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ON EXTREMELY REGULAR FUNCTION SPACES

BAHATTIN CENGIZ

In this paper extremely regular function spaces are defined
and discussed. A necessary and sufficient condition for the
existence of proper extremely regular linear subspaces of Co(X)
is obtained.

If X is a locally compact space1, we denote by C0(X) the Banach
space of continuous, complex-valued functions vanishing at infinity on
X, provided with the usual supremum norm.

We call a closed linear subspace A of C0(X) extremely regular
(over X), if for each xoeX and each neighborhood V of x0 and each
0 < ε < 1 there is a function f in A such that

(1) l = \\f\\=f(χo)>ε>\f(x)\ for every xeX\V.

If ε can be replaced by zero in the above definition, that is,

(2) 1 = 11/11= f(χ0) > f(χ) = 0 for every x e X\V ,

we call A extremely regular of type zero.
If for each x0 e X, each open neighborhood V of x0 there is a

function fe A such that

1 = 11/ II =/(*o) > sup{|/(α) I: xe X\V}

then we call A completely regular.

Myers [3] has proved that a sufficient condition for compact
spaces X and Y to be homeomorphic is that a completely regular
linear subspace of Cr(X) and such a subspace of Cr(Y) be isometrically
isomorphic, where Cr(X) (resp. Cr(Y)) denotes the real-valued con-
tinuous functions on X (resp. Y).

Cambern [1] has shown that if φ is a linear isomorphism of C0(X)
onto C0(Y), for any locally compact spaces X and Y, with
II Φ II II Φ"1 II < 2, then X and Y are homeomorphic.

In [2], we have shown that in certain special cases the above
mentioned generalizations of the well-known Banach-Stone theorem
can be combined. More precisely, if φ is a linear isomorphism of an
extremely regular subspace of C0(X) onto such a subspace of C0(Y)
with || φ || | | φ~ι | | < 2, then X and Y are homeomorphic.

This result suggests that we should know more about the
extremely regular function spaces. It is clear that every proper
extremely regular function space is contained in a maximal one.

1 Throughout this paper all topological spaces will be Hausdorff.
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The main purpose of this article is to prove the following:

THEOREIVL Let X be a locally compact space and let MC(X) denote
the set of all nonzero, continuous, complex-valued finite regular Borel
measures on X. For each μeMc(X), let K(μ) denote the kernel of μ
in CQ(X). Then,

(a) For each μ e Me(X), K{μ) is a maximal extremely regular
linear subspace of CQ(X) of type zero.

(b) If A is a maximal extremely regular linear subspace of
C0(X), then A = K(μ) for some μeMc(X).

(c) C0(X) has no proper extremely regular linear subspace if,
and only if, X is dispersed (i.e. the aϊh. derived set of X is void for
some ordinal number a).

Before beginning the proof of the theorem, we wish to establish
some conventions concerning notation. For a finite regular Borel

measure μ on a locally compact space X we denote I fdμ by μ(f),
fe C0(X), and | μ | (X) by \\ μ\\, where | μ | denotes the total variation
of μ. For a point xe X, μx denotes the unit point mass at x.

PROPOSITION. Let μ be a finite regular Borel measure on a locally
compact space X such that K(μ) contains an extremely regular linear
subspace of C0(X). Then, μ is continuous, that is, the atomic part
of μ is zero.

Proof. Let A be an extremely regular linear subspace of C0(X)
contained in K{μ), and suppose that μ is not continuous. Then,
there is a finite (with at least two points) or countably infinite subset
F = {xl9 x2, } of X such that

μ = Σ Oίi μH + V ,

where a{ are nonzero constants, and where v is the continuous part
of μ.

Let ε be any number with 0 < e < 1, and let m be a positive
integer which is either the number of points in F or such that

Σ I OL, | < ε
£=m-t-l

according as F is finite or infiniteo

Let V be any open neighborhood of xx that contains none of the
points x2, , xm and that | v \ (V) < e. Now, choose an element / of
A with

1 - II / i! - f(Xi) > e ̂  \f{x) I for all x in X\V .
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From

0 = μ(f) = * + Σ**<f(x<) + v(f)

we obtain

From this inequality it follows that aγ = 0, and this contradiction
completes the proof.

Proof of the theorem, (b) follows from the Hahn-Banach and
Riesz representation theorems and the above proposition, (c) follows
from the above proposition and the fact that X is dispersed if, and
only if, MC(X) = 0 . (Cf. Pelczynski-Semadeni [4].)

For Part (a), we shall first show that for each μeMc(X), xoeX
there exists fe C0(X) with 1 = || / || = f(x0) and μ(f) = 0.

Let V be a compact neighborhood of x0. We may assume that
the restriction of ^ to 1\7 is not zero. Then, it follows that there
exists a function g in C0(X) such that 1 = || g ||, g(x) = 0 for all xe V
and that μ(g)Φθ. Now choose a function h in CQ(X) with
1 = || Λ || = A(α?o), h(x) - 0 for each x e X\V and | μ(h) | ^ | μ(g) |. Clearly,
the function f = h + ag, where a — — μ(h)/μ(g), satisfies the above
requirements.

Now, to complete the proof of Part (a) (thus, that of the theorem)
take any open neighborhood U of xQ. Then by the above result (X
and μ replaced by U and the restriction of μ to U respectively) there
exists a function / in C0(X) such that μ(f) — 0 and that 1 = || / | | =
f(xo) >f(x) = 0 for all xe X\U.

REMARK 1. A proper extremely regular linear subspace of C0(X)
of type zero need not be maximal. (Let X denote the closed unit
interval [0, 1] and m denote the Lebesgue measure on X and let mf be
such that m'{B) = m(B Π [0, 1/2]), for every Borel set B in X. Consider
K{m) n K{m').)

REMARK 2. An extremely regular linear subspace of C0(X) need
not be of type zero. An example of this kind can be obtained by
restricting the functions which are continuous on the closed unit disc
and analytic inside to the unit circle in the Euclidean plane.

REMARK 3. Every extremely regular function space is completely
regular. But the converse is not true, since it can be shown that if
X is a locally compact space with at least three points, C0(X) has
closed completely regular proper linear subspaces. (This fact is clear
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if X is non-dispersed. If X is dispersed, it has at least three isolated
points, x, y, and z, say. Consider K(μ), where μ = μx + μy + μg.)
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