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ATOMS ON THE ROYDEN BOUNDARY

KwANG-NAN CHOW AND MOSES GLASNER

Let R be a hyperbolic Rlemann surface and P a nonnega-
tive C‘-denmty on R. Every PE-mlnlmal function is shown to

be PD-minimal. Conversely PD-minimal functions correspond-
ing to atoms in a certain subset 4, of the Royden harmonic

boundary are PE-minimal. Points in 4 pare atoms with respect
to the PD-representing measure if and only if they are atoms
with respect to the HD-representing measure.

Throughout this paper R denotes a hyperbolic Riemann surface.
A positive function f in a family of real-valued funetions X on R is
called X-minimal if for every ge X with f = g = 0 there is a constant
¢ = ¢(g) such that ¢f = ¢g. If Y is any family of functions on R, then
the symbol ¥ is used to denote the functions that are expressible as
decreasing limits of sequences of nonnegative functions in Y. The
space of harmonic functions with finite Dirichlet integrals over R,

S du A\ *du < oo, is denoted by HD(R) and for a nonnegative C'-density

R

P on R the space of Dirichlet finite <energy finite, Sdu A *du + w'P
R

< oo, resp.) solutions of the equation du = Pu on R is denoted by
PD(R) (PE(R), resp.)

The study of the spaces PE(R) and PD(R) was initiated by M.
Ozawa [9] and H. Royden [10] and recently revitalized by the idea
of looking at them in terms of their boundary values on the Royden
harmonic boundary (cf. [2] and [7]). Following M. Nakai [4] the more
general classes P’E(R) and PY)(R) can also be characterized in terms
of their boundary values.

One of the main concerns in the study of solutions of 4w = Pu on
Riemann surfaces is the “comparison theorems” between various spaces
of solutions and harmonic function. The purpose of this paper is to
give the precise relations between minimal functions in the classes
HAD(R), PAE'(R), and Pj)(R). The relation between the first two notions
was given in [1].

Our main results appear in Nos. 7 and 11. Their proofs depend
heavily on the results of several papers listed among the references.
For the sake of convenience we quote them in Nos. 2 and 3. The
results in Nos. 5,6, and 8 are generalizations of results of M. Nakai
for the case P =0. Comparison with the exact references given there
and with the exposition in the monograph of Sario-Nakai [11] should
clarify what is involved.
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340 KWANG-NAN CHOW AND MOSES GLASNER

1. Throughout we shall use the notations of Sario-Nakai [11] which
we list here. The Royden algebra of R is denoted by M(R), the Royden
compactification by R* and the Royden boundary I" = I'(R) = R*\R.
M,(R) stands for the BD-closure of M,(R), the functions with compact
support in M(R) and the harmonic boundary 4 = 4(R) is the set of
common zeros of functions in M,(R).

If Ais a subset of R we use the symbol dA for the boundary of
A with respect to R, A for the closure of A in R*, and bA for the
set (A\0A) N . Thus A\A = dA U bA. Alsoif B* isa subset of R*,
then B will denote B* N R.

A subregion G of R can be viewed as a Riemann surface in its own
right. There is a unique mapping j: G* — G which is continuous,
onto and leaves G invariant pointwise. Moreover, j restricted to
G U 77Y(bG) is a homeomorphism onto G |J bG (cf. [6, Proposition 7]).
These facts will play an essential role later on.

2. We suppose that there is a nonnegative C'-density P given
on R and we consider the space P(R) of solutions of 44 = Pu on R.

The subspace { u e P(R) } S du N* du < oo} of P(R) will be denoted by
R

PD(R) and PE(R) = {uePD (R) 1 S WP < oo}. When P =0, then

R
PD(R) = PE(R) = HD(R). We shall use P as a superscript in the
symbol for quantities related to PE(R) and P as a subscript in those
related to PD(R). The subspaces of bounded functions in PD(R),
PE(R), and HD(R) are denoted by PBD(R), PBE(R), and HBD(R).
Also when no confusion can arise we omit the reference to R.
We set

4F = {ped|there is a nbd U* of p withg P < oo}
U
and
dp = {p € 4| there is a nbd U* of p withgg 9z(x, ¥)Px)P(y) < 007( .
UXU

Here g.(-, y) is the Green’s function of R with singularity at y.

The set 4” was introduced in [2] and 4, by Nakai [7].

We now state several properties of 4,. The analogous ones for 4"
are also valid and we leave it to the reader to formulate them. For
every we PD,u| A\4p = 0 and |u| < sup,,|u|. Given @€ M(E) such
that supp ® N 4 is compact and in 4, then there exists v e PD such
that u |4 = | 4. Since all such @’s restricted to 4, are dense in the
sup norm in the space Cy(4p) of continuous function on 4, vanishing
at infinity, it easily follows that for every f e Cy(4,) there is a u e P(R)
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such that u is continuous on R U 4 and |4 =f. (Obviously we mean
that f| 4\d, = 0.) Furthermore, if we fix a point z,€ R, then there is

a finite regular Borel measure #, on 4, such that SJ u dpty = u(z,) for

every we PBD. Using the result of Nakai [7] that every we PD is
the CD-limit of a sequence {u,} C PBD with the boundary values of
{u,} on 4 also converging monotonically to those of u, we obtain the
same formula for every we PD. We extend p, to 4 by setting
Up(A\4p) = 0 and call p, the PD-representing measure for R with
center Zz,.

Now denote by g% the above measure constructed for an arbitrary
point ze R. Consider an arbitrary f e Cy(4p). Then the above remark
to the effect that f is the uniform limit of boundary values of func-

tions in PD shows that S fd; considered as a function of z is in
4

P(R). Thus the Harnack inequality gives that £t and p, are mutually
absolutely continuous on 4 and hence there is a nonnegative function
Kp(z, -) € L*(¢tp) such that for every we PD(R) and every zeR,

u(z) = S Kp(z, -)udps. The kernel K,(z, p) can also be chosen to have

the following properties: Krp(z,, -) =1, Kp(-, p) = 0 if p e 4\4, and for
each pe 4,, Kp(+, p) € P(R). Italsofollows that for any f e L'(;), the
function u(z) = g Ko(z, -)fdppre P(R). If in addition f is bounded,
f14\4p =0, f| 4, vanishes at infinity and f is continuous at a point
pedp, then lim,., u(z) = f(p) and lim,., u(z) = 0 for every qc 4\4,.
Finally if s is a subsolution on R and se M(R), then s(z,) < S sditp.

3. Some other results that we quote here for future reference are
as follows. If ue P(R),u is bounded from below and lim,., u(z) = 0
for every pe 4, then w = 0. This result follows easily from the fact
that for any compact E C I'\4 there is a nonnegative superharmonic
function s (and hence supersolution) such that s takes on the boundary
values o« on K and 0 on 4 continuously (cf. [4]).

Suppose G is a subregion of R with

() SSGXG gx(2, WY P(2)P(w) < oo .

Then there exists a positive isometric isomorphism 7': PBD(G)— HBD(G)

which is onto. Explicitly, Tu = v + tu and tu(z) = S 9s(z, Y)uP. If
G

f is a nonnegative measurable function on G which is bounded by a

function in PBD(G), then 7f e M,(G). If in addition oG is analytic,

then 7/ vanishes continuously on 6G (cf. [3, Theorem 7C, Theorem

10E, Theorem 11D]).
One of the consequences of these results is that for any f e M(R)



342 KWANG-NAN CHOW AND MOSES GLASNER

there is a w € PD(G) such that « agrees with f on 4(G), % has continuous
boundary values f on 0G. This follows because there is a function
in HD(G) with these properties. Using the mapping j it can also be
seen that w — f| bG N 4(R) = 0.

4. The fact that 47 C 4,, which can be verified by a direct com-
putation, is a consequence of the results quoted in No. 3. Indeed for
a point p € 4 there is a u € PD (resp. PE) with u(p) = 0 if and only if
pe dp (resp. pe 4F). But trivially PEc PD.

Note that Sdu dps = S u dpl for every w e PE and hence p5(B) =
4
¢E(B) for every Borel set BC 4°. Thus we can state the

THEOREM. For puP-almost every p e 4%, the kernel functions of PD
and PE agree on R.

We need only recall that for every fe Cy(47), Sd Kp(z, <) fdp, =

Sdfdy; = Sdfd;zf - SAKP(z, O FduF = SAKP(z, ) dttp. Pick a count-
able dense set of points {z,} in B. Then for every n, K,(z,, ) = K*(z,, *)
on 4, except for a set E, with ¢*(#,) = 0. Let £ = Uy E,. By the
continuity of the kernel functions we obtain K,(-, p) = K*(-, p) for
pe 4P\E.

5. A function % belongs to PD by definition if it is the limit of
a sequence {u,}C PD with «, = u,,, = 0. Since PD is a sublattice
of P(R), it is easily seen that u € PD if and only if u(2) = inf {v(2) | v € PD,
v = u}. Thus we are led to consider the class U(d4;) of functions on
4 defined by f e U(4p) if f(p) = inf {v(p)|ve PD,v|4 = f}. By inter-
changing infimum and integration we see that u € PD if and only if

there is an f e U(4p) such that u(z) = SAKP(Z, ) f dttp.

For a real-valued function «+ on R we define ¥ on 4 by (p) =
lim,_, v (2), for every pec 4.

THEOREM. Suppose u(z) = SAKP(z, O fdpse PD. Then %= f and
% = f My — a.e.

For P = 0, this is due to Nakai (cf. [4, Theorem 3.3]).

For the proof let ve PD with v|4=f. Then u < v and hence
% <v|d. Since fe U(dp), we can conclude # < f. For the second
assertion take a sequence {F,} of compact sets in 4, with p,(4;) =
lim z¢¢»(F',) and note that it suffices to prove # = f 4, — a.e. on F,, for
each n. To this end fix # and set F = F,. First assume that f is
bounded and hence u is also bounded since # < f. Suppose that for
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some ¢ > 0, there is a compact set EC F such that #(p) < f(p) — ¢
for every pe E. Denote by y; the characteristic function of E and

set w(z) = ¢ S Kp(z, )Xz dttp. Then 0 < w < ¢ on R and by the remarks
4

made in No. 2 for every pe A\E,lim,., w(z) = 0. Thus for every
pe A\E, Tim,_, u(2) + w(z) < @(p) < f(p) and every pe E,
lim,., w(z) + w(z) < @(p) + ¢ < f(p). Now take any ve PD such that
v|d=f. Forevery pedwe have lim,_, v(z) — u(2) — w(z) = 0. Since
v — % — w is bounded from below we can now conclude that » = u + w.
Taking the infimum over all such v’s gives w(z,) = u(z,) + w(z,). This
says that w(z,) = 0 which implies that y¢,(E) = 0.

If f is unbounded, then take for every positive integer k a
function v, ¢ PD such that 0 < v, <k and v, | FF = k. Note that since
PD is a lattice, f N v, (the pointwise infimum of f and v,) is in U(4p)

and thus u,(z) = S Koz, )(f N v,,)d/,epePND. Therefore,

%, = fNwv, tp — a.e.on F. Since % = %, we obtain by letting &k — oo
that # = f ¢, — a.e. on F, which completes the proof.

6. Before we turn to the problem of characterizing the PD-minimal
functions we make the following observation. The characteristic
function ¥, of any compact set contained in 4, belongs to U(4,). In
fact for any pe 4,\E, there is a nonnegative function @ € M(R) such
that @(p) = 0,9 | E = 1 and supp ¢ N 4 is compact and in 4,. Thus
there is a nonnegative function w € PD such that v | E=1 and u(p) =0
and the assertion follows.

THEOREM. If w is PD-minimal on R then there exists a constant
k and a point pe dp with ptp(p) > 0 such that w = EKp(-, p) on R. If

pedy with pp(p) > 0, then Kp(-, p) is PD-minimal on R.
(Cf. [4, Theorem 3.6].)

If w is PD-minimal on R, then by Theorem 5, u(z) :§ Ko(2, «)u dptp.
Set E, = {# = 1/n}. Note that % is upper semicontinéous on 4 and
hence E, is compact in 4. Since % | 4\4, = 0, E, C 4,. By definition
of minimality w > 0 and consequently g,({# > 0}) > 0. Therefore, we
may choose an integer % such that g.(%,) > 0. Set E = E, and
w(z) = S Ko(2, )z d#Pebe. Since u = (L/n)w = 0, there is a con-
stant ¢ sflch that cu = w. By Theorem 5 we have that @ = 1 ¢, — a.e.
on E and hence 1 = sup, w = sup, cu. This implies that ¢ > 0 and
is bounded.

Now let A be a compact subset of E with g(EF\A) > 0. Assume

that ¢#p(4) > 0. Then set v(z) = S Kp(z, *)x.dutr and note that ve PD
4
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and w = (1/n)v = 0. Thus there is a constant ¢, with v = cu. As
above it can be seen that ¢, > 0. Hence ¢,% = 0 ¢, — a.e. on 4,\A.
On the other hand, E\A C 4,\A4, ¢x(E\A) > 0 and ¢t =1 ¢, — a.e. on
E\A. This contradiction implies that #,(4) = 0. This in turn implies
that there is a point pe E with p.(E) = t»(p). We therefore have
Le(D)K (-, p) = w = cu.

For the proof of the second assertion assume pe 4, and px(p) > 0.
Then 7»¢ U(4y) and hence tp(p)Kyp(z, p) = SAKP(z, Y ditp € PD. By
Theorem 5 we have fp(p)Kp(-, D) = Y»ttr — a.e. If ve PD with
Ky(-, p)=v=0, then ¥ < K,(-, p). Consequently ¥ = 5(p)),, tr — a.e.
and we conclude that v = ¥(p) ts(p) Kp(+, p), i.e., Kp(+, p) is PD-
minimal.

7. Although for two arbitrary families of functions X and Y
with X< Y the notion of minimality in one has no bearing on mini-
mality in the other we have the following corollaries to the above
results of Nos. 4, 5, and 6.

THEOREM. FEwvery PE-minimal Jfunction is a PD-minimal Sunction.
A PD-minimal function is PE-minimal if and only if it vanishes
continuously on A\4%.

8. In order to describe the relationship between ITD-minimality
and P~D-minimality we need the following considerations. Let G be
a subregion of R with bG # @ and 0G analytic. Denote by vy, the
PD-representing measure for G with center z, and by L, the corre-
sponding kernel. At this point it will be convenient to extend the
definitions of v, and p, to all of I'(G) and I"(R) by setting them equal
to zero on sets disjoint from 4(G) and 4(R).

THEOREM. Suppose G is a subregion of R with bG %= @, 0G
analytic and such that property (*) is satisfied. If B is a Borel subset
of bG, then vp(37(B)) > 0 if and only if #x(B) > 0, where vy, and lp
have their centers at the same z,€ G.

The mapping j in the theorem was defined in No. 1. We present
in Nos. 9 and 10 a simplified version of Nakai’s proof for the case
P =0 (cf. [6, Proposition 8]).

We begin by defining a measure o, on bG by setting ¢,(U) =
v(77Y(U)) for every open set Uin bG. Note that g, is also a regular

Borel measure and that it has the property that S fdop = S fojdyp
G

i~lea
for any nonnegative op-measurable f. Take any ue PD((J}) with con-
tinuous boundary values 0 on 3G. Then %oj vanishes on j7'(3G). But
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clearly the continuous extension #* of % to G* is equal to woj.
Consequently

u(E) = Sr(a) widve = S wej dvp = SbG wdoe .

Pt )]

9. Note that our problem now is to prove g,(B) > 0 if and only
if p#p(B) > 0. To this end we may assume B is compact, in view of
the regularity of the measures. We also take {V#} a sequence of open
sets in R* such that Bc Vi, c V¥ c G U bG and 0x(B) = limox(V} N
I'(R)) and pp(B) = lim px(V¥ N I'(R)). Now we choose f, e M(R) with
0fo =L fu|Vusi=1 and supp f, < V.. The hypothesis on G (cf.
No. 3), gives the existence of a function ¢, e PD(G) with continuous
boundary values 0 on oG and ¢,|0G N4 =f,|bGN 4. If we extend
t, to a function s, on R by setting s, = 0 on R\G, then s, ¢ M(R) and s, is

a subsolution on R. Thus s,(z,) < S sﬂdﬂp and s,(2,) = t,(z,) =S t,dop.
r'r b

Since Sr S, A, S pp(ViINT) and op(VEi, NT) < gb t,do,, we con-
(R) G
clude by letting n — oo that o,(B) < tp(B).

10. For the converse assume that ¢,(B) =0. Then lim¢,(z) =0
and hence by the Harnack principle ¢, converges to 0 uniformly on
compact subsets of G. The reflection principle allows us to conclude
the same result on compact subsets of G UdG. This means that s,
converges to 0 uniformly on compact subsets of R.

Let {R,}): be a regular exhaustion of R. Consider functions
Unm € C(R) such that u,,|R\R, = s, and u,,€ P(R,). Since s, is a
bounded nonnegative subsolution on R, the weak Dirichlet principle
(cf. [7]) implies that there is a solution w, = BD-lim, %,,. Since
Sy — Unm € My(R), we also have u, — s,e M, R), i.e., u, = s, on 4.
Therefore, pp(B) = lim S U, dtp = lim u,(2,).

On the other hand, we have u,, — %,, = 8, — s, since s, — s, is
also a subsolution on R. This in turn implies that %, ., — %pmes =
Uy — Un, and hence u, — u, = U, — %, Note that for m so large
that z,¢ R, we have lim, %,,(2) = 0 in view of the fact that {s,}
converges uniformly to 0 on éR,. Thus lim, w,(2) — %,(2) = .. (20)
and consequently lim «,(z,) < 0. Since u,(z,) = 0, we obtain lim «,(z,) =0
and the proof of Theorem 8 is complete.

11. We are ready to state our main result.

THEOREM. A point pe 4p(4” resp.) is an atom with respect to
Us(tF resp.) if and only if it is an atom with respect to tt,.

The statement for p and 4” has been established by [1]. Since



346 KWANG-NAN CHOW AND MOSES GLASNER

nonnegative solutions are subharmonic functions one can easily see
that p¢(B) = p»(B) for every Borel set BC 4. Thus if pe 4, is an atom
with respect to ¢ then it must be an atom with respect to ..

Conversely suppose pe 4, and f(p) > 0. Then by definition of
dp there is a neighborhood U* of p with p with

SSU 9z(x, y) P(x)P(y) < co. By the well known result of Nakai [6,
xU

Proposition 9] we can find a neighborhood G* of p with G*c U*, G
a region in R and dG analytic. Note that pe bG and G satisfies
condition (*). Thus y,(57'(p)) > 0; that is, there is an atom with
respect to vy, on the Royden boundary of G. Our task now is to show
that this point is also an atom with respect to v, for then another
application of Theorem 8 gives the desired result.

The isomorphism T described in No. 3 can be extended to a mapping
on the bounded functions in PVD(G). In fact, if ue PVD(G) and # < ¢,
then take u, < PD(G) with u, | w. Since T *c¢)e PBD(G), u < T *(c)
and PD(G) is a sublattice of P(G) we have that u, A T7'(c) | w. Thus
the set of bounded functions in PAIJ)(G) is exactly Pﬁﬁ(G). So for

u € PBD(G) set Tw = lim Tu, and note that TueﬁD(G). By the
monotone convergence theorem 7T is again given by the formula
Tuw = w + 7u and hence is order preserving and commutes with multi-
plication by positive scalars. Also note that this extension maps
P%(G) onto H’E"b(G), which trivially are the bounded function in
HD(G).

Since wu e M,(G) (cf. No. 3) for every qe 4(G) we have

(**) Iim,_, Tu(z) = lim,_, u(z) .

Thus Theorem 5 shows that Tu = 0 if and only if w = 0. This in
turn shows that T preserves minimal functions in P’Ef)(G) and Hfﬁ/D(G).
In view of the fact that all minimal functions in PAD(G) and I-TD(G)
are bounded we conclude that T preserves them.

Suppose that ¢, is the point in 4(G) with v,(¢,) > 0. Then Theorem
6 shows that L(-, q,) is an HD-minimal function on G. By the above
remark and again by Theorem 6 there is a point ¢, € 4(G) such that
vp(q) > 0 and TLp(+, q)) = L+, qo).

We trivially have L.z, q,) = l/vo(qo)g . Lz, *))q, dv,. Since y,, is

4(G)
continuous at every qe 4(G), g#q, we have lim, ,L(?, g) = 0 for
every q#¢q, (cf. No. 2). In view of the analogous property for
Lp(+, q,) and (**) we conclude that either q, = ¢, or Lz(+,q,) = 0. But
since Ly(-, q¢;) > 0, Theorem 5 excludes the latter alternative. Thus

vp(q,) > 0.
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