BOUNDS FOR PRODUCTS OF INTERVAL FUNCTIONS

JON C. HELTON

Since it is possible for ${}_{a}\Pi^{b}(1+G)$ to exist and not be zero when G is unbounded and 1+G is not bounded away from zero, the conditions under which products of the form $|\Pi_{1}^{n}[1+G(x_{q-1},x_{q})]|$ are bounded or bounded away from zero for suitable subdivisions $\{x_{q}\}_{0}^{n}$ of [a, b] are important in many theorems concerning product integrals. Conditions are obtained for such bounds to exist for products of the form $\Pi(1+FG)$ and $\Pi(1+F+G)$, where F and G are functions from $R \times R$ to R. Further, these results are used to obtain an existence theorem for product integrals.

All integrals and definitions are of the subdivision-refinement type, and functions are from the subset $\{(x, y): x < y\}$ of $R \times R$ to R, where R represents the set of real numbers. If $D = \{x_q\}_0^n$ is a subdivision of [a, b] and G is a function, then $D(I) = \{[x_{q-1}, x_q]\}_1^n$ and $G_q =$ $G(x_{q-1}, x_q)$. The statements that G is bounded, $G \in OP^\circ$, $G \in OQ^\circ$ and $G \in OB^\circ$ on [a, b] mean there exist a subdivision D of [a, b] and a positive number B such that if $J = \{x_q\}_0^n$ is a refinement of D, then

 $(1) |G(u)| < B \text{ for } u \in J(I),$

 $(2) \quad |\Pi_r^s(1+G_q)| < B \text{ for } 1 \leq r \leq s \leq n,$

- (3) $|\Pi_r^s(1+G_q)| > B$ for $1 \leq r \leq s \leq n$, and
- $(4) \quad \Sigma_{J(I)} |G| < B,$

respectively. The notation $\{x_{qr}\}_{0}^{n(q)}$ represents a subdivision of an interval $[x_{q-1}, x_q]$ defined by a subdivision $\{x_q\}_{0}^{*}$. If G is a function, then $G \in S_1$ on [a, b] only if $\lim_{x,y \to p} + G(x, y)$ and $\lim_{x,y \to p} - G(x, y)$ exist and are zero for $p \in [a, b]$, and $G \in S_2$ on [a, b] only if $\lim_{x \to p} + G(p, x)$ and $\lim_{x \to p} - G(x, p)$ exist for $p \in [a, b]$. Further, $G \in OA^{\circ}$ on [a, b] only if $\int_{a}^{b} G$ exists and $\int_{a}^{b} |G - \int G| = 0$, and $G \in OM^{\circ}$ on [a, b] only if $_{x}\Pi^{y}(1 + G)$ exists for $a \leq x < y \leq b$ and $\int_{a}^{b} |1 + G - \Pi(1 + G)| = 0$. Also, $G \in OQ^{1}$ and $G \in OB^{*}$ on [a, b] if there exists a subdivision $D = \{x_{q}\}_{0}^{*}$ of [a, b] such that

(1) if $1 \leq q \leq n$ and $x_{q-1} < x < y < x_q$, then $G \in OQ^\circ$ on [x, y], and

(2) if $1 \leq q \leq n$, then either $G \in OB^{\circ}$ on $[x_{q-1}, x_q]$ or $G - 1 \in OB^{\circ}$ on $[x_{q-1}, x_q]$,

respectively. The statement that G is almost bounded above by β (or, almost bounded below by β) on [a, b] means there exists a positive integer N such that if D is a subdivision of [a, b] and $u \in H$ only if $u \in D(I)$ and $G(u) > \beta$ (or, $G(u) < \beta$) then H has less than N elements. Consult B. W. Helton [2] and J. S. MacNerney [4] for

additional details.

division of [a, b], then

THEOREM 1. If G is a function, then the following are equivalent: (1) $G \in OB^{\circ}$ on [a, b], and (2) if $F \in OP^{\circ}$ on [a, b], then $F + G \in OP^{\circ}$ on [a, b].

Proof $(2 \rightarrow 1)$. Let F be the function such that F(x, y) = 0 if $G(x, y) \ge 0$ and F(x, y) = -2 if G(x, y) < 0. Hence, if J is a sub-

$$|\varPi_{_{J(I)}}(1+F+G)|=\varPi_{_{J(I)}}(1+|G|)$$
 ,

which can be bounded only if $G \in OB^{\circ}$.

Proof $(1 \rightarrow 2)$. Suppose $F \in OP^{\circ}$. There exist positive numbers B and C with B > 1, a positive integer i and a subdivision D of [a, b] such that if $J = \{x_q\}_0^w$ is a refinement of D, then

 $(1) |\Pi^s_r(1+F_q)| < B ext{ for } 1 \leq r \leq s \leq w,$

(2) $\exp [4B \Sigma_{J(I)} |G|] < C,$

(3) if T is a collection of nonintersecting subsets of J(I), then the number of $t \in T$ such that $\exp [4B\Sigma_t |G|] > 2$ is less than *i*, and

(4) the number of $u \in J(I)$ such that |G(u)| > 1/4B is less than *i*. Let $J = \{x_q\}_0^w$ be a refinement of *D* and suppose $1 \le r \le s \le w$. Let $L = \{[x_{q-1}, x_q]\}_r^s$, and let *H* be the subset of *L* such that $u \in H$ only if $|1 + F(u)| \le 1/4B$. Further, let *K* be the collection of subsets of *L* such that $k \in K$ only if there exist $u, v \in H$ such that u precedes v on [a, b] and either

(1) $k = \{t \mid t \text{ precedes } v \text{ and follows } u\}$ and $k \cap H = \emptyset$,

(2) u is the first element in H and $k = \{t \mid t \text{ precedes } u\}$, or

(3) v is the last element in H and $k = \{t \mid t \text{ follows } v\}$.

Let $u \in M$ only if $u \in H$ and |G(u)| > 1/4B, and let $k \in N$ only if $k \in K$ and $\exp [4B \Sigma_k |G|] > 2$. Hence, M and N each has less than i elements. Also, K has at most one more element than H. Hence, K - Ncan have at most i more elements than H - M. Let j, m and ndenote the number of elements in M, H - M and K - N, respectively, and suppose $U = \bigcup_{k \in K} k$. Hence,

$$\begin{split} |\Pi_{L}(1+F+G)| \\ &\leq \{\Pi_{H}[|1+F|+|G|]\} \cdot \{|\Pi_{U}(1+F+G)|\} \\ &\leq \{\Pi_{M}[1/4B+|G|]\} \cdot \{\Pi_{H-M}[1/4B+|G|]\} \cdot \{|\Pi_{U}(1+F+G)|\} \\ &\leq \{(1/4B)^{j}C\} \cdot \{1/4B+1/4B\}^{m} \cdot \{|\Pi_{U}(1+F+G)|\} \\ &\leq C\{1/2B\}^{m} \cdot \{\Pi_{k \in K} |\Pi_{k}[1+F][1+(1+F)^{-1}G]|\} \\ &\leq C\{1/2B\}^{m} \cdot \{\Pi_{k \in K} [|\Pi_{k}(1+F)|][\Pi_{k}(1+4B|G|)]\} \\ &= C\{1/2B\}^{m} \cdot \{\Pi_{k \in N} [|\Pi_{k}(1+F)|][\Pi_{k}(1+4B|G|)]\} . \end{split}$$

$$egin{aligned} &\{\Pi_{k\, e\, K-N}[|\,\Pi_k(1\,+\,F)\,|][\Pi_k(1\,+\,4B\,|\,G\,|)]\}\ &\leq C\{1/2B\}^m \cdot \{BC\}^i \cdot \{2B\}^n\ &= B^iC^{i+1}(2B)^{n-m} \leq B^iC^{i+1}(2B)^i \ . \end{aligned}$$

LEMMA 1.1. If $\int_a^b F$ exists, then $F \in OA^\circ$ on [a, b].

This result is due to A. Kolmogoroff [3, p. 669]. Further, related results have also been obtained by W. D. L. Appling [1, Th. 2, p. 155] and B. W. Helton [2, Th. 4.1, p. 304].

COROLLARY 1.1. If $\int_a^b F$ exists, then the following are equivalent: (1) $F \in OP^\circ$ on [a, b], and (2) $\int F \in OP^\circ$ on [a, b].

Indication of proof. Since $\int_{a}^{b} F$ exists, $F \in OA^{\circ}$ [Lemma 1.1]. The result now follows by using Theorem 1.

COROLLARY 1.2. If $F \in OP^{\circ}$ on [a, b], ${}_{a}\Pi^{b}(1 + F)$ exists and $\int_{a}^{b} |G| = 0$, then ${}_{a}\Pi^{b}(1 + F + G)$ exists and is ${}_{a}\Pi^{b}(1 + F)$.

Indication of proof. A related result is proved by B. W. Helton [2, Th. 5.6, p. 315]. This result follows by an argument similar to the one used in that theorem since Theorem 1 implies that $F + G \in OP^{\circ}$.

COROLLARY 1.3. If G is a function, then the following are equivalent:

(1) $G \in OP^\circ$ on [a, b], and (2) $i \in E \circ OP^\circ$ on [a, b], $i \in E \circ OP^\circ$

(2) if $F \in OB^{\circ}$ on [a, b], then $F + G \in OP^{\circ}$ on [a, b].

Proof. Theorem 1 establishes that (1) implies (2). Further, (2) implies (1) since $F \equiv 0$ belongs to OB° .

B. W. Helton has shown if G is a function from $S \times S$ to N such that $G \in OA^{\circ}$ and $G \in OB^{\circ}$, then $G \in OM^{\circ}$, where S represents a linearly ordered set and N represents a ring which has a multiplicative identity element denoted by 1 and has a norm $|\cdot|$ with respect to which N is complete and |1| = 1 [2, Th. 3.4 $(1 \rightarrow 2)$, p. 301]. We now use Theorem 1 to establish a related result. In particular, we show that if F and G are functions from $R \times R$ to R such that $F \in OM^{\circ}$, $F \in OP^{\circ}$, $F \in S_1 \cap S_2$ and $G \in OB^{\circ}$ on [a, b] and $\int_a^b G$ exists, then $F + G \in OM^{\circ}$ on [a, b].

LEMMA 2.1. If F and G are functions such that $F \in OM^{\circ}$, $F \in$

 OP° , $F \in S_1$ and $G \in OB^{\circ}$ on [a, b] and $\varepsilon > 0$, then there exists a subdivision $\{y_q\}_0^u$ of [a, b] such that if $y_{q-1} < x < y < y_q$ and H is a subdivision of [x, y], then

$$|1-\Pi_{\scriptscriptstyle H(I)}(1+F+G)| .$$

Further, if $F \in S_2$ and $G \in S_2$ on [a, b], then there exists a subdivision $\{z_q\}_0^v$ of [a, b] such that if $z_{q-1} \leq x < y \leq z_q$ and H is a subdivision of [x, y], then

$$|1 + F(x, y) + G(x, y) - \Pi_{H(I)}(1 + F + G)| < \varepsilon$$
.

Proof. Suppose F and G are functions such that $F \in OM^{\circ}, F \in OP^{\circ}, F \in S_1$ and $G \in OB^{\circ}$ on [a, b] and $\varepsilon > 0$. It follows from Theorem 1 that $F + G \in OP^{\circ}$. There exist a subdivision $D_1 = \{y_q\}_0^u$ of [a, b] and a number B > 1 such that if $J = \{x_q\}_0^u$ is a refinement of D_1 , then

 $\begin{array}{ll} (1) & |\varPi_i^j(1+F_q)| < B \text{ and } |\varPi_i^j(1+F_q+G_q)| < B \text{ for } 1 \leq i \leq j \leq n, \\ (2) & |F(x,y)| < \varepsilon/9B \text{ and } \Sigma_{H(I)}|G| < \varepsilon/9B^3 \text{ if } 1 \leq q \leq n, x_{q-1} < \\ x < y < x_q \text{ and } H \text{ is a subdivision of } [x, y], \text{ and} \end{array}$

(3) $\Sigma_q | (1 + F_q) - \prod_{H_q(I)} (1 + F) | < \varepsilon/9B$, where H_q is a subdivision of $[x_{q-1}, x_q]$ for $q = 1, 2, \dots, n$. Suppose $1 \leq q \leq u$ and $y_{q-1} < x < y < y_q$. If $H = \{h_q\}_0^r$ is a subdivision of [x, y], then

$$\begin{split} |1 - \Pi_{H(I)}(1 + F + G)| \\ &= |1 + F(x, y) - F(x, y) - \{\Pi_{q=1}^{r}(1 + F_{q}) \\ &+ \Sigma_{q=1}^{r}[\Pi_{j=1}^{q-1}(1 + F_{j})][G_{q}][\Pi_{k=q+1}^{r}(1 + F_{k} + G_{k})]\}| \\ &\leq |1 + F(x, y) - \Pi_{q=1}^{r}(1 + F_{q})| + |F(x, y)| \\ &+ \Sigma_{q=1}^{r}|\Pi_{j=1}^{q-1}(1 + F_{j})||G_{q}||\Pi_{k=q+1}^{r}(1 + F_{k} + G_{k})| \\ &< \varepsilon/9B + \varepsilon/9B + B^{2}\varepsilon/9B^{3} = \varepsilon/3B < \varepsilon \;. \end{split}$$

We now make the additional suppositions that $F \in S_2$ and $G \in S_2$ on [a, b]. There exists a subdivision $E = \{w_q\}_{0}^{2u+1}$ of [a, b] such that

(1) $y_q \in (w_{2q}, w_{2q+1})$ for $1 \leq q < u$,

 $\begin{array}{ll}(2) & |F(y_q,w_{2q+1}) + G(y_q,w_{2q+1}) - F(y_q,x) - G(y_q,x)| < \varepsilon/2 \text{ for } 0 \leq \\ q < u \text{ and } x \in (y_q,w_{2q+1}], \text{ and}\end{array}$

 $(3) |F(w_{2q}, y_q) + G(w_{2q}, y_q) - F(x, y_q) - G(x, y_q)| < arepsilon/2 ext{ for } 0 < q \leq u ext{ and } x \in [w_{2q}, y_q).$

Let $D_2 = \{z_q\}_0^{3u}$ be the subdivision $D_1 \cup E$ of [a, b]. Suppose $1 \leq q \leq 3u$, $z_{q-1} \leq x < y \leq z_q$ and H is a subdivision of [x, y]. If either $z_{q-1} < x < y < z_q$ or neither z_{q-1} nor z_q is in D_1 , then

$$egin{aligned} |1+F(x,y)+G(x,y)-\Pi_{{}_{H(I)}}(1+F+G)|\ &\leq |F(x,y)|+|G(x,y)|+|1-\Pi_{{}_{H(I)}}(1+F+G)|\ &$$

380

If
$$z_{q-1} \in D_1$$
, $x = z_{q-1}$ and $H = \{h_q\}_0^r$, then
 $|1 + F(x, y) + G(x, y) - \Pi_{H(I)}(1 + F + G)|$
 $\leq |F(x, y) + G(x, y) - F(x, h_1) - G(x, h_1)|$
 $+ |1 + F(x, h_1) + G(x, h_1)| |1 - \Pi_2^r [1 + F(h_{q-1}, h_q) + G(h_{q-1}, h_q)]|$
 $< \varepsilon/2 + B\varepsilon/3B < \varepsilon$.

If $z_q \in D_1$ and $y = z_q$, the necessary inequality follows in a similar manner. Therefore, D_2 is the desired subdivision.

THEOREM 2. If F and G are functions such that $F \in OM^{\circ}$, $F \in OP^{\circ}$, $F \in S_1 \cap S_2$ and $G \in OB^{\circ}$ on [a, b] and $\int_a^b G$ exists, then $F + G \in OM^{\circ}$ on [a, b].

Proof. We initially show that if $\varepsilon > 0$ then there exists a subdivision D of [a, b] such that if $H = \{x_q\}_0^n$ is a refinement of D and H_q is a subdivision of $[x_{q-1}, x_q]$ for $q = 1, 2, \dots, n$, then

$$\Sigma_{1}^{n} \left| 1 + F_{q} + G_{q} - \varPi_{H_{q}(I)}(1 + F + G)
ight| < arepsilon$$
 .

Let $\varepsilon > 0$. It follows from Lemma 1.1 that $G \in OA^{\circ}$ and from Theorem 1 that $F + G \in OP^{\circ}$. Thus, by employing the hypothesis and Lemma 2.1, there exist a subdivision $D_1 = \{y_q\}_0^u$ of [a, b] and a number B > 1 such that if $J = \{x_q\}_0^u$ is a refinement of D_1 , then

 $(1) \quad \Sigma_{J(I)}|G| < B,$

 $(2) |\Pi_i^j(1+F_q)| < B \text{ for } 1 \leq i \leq j \leq n,$

(3) $\Sigma_1^n |G_q - \Sigma_{L_q(I)}G| < \varepsilon/5$ and $\Sigma_1^n |(1 + F_q) - \prod_{L_q(I)}(1 + F)| < \varepsilon/5$, where L_q is a subdivision of $[x_{q-1}, x_q]$ for $1 \le q \le n$, and

(4) $|1 - \Pi_{H(I)}(1 + F)| < \varepsilon/5B$ and $|1 - \Pi_{H(I)}(1 + F + G)| < \varepsilon/5B^2$ for $1 \leq q \leq n, x_{q-1} < x < y < x_q$ and H a subdivision of [x, y]. Further, it also follows from Lemma 2.1 that there exists a subdivision $D_2 = \{z_q\}_0^v$ of [a, b] such that if $1 \leq q \leq v, z_{q-1} \leq x < y \leq z_q$ and H is a subdivision of [x, y], then

$$|1 + F(x, y) + G(x, y) - \Pi_{H(I)}(1 + F + G)| < \epsilon/10u$$
.

Let $D = D_1 \cup D_2$, and suppose $H = \{x_q\}_0^n$ is a refinement of D and $H_q = \{x_{qr}\}_0^{n(q)}$ is a subdivision of $[x_{q-1}, x_q]$ for $1 \leq q \leq n$. Let P be the set such that $q \in P$ only if $[x_{q-1}, x_q]$ has an end point in D_1 , and let $Q = \{i\}_1^n - P$. Further, to simplify notation, let $F_{qr} = F(x_{q,r-1}, x_{qr})$, $G_{qr} = G(x_{q,r-1}, x_{qr})$, $A_{qr} = \prod_{j=1}^{r-1}(1 + F_{qj})$ and $B_{qr} = \prod_{k=r+1}^{n(q)}(1 + F_{qk} + G_{qk})$. Thus,

$$\begin{split} \Sigma_{q=1}^{n} |1 + F_{q} + G_{q} - \Pi_{H_{q}(I)}(1 + F + G)| \\ & \leq \Sigma_{q \in P} |1 + F_{q} + G_{q} - B_{q0}| \end{split}$$

$$\begin{split} &+ \Sigma_{q \in Q} |1 + F_q + G_q - B_{q_0}| \\ &< 2u\varepsilon/10u + \Sigma_{q \in Q} |1 + F_q + G_q - [A_{q,n(q)+1} \\ &+ \Sigma_{r=1}^{n(q)} A_{qr} G_{qr} B_{qr}]| \\ &\leq \varepsilon/5 + \Sigma_{q \in Q} |1 + F_q - A_{q,n(q)+1}| \\ &+ \Sigma_{q \in Q} |G_q - \Sigma_{r=1}^{n(q)} A_{qr} G_{qr} B_{qr}| \\ &< 2\varepsilon/5 + \Sigma_{q \in Q} |G_q - \Sigma_{r=1}^{n(q)} A_{qr} G_{qr} B_{qr}| \\ &+ \Sigma_{q \in Q} |\Sigma_{r=1}^{n(q)} G_{qr} - \Sigma_{r=1}^{n(q)} A_{qr} G_{qr} B_{qr}| \\ &+ \Sigma_{q \in Q} \Sigma_{r=1}^{n(q)} |1 - A_{qr}| |G_{qr}| \\ &+ \Sigma_{q \in Q} \Sigma_{r=1}^{n(q)} |A_{qr}| |G_{qr}| |1 - B_{qr}| \\ &< 3\varepsilon/5 + (\varepsilon/5B)B + (\varepsilon/5B^2)B^2 = \varepsilon . \end{split}$$

Hence, if $a \leq x < y \leq b$ and $\varepsilon > 0$, then there exist a subdivision D of [a, b] and a number B such that if $H = \{x_q\}_0^n$ is a refinement of D and H_q is a subdivision of $[x_{q-1}, x_q]$, then

 $\begin{array}{ll} (1) & |\varPi_i^j(1+F_q+G_q)| < B \,\, {\rm for} \,\, 1 \leq i \leq j \leq n, \,\, {\rm and} \\ (2) & \varSigma_1^n |1+F_q+G_q-\varPi_{H_q(I)}(1+F+G)| < \varepsilon/B^2. \end{array}$

Thus, if H and H_q are defined as above, then

$$egin{aligned} &| \varPi_1^n (1+F_q+G_q) -\varPi_1^n \varPi_{H_q(I)} (1+F+G) | \ &\leq B^2 \varSigma_1^n |1+F_q+G_q -\varPi_{H_q(I)} (1+F+G) | \ &< B^2 (arepsilon/B^2) = arepsilon \ . \end{aligned}$$

Therefore, $_{x}\Pi^{y}(1 + F + G)$ exists.

It now follows that $\int_a^b |1 + F + G - \Pi(1 + F + G)| = 0$. Hence, $F + G \in OM^\circ$ on [a, b].

THEOREM 3. If $F \in OQ^\circ$, $G \in OB^\circ$ and 1 + F + G is bounded away from zero on [a, b], then $F + G \in OQ^\circ$ on [a, b].

Proof. There exist a subdivision D of [a, b], a positive number c < 1 and a positive integer m such that if $J = \{x_q\}_0^n$ is a refinement of D, then

 $(1) \quad |1+F_q+G_q|>c ext{ for } 1\leq q\leq n,$

 $(2) |\Pi_i^j(1+F_q)| > c \text{ for } 1 \leq i \leq j \leq n, \text{ and}$

(3) if K is any collection of nonintersecting subsets of J(I), then the number of $k \in K$ such that $\Sigma_k |G|/c > 1/2$ is less than m. Suppose $J = \{x_q\}_0^n$ is a refinement of D and $1 \leq r \leq s \leq n$. Let $K = \{k_j\}$ be the collection of nonintersecting subsets of $\{[x_{q-1}, x_q]\}_r^s$ such that

(1) $k_1 = \{[x_{q-1}, x_q]\}_{m(1)}^{n(1)}$, where m(1) is the first integer such that $m(1) \ge r$ and $|G_{m(1)}|/c \le 1/2$ and n(1) is the largest integer such that n(1) < s, $\Sigma_{m(1)}^{n(1)} |G_q|/c \le 1/2$ and $\Sigma_{m(1)}^{n(1)+1} |G_q|/c > 1/2$ if such an integer

exists and s otherwise, and

(2) $k_j = \{[x_{q-1}, x_q]\}_{m(j)}^{n(j)}$, where m(j) is the first integer such that m(j) > n(j-1) and $|G_{m(j)}|/c < 1/2$ and n(j) is the largest integer such that $n(j) \leq s$, $\sum_{m(j)}^{n(j)} |G_q|/c \leq 1/2$ and $\sum_{m(j)}^{n(j)+1} |G_q|/c > 1/2$ if such an integer exists and s otherwise.

Let $U = \bigcup_{k \in K} k$ and $V = \{[x_{q-1}, x_q]\}_r^s - U$. Note that K and V each has a maximum of m elements. Thus,

$$\begin{split} |\Pi_r^s (1 + F_q + G_q)| \\ &= \{\Pi_r | 1 + F + G|\} \{\Pi_U | 1 + F + G|\} \\ &\geqq c^m \Pi_U [|1 + F| - |G|] \\ &= c^m \Pi_{k \in K} \{\Pi_k | 1 + F|\} \{\Pi_k [1 - |G|(|1 + F|)^{-1}]\} \\ &\geqq c^{2m} \Pi_{k \in K} \{\Pi_k (1 - |G|/c)\} \\ &\geqq c^{2m} \Pi_{k \in K} [1 - \Sigma_k |G|/c] \geqq c^{2m}/2^m . \end{split}$$

COROLLARY 3.1. If $\int_a^b F$ exists, then the following are equivalent: (1) $F \in OQ^\circ$ on [a, b], and (2) $\int F \in OQ^\circ$ on [a, b].

Indication of proof. Since $\int_a^b F$ exists, $F \in OA^\circ$ [Lemma 1.1]. The result now follows by using Theorem 3.

COROLLARY 3.2. If G is a function, then the following are equivalent: (1) $G \in OQ^1$ on [a, b], and (2) if $F \in OB^\circ$ on [a, b], then $F + G \in OQ^1$ on [a, b].

Indication of proof. Since $F \equiv 0$ is in OB° , (2) implies (1). Further, it follows from Theorem 3 that (1) implies (2).

LEMMA 3.1. If $0 \leq G \leq 1$ and $G \notin OB^{\circ}$ on [a, b], then $-G \notin OQ^{\circ}$ on [a, b].

Indication of proof. If H is a subdivision of [a, b], then

$$egin{aligned} \Pi_{H(I)}(1-G) &= \exp\left[\varSigma_{H(I)} \ln(1-G)
ight] \ &= \exp\left[-\varSigma_{H(I)} \varSigma_{1}^{\infty} G^{i} / i
ight] \,. \end{aligned}$$

Thus, $\Pi_{H(I)}(1-G) \rightarrow 0$ as $\Sigma_{H(I)}G \rightarrow \infty$.

COROLLARY 3.3. If G is a function, then the following are equivalent: (1) $G \in OB^{\circ}$ on [a, b], and (2) if $F \in OQ^{1}$ on [a, b], then $F + G \in OQ^{1}$ on [a, b]. *Proof.* Since it follows from Theorem 3 that (1) implies (2), we need only show that (2) implies (1). The function |G| is almost bounded above on [a, b] by 1/2. If this is not so, then a contradiction follows by considering the function F such that

(1) F(x, y) = 0 if $-1/2 \leq G(x, y) \leq 0$,

(2)
$$F(x, y) = -G(x, y) - \frac{1}{2}$$
 if $G(x, y) < -\frac{1}{2}$,

(3) F(x, y) = -2 if $0 < G(x, y) \le 1/2$, and

(4) F(x, y) = -G(x, y) - 3/2 if G(x, y) > 1/2.

Thus, although $F \in OQ^1$, $F + G \notin OQ^1$ since $|1 + F + G| \leq 1$ and the number of intervals for which |1 + F + G| = 1/2 is unbounded. Now, if $G \notin OB^\circ$, a contradiction follows from Lemma 3.1 by using the function F such that

(1)
$$F(x, y) = -2$$
 if $G(x, y) \ge 0$, and
(2) $F(x, y) = 0$ if $G(x, y) < 0$.

THEOREM 4. If G is a function, then the following are equivalent:

(1) if
$$\int_{a}^{b} |F| = 0$$
, then $FG \in OB^{\circ}$,
(2) if $\int_{a}^{b} |F| = 0$, then $FG \in OP^{\circ}$,
(3) if $\int_{a}^{b} |F| = 0$, then $FG \in OQ^{\circ}$, and
(4) G is bounded on [a, b].

Proof. It follows readily that (4) implies (1). Further, it follows that (4) implies (2) and (3) by using Theorems 1 and 3, respectively. If G(x, y) as $x, y \to p^-$, G(x, y) as $x, y \to p^+$, G(x, p) as $x \to p^-$ and G(p, x) as $x \to p^+$ are bounded for each $p \in [a, b]$, then it follows from the covering theorem that G is bounded on [a, b]. If one or more of these bounds fail to exist for some $p \in [a, b]$, then there exists a sequence $\{(y_q, z_q)\}_1^{\infty}$ of distinct subintervals of [a, b] such that $|G(y_q, z_q)| > q^3$ for $q = 1, 2, \cdots$, and if $\{x_q\}_0^n$ is a subdivision of [a, b] and r is a positive integer then there exist positive integers i and j such that j > r and $x_{i-1} \leq y_j < z_j \leq x_i$. Contradictions to (1) and (2) now follow by considering the function F such that

$$F(x, y) = [G(x, y)]/[q^2 | G(x, y) |]$$

if there exists a positive integer q such that $x = y_q$ and $y = z_q$ and F(x, y) = 0 otherwise. Here $\int_a^b |F| = 0$, but FG is in neither OB° nor OP° . Further, a contradiction to (3) follows by considering the function F such that $F(x, y) = [-G(x, y)]^{-1}$ if there exists a positive integer q such that $x = y_q$ and $y = z_q$ and F(x, y) = 0 otherwise.

LEMMA 5.1. If G is a function such that (1) G is almost bounded above by 1/3 on [a, b], and (2) if $F \in OP^{\circ}$ on [a, b], then $FG \in OP^{\circ}$ on [a, b], then $G \in OB^{\circ}$ on [a, b].

Proof. Suppose $G \notin OB^{\circ}$ on [a, b]. It follows from Theorem 4 that G is bounded on [a, b]. There exists a set $\{C(i)\}_{i}^{\infty}$ such that

(1) C(i) is a finite set of nonoverlapping subintervals of [a, b] which can be grouped into a collection D(i) of nonintersecting pairs of adjacent intervals,

(2) no interval in C(i + 1) has an end point which is also the end point of an interval in $C(q), q = 1, 2, \dots, i$,

(3) if $(x, y) \in C(i)$, then G(x, y) < 1/3, and

(4) $\Sigma_{\scriptscriptstyle C(i)}|G|>i.$

Let $C = \bigcup_{i=1}^{\infty} D(i)$, and let F be the function on [a, b] such that if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \geq G(r, s)$, then

(a) F(u, v) = -2 if G(u, v) < 0,

(b) F(u, v) = 2 if $G(u, v) \ge 0$,

(c) F(r, x) = -1 if r = v and r < x, and

(d) F(x, s) = -1 if s = u and x < s,

and F(x, y) = 0 otherwise. Thus, $F \in OP^{\circ}$ on [a, b]. However,

 $[1 + F(u, v)G(u, v)][1 + F(r, s)G(r, s)] \ge 1 + |G(u, v)|/3$.

Hence, since G is bounded and $\{\Sigma_{C(i)}|G|\}_{1}^{\infty}$ is unbounded, $FG \notin OP^{\circ}$. This is a contradiction, and therefore, $G \in OB^{\circ}$ on [a, b].

LEMMA 5.2. If G is a function such that (1) G is almost bounded below by 1/10 on [a, b], and (2) if $F \in OP^{\circ}$ on [a, b], then $FG \in OP^{\circ}$ on [a, b], then $G - 1 \in OB^{\circ}$ on [a, b].

Proof. Suppose $G - 1 \notin OB^{\circ}$ on [a, b]. It follows from Theorem 4 that G is bounded on [a, b]. There exists a set $\{C(i)\}_{1}^{\circ}$ satisfying conditions (1) and (2) in Lemma 5.1 plus the additional conditions

(3) if $(x, y) \in C(i)$, then G(x, y) > 1/10, and

 $(4) \quad \varSigma_{C(i)}|G-1| > i.$

Let $C = \bigcup_{i=1}^{\infty} D(i)$, where D(i) is defined as in Lemma 5.1. Note that if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \ge G(r, s)$, then either

(5) $G(u, v) \ge 1$ and $|1 - G(u, v)| \ge |1 - G(r, s)|$, or

(6) G(r, s) < 1 and either G(u, v) = G(r, s) or

$$|1 - G(u, v)| < |1 - G(r, s)|.$$

Let F be the function on [a, b] such that if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \ge G(r, s)$, then

(a) F(u, v) = -2 and F(r, s) = 0 if (5) is true,

(b) F(u, v) = 1 and F(r, x) = -1/2 if (6) is true, r = v and r < x, and

(c) F(u, v) = 1 and F(x, s) = -1/2 if (6) is true, s = u and x < s,

and F(x, y) = 0 otherwise. Thus, $F \in OP^{\circ}$ on [a, b]. Observe that if (5) is true, then

$$[1 + F(u, v)G(u, v)][1 + F(r, s)G(r, s)] = -\{1 + 2[G(u, v) - 1]\},\$$

and if (6) is true, then

$$[1 + F(u, v)G(u, v)][1 + F(r, s)G(r, s)]$$

$$\geq [1 + G(r, s)][1 - G(r, s)/2]$$

$$> 1 + [1/20][1 - G(r, s)].$$

Hence, since G is bounded and $\{\Sigma_{C(i)} | G - 1 |\}_{1}^{\infty}$ is unbounded, $FG \notin OP^{\circ}$. This is a contradiction, and therefore, $G - 1 \in OB^{\circ}$ on [a, b].

THEOREM 5. If G is a function, then the following are equivalent: (1) $G \in OB^*$ on [a, b], and (2) if $F \in OP^\circ$ on [a, b], then $FG \in OP^\circ$ on [a, b].

Proof $(2 \to 1)$. If $a \leq \alpha < b$, then there exists a number β such that $\alpha < \beta \leq b$ and either $G \in OB^{\circ}$ on $[\alpha, \beta]$ or $G - 1 \in OB^{\circ}$ on $[\alpha, \beta]$. If this is false and $a \leq \alpha < \beta < b$, then it follows from Lemmas 5.1 and 5.2 that G is neither almost bounded above by 1/3 nor almost bounded below by 1/10 on $[\alpha, \beta]$; hence, there exist sequences $\{s_p\}_{1}^{\infty}$ and $\{r_p\}_{1}^{\infty}$ such that

(1) s_p and r_p are subintervals of [a, b] with a common end point,

- (2) s_p precedes r_p and r_{p+1} precedes s_p , and
- (3) $G(s_p) < 1/10$ and $G(r_p) \geq 1/10$.

Let $H = \{s_p\}_1^{\infty} \cup \{r_p\}_1^{\infty}$, and let F be the function on [a, b] such that

(1) F(x, y) = -1 if there exists an interval $(z, y) \in H$ such that x < y and G(z, y) < 1/10,

(2) F(x, y) = 2 if $(x, y) \in H$ and $G(x, y) \ge 1/10$, and

(3) F(x, y) = 0 otherwise.

Thus, $F \in OP^{\circ}$ on [a, b]. However, it follows that $FG \notin OP^{\circ}$ on [a, b] since

$$[1 + F(s_p)G(s_p)][1 + F(r_p)G(r_p)] > (.9)(1.2) = 1.08$$
 .

Similarly, if $a < \beta \leq b$, then there exists a number α such that $a \leq \alpha < \beta$ and either $G \in OB^{\circ}$ on $[\alpha, \beta]$ or $G - 1 \in OB^{\circ}$ on $[\alpha, \beta]$. It now follows that $G \in OB^{*}$ on [a, b] by using the covering theorem.

386

Proof $(1 \rightarrow 2)$. Since $OB^{\circ} \subseteq OP^{\circ}$, if $G \in OB^{\circ}$ and $F \in OP^{\circ}$ on [x, y], then $FG \in OP^{\circ}$ on [x, y]. Note that

$$1 + FG = 1 + F + F(G - 1)$$
.

Thus, it follows from Theorem 1 that if $G - 1 \in OB^{\circ}$ and $F \in OP^{\circ}$ on [x, y], then $FG \in OP^{\circ}$ on [x, y]. Therefore, (1) must imply (2).

COROLLARY 5.1. If G is a function, then the following are equivalent:

(1) $G \in OP^{\circ}$ on [a, b], and

(2) if $F \in OB^*$ on [a, b], then $FG \in OP^\circ$ on [a, b].

Indication of proof. It follows that (1) implies (2) by using Theorem 5 and that (2) implies (1) by considering the function $F \equiv 1$.

LEMMA 6.1. If G is a bounded function such that

(1) G is almost bounded above by 1/3 on [a, b], and

(2) if $F \in OQ^{\circ}$ and is bounded on [a, b] and 1 + FG is bounded away from zero, then $FG \in OQ^{\circ}$ on [a, b], then $G \in OB^{\circ}$ on [a, b].

Proof. Suppose $G \notin OB^{\circ}$ on [a, b]. There exist a subdivision D of [a, b] and a positive integer m such that if J is a refinement of D and $u \in J(I)$ then |G(u)|/m < 1/2. Let H be the set such that $u \in H$ only if there exists a refinement J of D such that $u \in J(I)$, and let F be the function such that

(1) F(u) = -2 if $u \in H$ and $0 \leq G(u) \leq 1/3$,

(2) F(u) = 1/m if $u \in H$ and G(u) < 0, and

(3) F(x, y) = 0 otherwise.

Since $F \in OQ^{\circ}$ and 1 + FG is bounded away from zero, $FG \in OQ^{\circ}$. However, it follows from Lemma 3.1 that $FG \notin OQ^{\circ}$. This is a contradiction, and therefore, $G \in OB^{\circ}$.

LEMMA 6.2. If G is a bounded function such that

(1) G is almost bounded below by 1/10 on [a, b], and

(2) if $F \in OQ^{\circ}$ and is bounded on [a, b] and 1 + FG is bounded away from zero, then $FG \in OQ^{\circ}$ on [a, b], then $G - 1 \in OB^{\circ}$ on [a, b].

Proof. There exist a subdivision D of [a, b] and a number B such that if J is a refinement of D and $u \in J(I)$ then |G(u)| < B. Let H be the set such that $u \in H$ only if there exists a refinement J of D such that $u \in J(I)$. Let H_1 and H_2 be the subsets of H such that $u \in H_1$ only if $G(u) \leq 1$ and $u \in H_2$ only if G(u) > 1. For i = 1, 2, let $G_i(x, y) = G(x, y)$ if $(x, y) \in H_i$ and $G_i(x, y) = 0$ if $(x, y) \notin H_i$. Suppose $G_1 - 1 \notin OB^\circ$ on [a, b]. Let F be the function such that (1) F(u) = -2 if $u \in H_1$ and G(u) < 5/12 or $7/12 < G(u) \le 1$,

(2) F(u) = -3 if $u \in H_1$ and $5/12 \le G(u) \le 7/12$, and

(3) F(x, y) = 0 otherwise.

Since $F \in OQ^{\circ}$ and 1 + FG is bounded away from zero, $FG \in OQ^{\circ}$. However, it follows from Lemma 3.1 that $FG \notin OQ^{\circ}$. This is a contradiction, and therefore, $G_1 - 1 \in OB^{\circ}$.

Suppose $G_2 - 1 \notin OB^\circ$ on [a, b]. There exist a set $\{C(i)\}_i^\circ$ and an integer m > 1 such that

(1) C(i) is a finite set of nonoverlapping subintervals of [a, b] which can be grouped into a collection D(i) of nonintersecting pairs $\{(u, v), (r, s)\}$ of adjacent intervals such that either G(u, v) > 1 or G(r, s) > 1,

(2) no interval in C(i + 1) has an end point which is also the end point of an interval in $C(q), q = 1, 2, \dots, i$,

(3) if $(x, y) \in C(i)$ then G(x, y) > 1/10 and G(x, y)/m < 1/2, and (4) $\Sigma_{C(i)} |G_2 - 1| > i$.

Let $C = \bigcup_{i=1}^{\infty} D(i)$, and let F be the function such that if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \ge G(r, s)$ then F(u, v) = -1/m, F(r, x) = 1/(m-1) if r = vand F(x, s) = 1/(m-1) if s = u, and F(x, y) = 0 otherwise. Since $F \in OQ^{\circ}$ and 1 + FG is bounded away from zero, $FG \in OQ^{\circ}$. However, if $\{(u, v), (r, s)\} \in C$ and $G(u, v) \ge G(r, s)$, then

$$egin{aligned} 0 < [1+F(u,v)G(u,v)][1+F(r,s)G(r,s)] \ &\leq [1-G(u,v)/m][1+G(u,v)/(m-1)] \ &< 1+[1-G(u,v)]/m(m-1) \ . \end{aligned}$$

It follows from Lemma 3.1 that $FG \notin OQ^{\circ}$. This is a contradiction, and therefore, $G_2 - 1 \in OB^{\circ}$.

Thus, since $G_i - 1 \in OB^\circ$ on [a, b] for i = 1, 2, it follows that $G - 1 \in OB^\circ$ on [a, b].

THEOREM 6. If G is a bounded function, then the following are equivalent:

(1) $G \in OB^*$ on [a, b], and

(2) if $F \in OQ^{\circ}$ and is bounded on [a, b] and 1 + FG is bounded away from zero, then $FG \in OQ^{\circ}$ on [a, b].

Proof $(2 \to 1)$. If $a \leq \alpha < b$, then there exists a number β such that $\alpha < \beta \leq b$ and either $G \in OB^{\circ}$ on $[\alpha, \beta]$ or $G - 1 \in OB^{\circ}$ on $[\alpha, \beta]$. If this is false, then it follows from Lemmas 6.1 and 6.2 that there exist sequences $\{s_p\}_1^{\infty}$ and $\{r_p\}_1^{\infty}$ and a set H defined as in Theorem 5. Let F be a function on [a, b] such that if (u, v) and (v, s) are intervals in H such that $G(u, v) \leq 1/10$ and $G(v, s) \geq 1/10$, then

(1) 1 + F(u, v)G(u, v) = 1/2 and F(v, s) = 0 if G(u, v) < -1/10,

(2) $F(x, v) = 1, -1/2 \leq F(v, s) < 0 \text{ and } 1/2 \leq 1 + F(v, s)G(v, s) \leq$.95 if $-1/10 \leq G(u, v) \leq 0$, and

(3) $F(x, v) = -3, -1/2 \leq F(v, s) < 0$ and $1/2 \leq 1 + F(v, s)G(v, s) \leq$.95 if 0 < G(u, v) < 1/10,

and F(x, y) = 0 otherwise. Since F is a bounded function in OQ° such that 1 + FG is bounded away from zero, $FG \in OQ^{\circ}$. However,

 $|[1 + F(s_p)G(s_p)][1 + F(r_p)G(r_p)]| \leq .95$.

Hence, $FG \notin OQ^{\circ}$. Similarly, if $a < \beta \leq b$, then there exists a number α such that $a \leq \alpha < \beta$ and either $G \in OB^{\circ}$ on $[\alpha, \beta]$ or $G - 1 \in OB^{\circ}$ on $[\alpha, \beta]$. It now follows that $G \in OB^*$ on [a, b] by using the covering theorem.

Proof $(1 \rightarrow 2)$. This follows from Theorem 3 by a procedure similar to that used in Theorem 5.

References

1. W. D. L. Appling, Interval functions and real Hilbert spaces, Rend. Circ. Mat. Palermo, Series 2, 11 (1962), 154-156.

2. B. W. Helton, Integral equations and product integrals, Pacific J. Math., 16 (1966), 297-322.

3. A. Kolmogoroff, Untersuchungen über den Integralbegriff, Math. Ann., 103 (1930), 654-696.

4. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math., 7 (1963), 148-173.

Received May 10, 1972.

ARIZONA STATE UNIVERSITY