^{n}$ is a subdivision of $[a, b]$ and r is a positive integer then there exist positive integers i and j such that $j>r$ and $x_{i-1} \leqq y_{j}<z_{j} \leqq x_{i}$. Contradictions to (1) and (2) now follow by considering the function F such that

$$
F(x, y)=[G(x, y)] /\left[q^{2}|G(x, y)|\right]
$$

if there exists a positive integer q such that $x=y_{q}$ and $y=z_{q}$ and $F(x, y)=0$ otherwise. Here $\int_{a}^{b}|F|=0$, but $F G$ is in neither $O B^{\circ}$ nor $O P^{\circ}$. Further, a contradiction to (3) follows by considering the function F such that $F(x, y)=[-G(x, y)]^{-1}$ if there exists a positive integer q such that $x=y_{q}$ and $y=z_{q}$ and $F(x, y)=0$ otherwise.

Lemma 5.1. If G is a function such that
(1) G is almost bounded above by $1 / 3$ on $[a, b]$, and
(2) if $F \in O P^{\circ}$ on $[a, b]$, then $F G \in O P^{\circ}$ on $[a, b]$, then $G \in O B^{\circ}$ on $[a, b]$.

Proof. Suppose $G \notin O B^{\circ}$ on $[a, b]$. It follows from Theorem 4 that G is bounded on $[a, b]$. There exists a set $\{C(i)\}_{1}^{\infty}$ such that
(1) $C(i)$ is a finite set of nonoverlapping subintervals of $[a, b]$ which can be grouped into a collection $D(i)$ of nonintersecting pairs of adjacent intervals,
(2) no interval in $C(i+1)$ has an end point which is also the end point of an interval in $C(q), q=1,2, \cdots, i$,
(3) if $(x, y) \in C(i)$, then $G(x, y)<1 / 3$, and
(4) $\quad \Sigma_{C(i)}|G|>i$.

Let $C=\bigcup_{1}^{\infty} D(i)$, and let F be the function on $[a, b]$ such that if $\{(u, v),(r, s)\} \in C$ and $G(u, v) \geqq G(r, s)$, then
(a) $F(u, v)=-2$ if $G(u, v)<0$,
(b) $F(u, v)=2$ if $G(u, v) \geqq 0$,
(c) $F(r, x)=-1$ if $r=v$ and $r<x$, and
(d) $F(x, s)=-1$ if $s=u$ and $x<s$,
and $F(x, y)=0$ otherwise. Thus, $F \in O P^{\circ}$ on $[a, b]$. However,

$$
[1+F(u, v) G(u, v)][1+F(r, s) G(r, s)] \geqq 1+|G(u, v)| / 3 .
$$

Hence, since G is bounded and $\left\{\Sigma_{C(i)}|G|\right\}_{1}^{\infty}$ is unbounded, $F G \notin O P^{\circ}$. This is a contradiction, and therefore, $G \in O B^{\circ}$ on $[a, b]$.

Lemma 5.2. If G is a function such that
(1) G is almost bounded below by $1 / 10$ on $[a, b]$, and
(2) if $F \in O P^{\circ}$ on $[a, b]$, then $F G \in O P^{\circ}$ on $[a, b]$, then $G-1 \in O B^{\circ}$ on $[a, b]$.

Proof. Suppose $G-1 \notin O B^{\circ}$ on $[a, b]$. It follows from Theorem 4 that G is bounded on $[a, b]$. There exists a set $\{C(i)\}_{1}^{\infty}$ satisfying conditions (1) and (2) in Lemma 5.1 plus the additional conditions
(3) if $(x, y) \in C(i)$, then $G(x, y)>1 / 10$, and
(4) $\quad \Sigma_{C(i)}|G-1|>i$.

Let $C=\bigcup_{1}^{\infty} D(i)$, where $D(i)$ is defined as in Lemma 5.1. Note that if $\{(u, v),(r, s)\} \in C$ and $G(u, v) \geqq G(r, s)$, then either
(5) $G(u, v) \geqq 1$ and $|1-G(u, v)| \geqq|1-G(r, s)|$, or
(6) $G(r, s)<1$ and either $G(u, v)=G(r, s)$ or

$$
|1-G(u, v)|<|1-G(r, s)| .
$$

Let F be the function on $[a, b]$ such that if $\{(u, v),(r, s)\} \in C$ and $G(u, v) \geqq G(r, s)$, then
(a) $F(u, v)=-2$ and $F(r, s)=0$ if (5) is true,
(b) $F(u, v)=1$ and $F(r, x)=-1 / 2$ if (6) is true, $r=v$ and $r<x$, and
(c) $F(u, v)=1$ and $F(x, s)=-1 / 2$ if (6) is true, $s=u$ and $x<s$,
and $F(x, y)=0$ otherwise. Thus, $F \in O P^{\circ}$ on $[a, b]$. Observe that if (5) is true, then

$$
[1+F(u, v) G(u, v)][1+F(r, s) G(r, s)]=-\{1+2[G(u, v)-1]\}
$$

and if (6) is true, then

$$
\begin{aligned}
{[1} & +F(u, v) G(u, v)][1+F(r, s) G(r, s)] \\
& \geqq[1+G(r, s)][1-G(r, s) / 2] \\
& >1+[1 / 20][1-G(r, s)]
\end{aligned}
$$

Hence, since G is bounded and $\left\{\Sigma_{C(i)} \mid G-1\right\}_{1}^{\infty}$ is unbounded, $F G \notin O P^{\circ}$. This is a contradiction, and therefore, $G-1 \in O B^{\circ}$ on $[a, b]$.

Theorem 5. If G is a function, then the following are equivalent:
(1) $G \in O B^{*}$ on $[a, b]$, and
(2) if $F \in O P^{\circ}$ on $[a, b]$, then $F G \in O P^{\circ}$ on $[a, b]$.

Proof $(2 \rightarrow 1)$. If $a \leqq \alpha<b$, then there exists a number β such that $\alpha<\beta \leqq b$ and either $G \in O B^{\circ}$ on $[\alpha, \beta]$ or $G-1 \in O B^{\circ}$ on $[\alpha, \beta]$. If this is false and $a \leqq \alpha<\beta<b$, then it follows from Lemmas 5.1 and 5.2 that G is neither almost bounded above by $1 / 3$ nor almost bounded below by $1 / 10$ on $[\alpha, \beta]$; hence, there exist sequences $\left\{s_{p}\right\}_{1}^{\infty}$ and $\left\{r_{p}\right\}_{1}^{\infty}$ such that
(1) s_{p} and r_{p} are subintervals of $[a, b]$ with a common end point,
(2) s_{p} precedes r_{p} and r_{p+1} precedes s_{p}, and
(3) $G\left(s_{p}\right)<1 / 10$ and $G\left(r_{p}\right) \geqq 1 / 10$.

Let $H=\left\{s_{p}\right\}_{1}^{\infty} \cup\left\{r_{p}\right\}_{1}^{\infty}$, and let F be the function on $[a, b]$ such that
(1) $F(x, y)=-1$ if there exists an interval $(z, y) \in H$ such that $x<y$ and $G(z, y)<1 / 10$,
(2) $F(x, y)=2$ if $(x, y) \in H$ and $G(x, y) \geqq 1 / 10$, and
(3) $F(x, y)=0$ otherwise.

Thus, $F \in O P^{\circ}$ on $[a, b]$. However, it follows that $F G \notin O P^{\circ}$ on $[a, b]$ since

$$
\left[1+F\left(s_{p}\right) G\left(s_{p}\right)\right]\left[1+F\left(r_{p}\right) G\left(r_{p}\right)\right]>(.9)(1.2)=1.08
$$

Similarly, if $a<\beta \leqq b$, then there exists a number α such that $\alpha \leqq \alpha<\beta$ and either $G \in O B^{\circ}$ on $[\alpha, \beta]$ or $G-1 \in O B^{\circ}$ on $[\alpha, \beta]$. It now follows that $G \in O B^{*}$ on $[a, b]$ by using the covering theorem.

Proof $(1 \rightarrow 2)$. Since $O B^{\circ} \subseteq O P^{\circ}$, if $G \in O B^{\circ}$ and $F \in O P^{\circ}$ on $[x, y]$, then $F G \in O P^{\circ}$ on $[x, y]$. Note that

$$
1+F G=1+F+F(G-1)
$$

Thus, it follows from Theorem 1 that if $G-1 \in O B^{\circ}$ and $F \in O P^{\circ}$ on $[x, y]$, then $F G \in O P^{\circ}$ on $[x, y]$. Therefore, (1) must imply (2).

Corollary 5.1. If G is a function, then the following are equivalent:
(1) $G \in O P^{\circ}$ on $[a, b]$, and
(2) if $F \in O B^{*}$ on $[a, b]$, then $F G \in O P^{\circ}$ on $[a, b]$.

Indication of proof. It follows that (1) implies (2) by using Theorem 5 and that (2) implies (1) by considering the function $F \equiv 1$.

Lemma 6.1. If G is a bounded function such that
(1) G is almost bounded above by $1 / 3$ on $[a, b]$, and
(2) if $F \in O Q^{\circ}$ and is bounded on $[a, b]$ and $1+F G$ is bounded away from zero, then $F G \in O Q^{\circ}$ on $[a, b]$, then $G \in O B^{\circ}$ on $[a, b]$.

Proof. Suppose $G \notin O B^{\circ}$ on $[a, b]$. There exist a subdivision D of $[a, b]$ and a positive integer m such that if J is a refinement of D and $u \in J(I)$ then $|G(u)| / m<1 / 2$. Let H be the set such that $u \in H$ only if there exists a refinement J of D such that $u \in J(I)$, and let F be the function such that
(1) $\quad F(u)=-2$ if $u \in H$ and $0 \leqq G(u) \leqq 1 / 3$,
(2) $F(u)=1 / m$ if $u \in H$ and $G(u)<0$, and
(3) $F(x, y)=0$ otherwise.

Since $F \in O Q^{\circ}$ and $1+F G$ is bounded away from zero, $F G \in O Q^{\circ}$. However, it follows from Lemma 3.1 that $F G \notin O Q^{\circ}$. This is a contradiction, and therefore, $G \in O B^{\circ}$.

Lemma 6.2. If G is a bounded function such that
(1) G is almost bounded below by $1 / 10$ on $[a, b]$, and
(2) if $F \in O Q^{\circ}$ and is bounded on $[a, b]$ and $1+F G$ is bounded away from zero, then $F G \in O Q^{\circ}$ on $[a, b]$, then $G-1 \in O B^{\circ}$ on $[a, b]$.

Proof. There exist a subdivision D of $[a, b]$ and a number B such that if J is a refinement of D and $u \in J(I)$ then $|G(u)|<B$. Let H be the set such that $u \in H$ only if there exists a refinement J of D such that $u \in J(I)$. Let H_{1} and H_{2} be the subsets of H such that $u \in H_{1}$ only if $G(u) \leqq 1$ and $u \in H_{2}$ only if $G(u)>1$. For $i=1,2$, let $G_{i}(x, y)=G(x, y)$ if $(x, y) \in H_{i}$ and $G_{i}(x, y)=0$ if $(x, y) \notin H_{i}$.

Suppose $G_{1}-1 \notin O B^{\circ}$ on $[a, b]$. Let F be the function such that
(1) $F(u)=-2$ if $u \in H_{1}$ and $G(u)<5 / 12$ or $7 / 12<G(u) \leqq 1$,
(2) $F(u)=-3$ if $u \in H_{1}$ and $5 / 12 \leqq G(u) \leqq 7 / 12$, and
(3) $F(x, y)=0$ otherwise.

Since $F \in O Q^{\circ}$ and $1+F G$ is bounded away from zero, $F G \in O Q^{\circ}$. However, it follows from Lemma 3.1 that $F G \notin O Q^{\circ}$. This is a contradiction, and therefore, $G_{1}-1 \in O B^{\circ}$.

Suppose $G_{2}-1 \notin O B^{\circ}$ on $[a, b]$. There exist a set $\{C(i)\}_{1}^{\infty}$ and an integer $m>1$ such that
(1) $C(i)$ is a finite set of nonoverlapping subintervals of $[a, b]$ which can be grouped into a collection $D(i)$ of nonintersecting pairs $\{(u, v),(r, s)\}$ of adjacent intervals such that either $G(u, v)>1$ or $G(r, s)>1$,
(2) no interval in $C(i+1)$ has an end point which is also the end point of an interval in $C(q), q=1,2, \cdots, i$,
(3) if $(x, y) \in C(i)$ then $G(x, y)>1 / 10$ and $G(x, y) / m<1 / 2$, and
(4) $\quad \Sigma_{O(i)}\left|G_{2}-1\right|>i$.

Let $C=\bigcup_{1}^{\infty} D(i)$, and let F be the function such that if $\{(u, v),(r, s)\} \in C$ and $G(u, v) \geqq G(r, s)$ then $F(u, v)=-1 / m, F(r, x)=1 /(m-1)$ if $r=v$ and $F(x, s)=1 /(m-1)$ if $s=u$, and $F(x, y)=0$ otherwise. Since $F \in O Q^{\circ}$ and $1+F G$ is bounded away from zero, $F G \in O Q^{\circ}$. However, if $\{(u, v),(r, s)\} \in C$ and $G(u, v) \geqq G(r, s)$, then

$$
\begin{aligned}
0 & <[1+F(u, v) G(u, v)][1+F(r, s) G(r, s)] \\
& \leqq[1-G(u, v) / m][1+G(u, v) /(m-1)] \\
& <1+[1-G(u, v)] / m(m-1)
\end{aligned}
$$

It follows from Lemma 3.1 that $F G \notin O Q^{\circ}$. This is a contradiction, and therefore, $G_{2}-1 \in O B^{\circ}$.

Thus, since $G_{i}-1 \in O B^{\circ}$ on $[a, b]$ for $i=1,2$, it follows that $G-1 \in O B^{\circ}$ on $[a, b]$.

Theorem 6. If G is a bounded function, then the following are equivalent:
(1) $G \in O B^{*}$ on $[a, b]$, and
(2) if $F \in O Q^{\circ}$ and is bounded on $[a, b]$ and $1+F G$ is bounded away from zero, then $F G \in O Q^{\circ}$ on $[a, b]$.

Proof $(2 \rightarrow 1)$. If $a \leqq \alpha<b$, then there exists a number β such that $\alpha<\beta \leqq b$ and either $G \in O B^{\circ}$ on $[\alpha, \beta]$ or $G-1 \in O B^{\circ}$ on $[\alpha, \beta]$. If this is false, then it follows from Lemmas 6.1 and 6.2 that there exist sequences $\left\{s_{p}\right\}_{1}^{\infty}$ and $\left\{r_{p}\right\}_{1}^{\infty}$ and a set H defined as in Theorem 5. Let F be a function on $[a, b]$ such that if (u, v) and (v, s) are intervals in H such that $G(u, v) \leqq 1 / 10$ and $G(v, s) \geqq 1 / 10$, then
(1) $1+F(u, v) G(u, v)=1 / 2$ and $F(v, s)=0$ if $G(u, v)<-1 / 10$,
(2) $F(x, v)=1,-1 / 2 \leqq F(v, s)<0$ and $1 / 2 \leqq 1+F(v, s) G(v, s) \leqq$.95 if $-1 / 10 \leqq G(u, v) \leqq 0$, and
(3) $F(x, v)=-3,-1 / 2 \leqq F(v, s)<0$ and $1 / 2 \leqq 1+F(v, s) G(v, s) \leqq$. 95 if $0<G(u, v)<1 / 10$,
and $F(x, y)=0$ otherwise. Since F is a bounded function in $O Q^{\circ}$ such that $1+F G$ is bounded away from zero, $F G \in O Q^{\circ}$. However,

$$
\left|\left[1+F\left(s_{p}\right) G\left(s_{p}\right)\right]\left[1+F\left(r_{p}\right) G\left(r_{p}\right)\right]\right| \leqq .95 .
$$

Hence, $F G \notin O Q^{\circ}$. Similarly, if $a<\beta \leqq b$, then there exists a number α such that $a \leqq \alpha<\beta$ and either $G \in O B^{\circ}$ on $[\alpha, \beta]$ or $G-1 \in O B^{\circ}$ on $[\alpha, \beta]$. It now follows that $G \in O B^{*}$ on $[a, b]$ by using the covering theorem.

Proof $(1 \rightarrow 2)$. This follows from Theorem 3 by a procedure similar to that used in Theorem 5.

References

1. W. D. L. Appling, Interval functions and real Hilbert spaces, Rend. Circ. Mat. Palermo, Series 2, 11 (1962), 154-156.
2. B. W. Helton, Integral equations and product integrals, Pacific J. Math., 16 (1966), 297-322.
3. A. Kolmogoroff, Untersuchungen über den Integralbegriff, Math. Ann., 103 (1930), 654-696.
4. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math., 7 (1963), 148-173.

Received May 10, 1972.
Arizona State University

