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AN EXTENSION OF FENCHEL'S DUALITY
THEOREM TO SADDLE FUNCTIONS
AND DUAL MINIMAX PROBLEMS

L. McLlNDEN

FencheΓs Duality Theorem (or more precisely, Rockafellar's
extension of it) is extended here from the context of convex
functions and dual convex extremum problems to that of saddle
functions and dual minimax problems. The paper is written in
the spirit of mathematical programming. Inequalities between
optimal values are established, stable optimal solutions are char-
acterized, strong duality theorems proved, and an existence cri-
terion given. An associated Lagrangian saddle point problem
is introduced and an extension of the Kuhn-Tucker Theorem
derived. The proofs, which are necessarily different from the
purely convex case, rely on recently developed pairs of dual
operations on saddle functions, as well as on more widely known
facts about conjugate saddle functions.

1* Introduction* In 1951, Fenchel [1] proved a fundamental and
beautiful duality theorem linking the two convex extremum problems

min {f{x) - g{x)}

and

max {#*(«;*) -/•(*•)} ,
x*

where the function / is proper convex on Rn with conjugate /*, and
the function g is proper concave on Rn with conjugate g*. The frame-
work provided by this pair of problems allows one, by suitable choice of
the functions / and g, to deduce duality results for many different con-
strained convex extremum problems. Since FencheΓs original result,
various refinements and extensions of his theorem have been given by
a number of authors. Important among these extensions is the one
due to Rockafellar [6] (see also [8, §31]). Besides extending the
setting from Rn to arbitrary paired locally convex Hausdorff topologi-
cal vector spaces, it broadens FencheΓs model problems to include a
continuous linear transformation A and its adjoint A*, so that the
problems become

min {fix) - giAx)}

X

and

max {g*(y*) - f*(A*y*)} .
y*
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This incorporation of a linear transformation permits much more direct
treatment of many types of constraints.

In this paper we broaden Rockafellar's extension of FencheΓs
Duality Theorem to the context of saddle point extremum problems
and (extended-real-valued) saddle functions on finite-dimensional spaces.
The two problems we consider in this regard are

( I ) maximin {K(x, y) - L(A(x, y))} ,
xe X y e F

where

X x Y = {(xf y) e dom K \ A(x, y) e dom L] ,

and

(II) minimax {L*(£, w) - K*(A*(z, w))} ,
ze Z weW

where

Z x W = {(z, w) e dom L* | A*(z, w) e dom K*} .

Here the function K is closed proper concave-convex on Rm x Rn with
conjugate K* (see [8] for definitions), and the function L is closed
proper convex-concave on Rp x Rq with conjugate L*. The trans-
formation A has the special form A = Aλ x A2, where Ax\ Rm -^ Rp

and A2: Rn -+ Rq are linear, and A* is the adjoint of A. Since the
saddle functions are allowed to be extended-real-valued, this framework
can be made to handle problems which are of the general form of (I)
except for the requirement that K and L be defined everywhere.
This is done by the device of extending, as necessary, the domains
of definition of K and L to the whole space by suitable assignment
of the values + co and — oo. (See [8, pp. 349 and 398].)

The various results throughout the paper concerning (I) and (II)
constitute the extension of FenchePs Duality Theorem promised by
the title. In a broader sense, the results of the paper can also be
viewed as extending certain known duality results from the theory
of convex programming to the context of "saddle programming".
Indeed, the paper is written in this spirit, and accordingly one can
think of (I) and (II) as a dual pair of mathematical programming
problems, where (I), say, is the "primal" and (II) the "dual" problem.

We relate (I) and (II) also to a third saddle point problem, a
"Lagrangian" problem of the form

(III) maximin {K(x, y) + L*(z, w) — (A(x, y), (z, w))} ,

(x,w){y,z)

where the variables are constrained to satisfy

(x, y) G dom K , (z, w) e dom L* .
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It is by studying (III) that we obtain many of our duality results
linking (I) and (II). The technique of deriving duality results for
pairs of extremum problems of minimization or maximization type
via Lagrangian saddle point problems has been used by several authors.
To our knowledge, however, its application to pairs of saddle point
extremum problems is new.

Our first result states that the lower and upper saddle values in
problems (I), (II) and (III) are related as follows:

sup inf (I) ^ inf sup (I)

sup inf (III) inf sup (III) .

sup inf (II) ^ inf sup (II)

Consequently, if the saddle value in (III) exists (±°o allowed), then
so do the saddle values in (I) and (II), and all three saddle values are
equal. This result can, of course, be combined with any condition
which guarantees the existence of the saddle value in (III).

The above inequalities are a direct extension of the familiar and
fundamental inequality "inf ^ sup", which holds for arbitrary dual
pairs of convex programs, as well as for the usual nonlinear pro-
gramming problem and its dual. This simple inequality has been
extremely valuable as a stopping criterion in iterative methods of
solution. Yet its extension to saddle point problems does not appear
to be of similar utility. There is another relationship among the
lower and upper saddle values of (I) and (II), however, which does
seem to have potential as a stopping criterion. It is that whenever
(II) is strongly consistent,

sup inf (II) ^ sup inf (I) ^ inf sup (I) ^ inf sup (II) ,

and dually, whenever (I) is strongly consistent,

sup inf (I) <̂  sup inf (II) ^ inf sup (II) ^ inf sup (I) .

Problem (I) is defined to be strongly consistent if and only if there
exists a pair (x, y) e ri(dom K) such that A(x, y) e ri(dom L), and simi-
larly (II) is strongly consistent if and only if there exists a pair
(z, w) e ri(dom L*) such that A*(z, w) e ri(dom if*). (Here " r i " denotes
the relative interior of a set.) Strong consistency will be a particu-
larly useful hypothesis throughout and can be thought of as asserting
the existence of a "strongly feasible" solution.

In addition to optimal solutions of (I) and (II), which are just
the ordinary saddle points requested by the "maximin" and "minimax"
notation, we study those optimal solutions which are "stable" in a
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certain natural sense. We show, for instance, that if (I) is strongly
consistent, then every optimal solution of (I) is stable, and dually
for (II).

The celebrated Kuhn-Tucker Theorem [2] has an extension to the
present context. Namely, if (I) is strongly consistent, then for (x, y)
to be an optimal solution of (I) it is necessary and sufficient that
there exist a pair (z, w) such that {x, w, y, z) is a saddle point of the
Lagrangian problem (III). We actually prove somewhat more: the
hypothesis "(I) is strongly consistent77 can be dropped, provided "opti-
mal solution77 is replaced by "stable optimal solution77.

The saddle points of (III) are shown to be exactly those (x, w, y, z)
which satisfy the subdifferential relations

A*(z, w) e dK(x, y) , A(x, y) e 3L*(z, w) .

We call this pair of relations the Kuhn-Tucker conditions correspond-
ing to (I), (II), and (III). An analysis of the Kuhn-Tucker conditions
shows, somewhat surprisingly, that the pairs (xf y) and (z, w) satisfy-
ing them are precisely the "stable" optimal solutions of (I) and (II).
Our strongest duality result then follows easily: The following four
conditions are equivalent and imply that the optimal values in (I),
(II) and (III) are equal:

( i ) there exists a stable optimal solution of (I);
(ii) there exists a stable optimal solution of (II);
(iii) there exists an optimal solution of (III);
(iv) the Kuhn-Tucker conditions are satisfiable.
We provide an existence theorem to go with this theorem. It is

that if (I) is strongly consistent and there exists a pair (x, y) e X x
Y such that the level sets

and

W eY\K(x, y') - L(A(x, y')) £ a}

are bounded for every aeR, then the Kuhn-Tucker conditions are
satisfiable, and moreover, the set of optimal solutions of (I) is bounded
and (II) is strongly consistent. Naturally, a dual version can be
stated in terms of (II).

Our approach throughout is the one initiated by Rockafellar [5].
That is, we treat the saddle functions involved from the point of
view of equivalence classes. This takes into account the phenomenon
that, in general, many slightly different saddle functions give rise to
the same saddle point problem. In particular, if K (respectively L,
K* and £*) denotes any saddle function equivalent to K (respectively
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I/, if* and L*) in the sense of Rockafellar, one can^form from (I),
(II) and (III) a new trio of problems, call them (I), (II) and (III), by-
replacing the original saddle functions with the corresponding equiva-
lent ones. One would then like to know conditions which guarantee
that the new problems (I), (II) and (ίϊl) are actually the same as (I),
(II) and (III), respectively, in the sense of having the same lower
and upper saddle values and saddle points. We show that, with no
qualification whatever (except of course that K and L be closed and
proper), (III) is the same as (III), while for each of (I) and (II) the
corresponding condition of strong consistency suffices.

The results in this paper are all new, inasmuch as they pertain
to saddle point problems rather than purely convex problems. The
papers of Rockafellar [7] and Tynjanskiϊ [10] can be viewed as point-
ing toward the present results, though. In particular, [7] contains
some results concerning (I) and (II) for the case when A is the
identity transformation and L is the "convex-concave indicator func-
tion" of the nonnegative orthants. In [10] there are some results
essentially about (I) and (II) in the case when A is again the identity
but K and L are significantly less general than arbitrary closed
proper saddle functions. (The saddle functions treated by Tynjanskiϊ
must essentially be the unique elements of their equivalence classes.)
Neither [7] nor [10] considers the Lagrangian problem (III). As an
application of the present results, we have developed elsewhere a
decomposition principle for additively separable minimax problems
subject to affine coupling constraints [4].

The results in this paper generalize a body of known duality
results nearly intact from the convex function case to the saddle
function case. Unfortunately, though, it is seldom true that the
proofs also generalize directly. On the contrary, we have found it is
usually necessary to devise different and far more complicated argu-
ments. This is due to the essential way in which saddle point ex-
tremum problems differ from purely convex extremum problems. One
of these differences is that one can typically represent a convex
problem by a single "regularized" convex function, whereas (as noted
above) a saddle point problem in general permits representation by
many different saddle functions, each of which is "regularized". This
means that in order to have a fully satisfying theory for saddle point
problems, one must deal ultimately with whole equivalence classes of
functions. Another difference between the two types of extremum
problems is the obvious one, that of one versus two functional argu-
ments. In performing various calculations and manipulations with
the functions of one argument, there is usually no ambiguity over
whether to take the supremum or the infimum of a particular func-
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tion: one simply takes the "inf" or "sup" according as the function
is convex or concave. With the two arguments involved in a saddle
function, however, one is continually faced with the ambiguity of
having to decide between taking the "sup inf" or the "inf sup".
These are two major difficulties not present in the purely convex case
and with which we must deal. They will be amply illustrated in the
proofs.

For our proofs, we draw heavily on the papers of Rockafellar [5]
(actually, the revised presentation found in [8]) and McLinden [3].
In [5] (or [8]) one can find the fundamental facts about equivalence
classes, closures, conjugates and subdifferentials of extended-real-
valued saddle functions on finite-dimensional spaces. (For the infinite-
dimensional case, see [9].) In [3] are located the basic facts about
the operations of addition and composition, together with the corre-
sponding dual operations, which are needed both for forming, and for
taking the conjugates of, saddle functions of the type K — LA,

The remaining sections of the paper are as follows: Preliminaries
(§2), In variance Under Equivalence (§3), Duality for Optimal Values
(§4), Optimal Solutions and the Kuhn-Tucker Conditions (§5), Stability
(§6), Duality for Stable Optimal Solutions (§7), and An Existence
Criterion (§8).

2* Preliminaries* In this section we fix the notation of the
paper and make some definitions concerning problems (I), (II) and
(III). We also introduce for convenience later on three everywhere-
defined saddle functions which serve to represent (I), (II) and (III).

Generally, v/e follow the same procedure as in [3] regarding
definitions, conventions and special notations and abbreviations. Thus,
terms not defined here are to be understood as in Rockafellar [8], and
the conventions regarding arithmetic computations involving ± co and
the empty set 0 are those set forth in [8, p. 24]. We mention in
particular that sup 0 = — co and inf 0 = + oo. Results from [8] are
cited by a special abbreviation: the number of the result being cited
is enclosed in parentheses. For example, Theorem 37.5 of [8] is cited
simply as (37.5). The square bracket notation used in [3] to denote
equivalence classes of saddle functions is also employed here. Lower
and upper bars are used to denote convex and concave closures, re-
spectively, of saddle functions.

Sometimes we need to write the product linear transformation A
in terms of its "factors". For this, we define linear transformations
A,: Rm —• R* and A2: Rn —> Rq and write A(x, y) = (A&, A2y). Then, of
course, A*(z, w) — {A*z, A£w). Whenever possible, we omit cumber-
some parentheses by writing L(A(x, y)) = LA(x, y) and K*(A*(z, vή) =
K*A*(z, w). Also, we write dom K = Cκ x Dκ, dom K* — Cκ* x Dκ*,
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dom L — CLx DL and dom L* = CL* x DL*.
A pair (x, y) is an optimal solution of (I) if and only if (x, y) is a

saddle point of K — LA with respect to X x Y, i.e., if and only if
(x, y) e X x Y and

K(x', y) - LA(x\ y) ^ K(x, y) - LA(x, y) £ K(x, y') - LA(x, y')

for all (xf, yr) e X x Y. The quantity supβeχ infy6F {K(x, y) — LA(x, y)}
will usually be denoted by supx infF (K — LA) or sup inf (I), and
similarly for the "inf sup" quantity. With these abbreviations, the
optimal value in (I) exists if and only if

sup inf (I) = inf sup (I) e R ,

in which case this common value is called the optimal value in (I).
Trivially, if (x, y) is an optimal solution of (I), then the optimal
value in (I) exists and equals K(x, y) — LA(x, y). Problem (I) is
consistent if and only if X x Y is nonempty. The pairs (x, y) e X x Y
and the feasible solutions of (I). From the conventions sup 0 = — °°
and inf 0 = + oo, it is clear that (I) is consistent whenever the optimal
value in (I) exists. Problem (I) is strongly consistent if and only if
there exists a pair (x, y) e ri(dom K) such that A(x9 y) e ri(dom L).

For (II), we make the obvious, analogous definitions and observa-
tions. We just let L*, ϋΓ* and A* play the roles of K, L and A, re-
spectively, and also, interchange the roles of "sup" and "inf" to take
account of the fact that (II) is a convex-concave problem, whereas
(I) is concave-convex.

Analogous definitions apply also to the optimal solutions and
optimal value in (III). That is, the optimal solutions in (III) are the
saddle points of the concave-convex function

(x, w, y, z) > K(x, y) + L*(zf w) - (A{x, y), (z, w)} ,

{x, w,y,z)eC x D ,

where C — Cκ x DL* and D — Dκ x CL*9 and the optimal value in
(III) exists if and only if the saddle value of this function exists
finitely.

Continuing in the spirit of mathematical programming, we call
(I) the primal problem, (II) the dual problem and, for reasons which
will become more apparent later, (III) the Lagrangian problem.

It is convenient sometimes to be able to deal with (I), (II) or
(III) by means of a single everywhere-defined saddle function. For
this purpose we define
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K(x, y) — LA(x, y) if x e X and yeY
+ 00 i f x e X a n d y $ Y

if x ί X ,

) - K*A*(z, w) iΐ zeZ a n d w e T7
J(zt w) — \ + oo if 0 ί Z and w e W

[ if w £ T7,

and the Lagrangian function

M{x, w, y, z)

ίK{x, y) + L*(z, w) - <A(x, y), (z, w)} if (x, w)eC and (y, z)eD
= j + oo if (x,w)eC and (y, z) ί D

{— oo if (#, w) g C .

It is easily checked, for instance, that H is concave-convex and its
lower and upper saddle values, as well as its saddle points, are the
same whether taken with respect to X x 7 or to the whole space.
Thus, H can be used to represent (I). Similarly, J represents (II)
and M represents (III).

3. Invariance under equivalence. In this section we consider
the question, "How much (if any) generality is lost in treating the
saddle point problems (I), (II) and (III) by focusing our attention on
fixed saddle functions K, L, K* and £ * ? "

Suppose K, L, K* and L* are any saddle functions equivalent
to K, L, K* and L*, respectively. Let (I), (II) and (ίϊl) denote the
trio of saddle point problems defined by replacing the given saddle
functions in (I), (II) and (III) with the corresponding equivalent ones.
Similarly, let H, J and M denote the associated everywhere-defined
saddle functions (cf. §2).

It is easy to see that the notions of "consistent", "strongly con-
sistent", and "feasible solution" defined in §2 are invariant under
passage from (I) to (I) and from (II) to (II). This follows immediately
from the fact that equivalent saddle functions have the same effective
domain.

However, concerning the lower and upper saddle values and the
saddle points connected with our trio of problems, the situation is
not so clear. The first two lemmas help to remedy this. According
to the first, there is "usually" no generality lost in considering (I)
rather than (I), and similarly for (II) and (II).

LEMMA 1. If (I) is strongly consistent, then H and H are equiv-
alent closed proper saddle functions, and thus (I) is the same as (I).
Dually, if (II) is strongly consistent, then J and J are equivalent,
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closed proper saddle functions, and thus (II) is the same as (II).

Proof. Only the assertion about (I) will be proved, as the other
is similar. By the blanket hypotheses, if and L themselves are closed
and proper. If (I) is strongly consistent, then

A ri(dom K) n ri(dom L) Φ 0 .

By Theorems 1 and 4 of [3], these facts imply that the equivalence
class [K — LA] is well-defined (in the sense of the operations of addi-
tion and composition introduced in [3]) and moreover that [K — LA]
is closed and proper and contains the functions H and H. Then since
H and H are equivalent, closed and proper, it follows from (36.4) and
(36.3) that (I) and (I) are the same saddle point problems.

The next lemma shows that with regard to (III) and (III) we
need no additional hypotheses whatsoever.

LEMMA 2. The saddle functions M and M are equivalent, closed
and proper, and thus (III) is the same as (III).

Proof. Since K and L* are each closed and proper, it follows
from Theorem 7(i) of [3] that the function

(K(x, y) + L*(z, w) if (x, w)eC a n d (y, z)eD
(x, w, y, z) > \ + oo i f (Xf w ) e C a n d (y, z ) ί D

(-00 if (χf w)$C

belongs to a closed proper equivalence class of (separable) saddle func-
tions. Since the saddle function

(x, w, y, z) > -<A(x, y), (z, w)>

is finite everywhere, (34.2.4) implies it is closed and proper (and in
fact the unique element of its equivalence class). By Theorem 1 of
[3], we can add together the two equivalence classes represented by
these two concave-convex functions of (xf w, y, z), obtaining another
well-defined (in the sense of [3]) closed proper equivalence class. It
is easy to check that both M and M belong to the resulting class.
The last conclusion follows by (36.4) and (36.3), exactly as in Lemma 1.

In view of Lemmas 1 and 2, we can apply to (I), (II) and (III)
all of the theory which has been developed for closed proper saddle
functions, and in particular all of the various existence criteria and
characterization results for saddle values and saddle points. To do
this, for (III) we need no extra hypothesis, while for (I) and (II) the
corresponding mild hypothesis of strong consistency suffices.
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4* Duality for optimal values. First we prove that the lower
and upper saddle values connected with (III) bracket those connected
with (I) and (II).

THEOREM 1.

sup i n f ( I ) ^ inf sup (I)

sup inf (III) inf sup (III) .

sup inf (II) ̂  inf sup (II)

Proof. By (36.1), we have

sup inf (III) <̂  sup inf sup inf M
CR DK DL* CL*

= sup inf (K — φ) ,

where

φ(x, y) = inf sup « . , Arx} + <-, A2y} - L*) .

But (37.1.1) and (36.3) imply that φ = LA. Hence,

sup inf (III) ^ sup inf (K - LA)

= sup inf (K — LA)
X DK

^ sup inf (K — LA)
x y

^ sup inf (K — LA)
X Y

= sup inf (I) .

The first equality here follows from the fact that L is convex-closed,
and hence L{u, •) is constantly + oo whenever u&άom1L, while the
last inequality follows from the fact that L ^ L. (See (34.2).) On the
other hand, by (36.1) we also have

sup inf (III) ̂  sup inf sup inf M
DL* ^L* GR DK

= sup inf (L* — Ί/Γ) ,

where

ψ(z, w) = inf sup «., Afz) + < , Afw) - K) .

Observing that ψ = K*A* and continuing similarly to the above cal-
culation, we obtain
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sup inf (III) ^ sup inf (II) .

The proof of the remaining two nontrivial inequalities is entirely
analogous.

COROLLARY. If the optimal value in (III) exists, then so do the
optimal values in (I) and (II), and all three values are equal.

According to this corollary, any condition which implies that M
has a finite saddle value also yields a duality theorem linking the
optimal values in (I) and (II). Since M is closed and proper (Lemma
2), such conditions are well-known.

The next theorem gives rather surprising "boxing in" inequalities
between the lower and upper saddle values connected with (I) and
with (II).

THEOREM 2. If (I) is strongly consistent, then

sup inf (I) ^ sup inf (II) <̂  inf sup (II) ^ inf sup (I) .

Dually, if (II) is strongly consistent, then

sup inf (II) <£ sup inf (I) <̂  inf sup (I) ^ inf sup (II) .

Proof. Define two auxiliary functions as follows:

(K(x, y) — L(u, v) if (x, u) e CP and (y, v) 6 DP

P(x9 u, y, v) = j + oo if (Xf u) e CP and (y, v) <£ DP

[ — co if (χf u)ί CP ,

where CP = Cκ x CL and DP = Dκ x DL, and

f 0 if (x, u) e CQ and (y9 v) e DQ

Q(x, u, y, v) = j + oo if (Xf u) e CQ and (y, v) g DQ

[ — oo if (χf U)&CQ ,

where CQ = {(x, u)\u — Aλx) and DQ = {(y, v) \ v = A2y}. By Theorem
7(i) of [3], P is a (separable) closed proper concave-convex function
with dom P = CP x DP, and by (34.2.4) Q is a closed proper concave-
convex function with dom Q = CQ x DQ. Assume (I) is strongly con-
sistent, i.e., Ari(dom K) Π ri(dom L) Φ 0. Since dom Q is an affine
set and hence relatively open, the strong consistency hypothesis is
equivalent to the condition ri(dom P) Π ri(dom Q) Φ 0 . Hence Theorem
1 of [3] implies that the equivalence class [P + Q] is well-defined,
closed and proper with dom (P + Q) — dom Pf] dom Q = C x D. There-
fore, (36.3) implies that
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sup inf (P + Q) = sup inf {K(x, y) — L(u, v)}
(x,u) eC (y,v) eD

= sup inf {K(x, y) - L(u, A2y)}
(z,u) eC y eY

= sup inf {K(x, y) - L(A,xf A2y)}
xex yeY

= sup inf (I).

On the other hand, Theorem 2 of [3] implies that

sup inf (P +Q)= -(p+~Q)*(0, 0)

= - ( P * D Q * ) ( 0 , 0 ) ,

where Π denotes the operation of extremal convolution developed in
[3] (and, as usual, an upper bar signifies the greatest element of an
equivalence class). Now it follows from Theorem 7(iv) of [3] that
one conjugate of P is the function

(K*(s, t) - L*(-z, -w) if (s, z) e CP* and (ί, w) e DP*
(β, z, t, w) • j + oo if (s, z) e Cp* and (t, w) $ DP*

{ - oo if (8f Z) $ CP* ,

where CP* — Cκ* x (—CL*) and DP* = Dκ* x (—DL*), and it is an easy
exercise to compute that one conjugate of Q is the function

(s, z, t, w)
Ό if (s, z) G CQ* and (£, w) e DQ*
+ oo if (sf z) G CQ* and (ί, w) 0 DQ*
— oo if (sf Z) g Cρ* ,

where CQ* = {(s, ^) | s = — A*«} and Dρ* = {(t, w) | ί = — A2*^}. Using
these two functions together with the fact that [P* • Q*] is well-
defined, we obtain

-CP* D O*)(0, 0) ^ - inf sup {JE*(s, ί) - L*(-s , -

= sup inf {L*(2f - w ) - K*(Afz, ί)}
(t,w) G D Q * z e z

= sup inf {L*(2, w) - K*(ATz, A*w)}
w eW zeZ

= sup inf (II) .

Combining facts, we obtain

sup inf (I) = - (P* • Q*)(0, 0) ^ sup inf (II) .

Similarly,

inf sup (I) = -CP*DQ*)(0, 0) ^ inf sup (II) .

COROLLARY. If (I) is strongly consistent and the optimal value
in (I) exists, then (II) is consistent and the optimal value in (II)
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exists and equals the optimal value in (I). Dually, if (II) is strongly
consistent and the optimal value in (II) exists, then (I) is consistent
and the optimal value in (I) exists and equals the optimal value in (II).

5* Optimal solutions and the Kuhn-Tucker conditions* In
this section we show there is a close connection between the optimal
solutions of (I) and (II) and the pairs (x, y) and {z, w) which satisfy
the subdifferential relations

A*(z, w) e dK(x, y) , A(x, y) e dL*(z, w) .

This pair of relations will be called the Kuhn-Tucker conditions. The
key to their connection with the optimal solutions of (I) and (II) lies
in the following result.

THEOREM 3. In order that (x, y)e Rm x Rn be an optimal solu-
tion of (I), it is sufficient that

(0, 0) e dK(x, y) - A*dL(A(x, y))

this condition is also necessary when (I) is strongly consistent. Du-
ally, in order that (z, w)e Rp x Rq be an optimal solution of (II), it
is sufficient that

(0, 0) e dL*(z, w) - AdK*(A*(z, w))

this condition is also necessary when (II) is strongly consistent.

Proof. Assume (0, 0) e dK(x, y) - A*dL(A(x, y)). Thus, there ex-
ists a pair (z9 w) such that

A*(z, w) e dK(x, y) , (z, w) e dL(A(x, y)) .

Then (37.4) implies

(x, y) e dom K , A(x, y) e dom L ,

and that

K(x', y) - (x>, Arz) - <y, A}vf>

^ K(x, y) - (x, A*z) - (y, A*w)

^ K(x, y>) - <x, Aΐz} ~ <JΛ Afw> , V(α>', y') ,

and

(u, z} + (A2y, w) - L(u, A2y)

^ (Axx, z} + (A2y, w} - L{Axx, A2y)

^ {Axx, z) + (v, w) — L{Axx, v) , V(u, v) .
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Since K(x, •) and — L(Axx, •) are never — oo and K(-,y) and
— L(-,A2y) are never +°o, we can "add" the two systems of ine-
qualities to obtain

K(x', y) - L(u, A2y) + <u - Axx\ z}

£ K(x, y) - L{Aλx, A2y)

^ K(x, y') - LiA.x, v) + (v - A2y\ w)

for all {xr, y') and (u, v). Taking (u, v) = A{xr, yr) in this, together
with the fact that {x, y) e X x Y, we see that (x, y) is an optimal
solution of (I). This establishes the sufficiency. On the other hand,
let (x, y) be any optimal solution of (I) and assume (I) is strongly
consistent. Then (0, 0) 6 dH(x, y). But by strong consistency we have

dH(x, y) = d(K - LA){x, y)

= dK(x, y) - d(LA)(x, y)

= dK(x, y) - A*dL{A{x, y))

by Lemma 1 and the subdiίferential formulas in Theorems 1 and 4
of [3]. The proof of the dual assertion is analogous.

Of course, when K and L are actually differentiate, the sub-
differentials in the above "sufficient and usually necessary" conditions
(cf. [8, p. 333]) reduce to the ordinary gradients.

We remark that, as far as "sufficiency" is concerned, the condi-
tions in the theorem can be improved to handle the case when the
saddle functions are not closed. Indeed, suppose K and L are merely
proper, that Ke[K] and Le[L], that

(0, 0) G dK(x, y) - A*8L(A(x, y)) ,

and that K{x, y) and LA(x, y) are finite. Then (x, y) is an optimal
solution of (I). This can be shown by the reader as an exercise,
using (37.4.1), (37.4) and (23.3).

We can draw several corollaries from Theorem 3.

COROLLARY 1. Assume (x, y)eRm x Rn and (z, w)eEp x Rq sat-
isfy the Kuhn-Tucker conditions, i.e.,

A*(z, w) G dK(x, y) and A{x, y) e dL*(z, w) .

Then (x, y) is an optimal solution of (I) and (z, w) is an optimal
solution of (II).

Proof. By the theorem and (37.5).

We omit the dual version of the next corollary.
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COROLLARY 2. If (II) is strongly consistent and has an optimal
solution, then (I) has an optimal solution and the optimal values in
(I) and (II) are equal.

Proof. By the theorem and the corollary to Theorem 2.

Stronger duality results are possible. For these, it will be helpful
to introduce a notion of stability for the optimal solutions of (I) and (II).

6* Stability* A typical application of the present results con-
cerning problems (I), (II) and (III) entails formulating some given
constrained saddle point problem as (I), say, in such a way that the
term — LA represents (possibly some subset of) the explicit constraints
of the problem. It is natural to ask about the sensitivity of the
optimal solutions with respect to various perturbations of the expilcit
constraints. In this section we formulate a notion of stability to deal
with this for the case in which the perturbations correspond to trans-
lations of L. As will be seen in the next section, such stability is
intimately related to the strongest possible duality between optimal
solutions of (I) and (II).

For each (a?, y) e X x Y, define auxiliary functions gy on Rp and
/, on Rq by

gy(u) = sup{ίΓ( , y) - LA( , y)} and fx(v) = mf{K(x, •) - LA(x, •)} >
Xu Yv

where

Xu = {xr e Cκ I Axx' eCL- u) and Yv = {yf e Dκ \ A2y' e DL - v) .

We shall say that an optimal solution (x, y) of (I) is stable if and only if
lim^o l/X[gy(Xu) — gy(0)] < + oo, yu, and lim^0 l/X[fx(Xv) — fz(0)] > — oo,
VΪ;. It follows from Lemma 3 (below) and (23.1) that the limits just
written do in fact exist, + oo and — oo being allowed as limits.
Stability of optimal solutions of (II) is defined analogously, using the
functions hw on Rm and kz on Rn defined for each (z, w)e Z x W by

hw{s) = inf {L*( , w) - K*A*( , w)}

and

wt

where

Zs - {zf e CL* I Afz' e Cκ* - s) and Wt - {wf e DL* \ A*wf e Dκ* - t) .

It will be shown in the next section that this notion of stability
is "invariant under equivalence" in the sense used in §3.
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Stability can be described heuristically using the terminology of
game theory. Let (I) represent a two-person zero-sum game on X x
Y with payoff function K — LA, and suppose Player Γs objective is
to pick a strategy xe X achieving maxz infF {K — LA) while Player
2's objective is to pick a strategy yeY achieving minΓ supx {K — LA).
Then for this game, an optimal strategy pair (x, y) is stable if and
only if (i) no slight perturbation of Player Γs strategy space from
X to Xu yields an infinite marginal increase in the amount Player 1
receives from Player 2 and (ii) no slight perturbation of Player 2's
strategy space from Y and Yυ yields an infinite marginal decrease in
the amount Player 2 pays Player 1.

We collect some useful facts concerning fz, gy and (I) in the
following lemma. The analogous assertions concerning hw, kz and (II)
are omitted.

LEMMA 3. The function fx is convex for each xeX, and the
function gy is concave for each yeY. A pair (x, y) is an optimal
solution of (I) if and only if {x,y) e X x Y and fx(0) = gy(0) e Ry and in
this event {x, y) is stable if and only if fx and gy are subdifferentiable
at the origin.

Proof. Let x e X, and consider the function

φ(v9 y) = K(x, y) - L{A,x, v + A2y) + d(y \ Yv) ,

where δ( \S) denotes the indicator function of a set S (i.e., d(s\S)
equals 0 when seS and +oo otherwise). It is easy to see that φ is
convex in (v, y) jointly, and hence the convexity of fx{v) — mίy φ(v, y)
is immediate from (5.7). The concavity of gy is proved similarly. The
characterization of optimal solutions is immediate from the definitions
and the fact that K — LA is necessarily finite on X x Y = Xo x YQ.
The characterization of stability is immediate from the first two as-
sertions of the lemma together with (23.2) and (23.3).

For any xeX, it can also be shown that veτi(domfx) if and
only if (A2 ri Dκ) Π (ri DL — v) Φ 0 , in which case dfx(v) Φ 0 . Simi-
larly for gy. From these facts and Lemma 3 it follows that, if (I) is
strongly consistent, every optimal solution of (I) is stable. This result
appears below as Theorem 5, where a different proof is given.

7* Duality for stable optimal solutions* We are now ready
to derive the following strong, "three-way" duality result.

THEOREM 4. For (x, y)eRm x Rn and (z, w)eRp x Rq, the fol-
lowing four conditions are equivalent:
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( i ) (x, y) e X x Y, /.(0) = gy(0) eR and - (z, w) e dgy(O) x 3/.(0);
(ϋ) (z,w)eZx W, hw(0) = k,(0)e R and -{x, y) e3/^(0) x dkz(O);
(iii) (#, w, ?/, z) is a saddle point of M;
(iv) A*(z, w) e dK(x, y) and A(x, y) e dL*(z, w).

Moreover, any of these four conditions implies that

K(x, y) - LA(x, y) - L*(z, w) - K*A*(z, w)

= K(x, y) + L*(*> w) - <A(x, y\ (z, w)) .

Proof. We first prove that (i) is equivalent to (iv). Observe
that in the presence of fjfi) = gy(0) = a,

-(z,w)edgy(0) x3/,(0)

is equivalent to

gy(u) + (z, u} <> a ^ fx(v) + (w, v)

for each (u, v), which is equivalent to

K(x', y) - L(u + Axx', A2y) + <«, u)

^ a ^ K(x, y') - L(Axx, v + A2y') + <w, v)

for each (u, v) and each (»', y') e Xu x Γ ,̂ which in turn is equivalent to

K(x', y) - L(u', A2y) + <s, vί - Atf>

Sa^ K(x, yf) - L(A,xf v') + <w, v' - Λ?/'>
for each (%', vf)edom L and each (x'f yf)edom K. Since (a?, y)eX x
Y and /β(0) = ^(0) = a implies a — ίΓ(^, y) — LA(x, y), it follows that
(i) is equivalent to (x, y) e X x Y and

#(<*', ») - L{u\ A2y) + <β, v! - A^y

^ Zία?, y) - L ( A ^ , A2?/)

^ K(x, y') - L{A,x, v') + <w, i/ - A2?/'>

for each (χ'f y') e dom K and each (u\ v') e dom L. By (36.3) this is
equivalent to the two conditions

{x, y) solves maximin{Z"— < , A*z) — < , A*w}}
cκ Dκ

and

A(x, y) solves minimax {L — < , >̂ — < , ;̂>} .

By (36.3) again, together with (37.4), these conditions are equivalent to

A*(z, w) G dK(x, y) and (z, w) e dL(A(x, y)) .
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But by (37.5) these last conditions are the same as the Kuhn-Tucker
conditions. The proof that (ii) is equivalent to (iv) is analogous. To
show (iii) equivalent to (iv), note first that by Lemma 2, M is closed
and proper with effective domain C x D. Hence (iii) is equivalent to
(x9 w, y, z)eC x D and

K(x\ y) + L*(z, wf) — (Aλx
f, z) — (A2y, wf)

^ K(x, y) + L*(z, w) - (Aλx, z) - (A2y, w)

£ K(x, y') + L*(z', w) - (A&, z'> - <A2y', w)

for each (x'9 wr) e C and each (y\ zr) e D. Using the facts that K(x, y)
and L*(z9 w) are finite, K(x, •) and !/*(-, w) are never — oo, and
K{-,y) and L*(z, •) are never +oo, one can easily show that this is
equivalent to the conditions

(x, y) solves maximin{i£~ — < , A*z} — < , A}w}}

and

{z, w) solves minimax {L* — < , Aλx} — < , A2y}} ,

which by (36.3) and (37.4) are equivalent to (iv). The last assertion
can be deduced from the Corollary to Theorem 1. However, we prefer
to give another, more direct proof. Observe first that by (37.5) and
(37.4), A*(z, w)edK(x, y) if and only if A*(z, w) is a saddle point of
< , x} + < , y} — K*. On the other hand, the definition of the con-
jugacy correspondence for saddle functions implies that, when the
saddle value of < , x) + < , y) — K* exists, its value is K**(x, y),
which equals K(x, y) when K is closed. Therefore, the condition
A*(z, w) e dK(x, y) implies (K(x, y) is finite and)

(Afz, Xs) + <A2*w, y} — K*A*(z, w) = K(x, y) .

Similarly, the condition A(xt y) 6 dL*(z, w) implies (L*(z, w) is finite and)

<X Atx) + <w, A2y) — LA{x, y) = L*(z, w) .

The last assertion of the theorem follows from these two equations.

Our first corollary to this theorem follows by Lemma 3, the defi-
nitions, and the general fact that a saddle function evaluated at a
saddle point gives the saddle value.

COROLLARY 1. The following four conditions are equivalent and
imply that the optimal values in (I), (II) and (III) are equal:

( i ) there exists a stable optimal solution of (I);
(ii) there exists a stable optimal solution of (II);
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(iii) there exists an optimal solution of (III);
(iv) the Kuhn-Tucker conditions are satisfiable.

By Lemma 3 and its "dual" version, we obtain another corollary
to Theorem 4.

COROLLARY 2. A pair (x, y) is a stable optimal solution of (I)
if and only if there exists a pair (z, w) which together with (x, y)
satisfies the Kuhn-Tucker conditions. Dually, a pair (z, w) is a
stable optimal solution of (II) if and only if there exists a pair (χf y)
which together with (z, w) satisfies the Kuhn-Tucker conditions.

According to this corollary, stable optimal solutions of (I) and
(II) are expressible solely in terms of the Kuhn-Tucker conditions.
Since by (37.4.1) and (37.1.1) the Kuhn-Tucker conditions are "invariant
under equivalence" in the sense used in §3, it follows that our notion
of stability is also invariant under equivalence.

The preceding corollary and the next theorem taken together
give a sharp extension of the Kuhn-Tucker Theorem to our problems
(I), (II) and (III).

THEOREM 5. If (I) is strongly consistent, then every optimal
solution of (I) is stable. Dually, if (II) is strongly consistent, then
every optimal solution of (II) is stable.

Proof. Assume (I) is strongly consistent. Then by Theorem 3,
(x, y) is an optimal solution of (I) if and only if

(0, 0) e dK{x, y) - A*dL(A(x, y)) .

By (37.5) it follows that (x, y) is an optimal solution of (I) if and only
if there exists a pair {z, w) which together with (x, y) satisfies the
Kuhn-Tucker conditions. But by conditions (iv) and (i) of Theorem
4, together with Lemma 3, this implies (x, y) is stable. The proof
of the dual assertion is analogous.

8* An existence criterion* Our object in this section is to
establish a criterion for the existence of (stable) optimal solutions.
This is done in the theorem below. Although considerably more general
existence criteria can be formulated, the one given here hopefully
strikes a reasonable balance between generality and ease of applica-
bility. Also, the criterion here yields the useful fact of dual strong
consistency as a byproduct. We state the result in terms of (I);
naturally, a dual version can be phrased in terms of (II).
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THEOREM 6. Assume (I) is strongly consistent and that there
exists a pair (x, y) e X x Y such that the sets

{x'eX\ K(x', y) ~ LA(x', y) ^ a}

and

{y'eY\K(x,y')-

are bounded for every aeR. Then the Kuhn-Tucker conditions are
satisfiable. Moreover, the set of optimal solutions of (I) is bounded
and (II) is strongly consistent.

For the proof of this theorem we shall use several lemmas. These
involve recession functions, which will be indicated by the notation
"rec". That is,

(τecf)(y) - sup {f(y' + y) - f(y') \ y' e dom/}

when / is proper convex, and

(rec g)(x) = ihf {g{xr + x) - g{x') \ x' e dom g)

when g is proper concave.
The first lemma is a slightly different form of (37.2). Rockafellar

chose to formulate this result for the particular choice S — ri(domx K)
and T = ri(dom2 K), in which case (34.2) allows the functions K and
K appearing in the formulas to be replaced simply by K.

LEMMA 4. Let K be any closed proper concave-convex function
on Rm x Rn. Then

sup{<#, y*} I y* edom2 K*} = sup {rec K(x, -)(y) \xeS}

for any set S (not necessarily convex) satisfying ri(dom! K)aS a
domx K. Similarly,

i n f {<£, £ * > I x* e d o m , K*} = i n f { r e c K ( , y){x) \ y e T }

for any set T (not necessarily convex) satisfying ri(dom2 K) a Tc
dom2 K.

Proof. We prove only the first assertion. Write dom2 ϋΓ* = D*.
From the formulas given for D* and riD* in the proof of (37.2), it
is clear that

r i l ) * c LJdom/(α;, )aD* ,
Sx e S

where / is the convex function related to K by
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f(x, y*) = sup {<]/, y*> - ISfo 3/)} .
2/

Hence, much as in the proof of (37.2), we can write

sup {<2/, 2/*>} = sup {sup {(y, y*} | #* e domf(x, •)}}
y*eD* xeS

= sup{rec/(#, •

Since f(x, •)* = cli£(α;, •) = !£(&, •)> the proof is complete.
The next lemma gives a "primal-space" characterization of the

important hypothesis of dual strong consistency, and the subsequent
lemma gives a simpler sufficiency condition. Besides being useful for
the proof of Theorem 6, these two lemmas should prove useful in
applying the earlier results which involve the hypothesis of dual
strong consistency.

LEMMA 5. Problem (II) is strongly consistent if and only if (i)
for every yy

sup {reciΓ(a;, •)(#)} <£ inf {recL(w, )(A2y)}
xeC

implies

and (ii) for every x,

implies

sup {reci£(α;, )(—y)} ^ inf
xeCκ ueCL

inf {recl£( , y)(x)} ^ sup {recL( , v){Axx)}
eDκ veDL

inf {recK( , y)(—x)} ^ sup {recL( , v){—Axx)} .

Proof. We shall show that condition (i) is equivalent to A}τiDL*Γ[
Φ 0 . A similar argument shows (ii) equivalent to AfτiCL*n

τiCκ* Φ 0 . First, observe that for a subspace S and a nonempty con-
vex set T, the condition SΓ\ ήT Φ 0 is equivalent to the condition

Vs*, s* G Sλ and sup <ί, s*> ̂  0 = > -s*eSL and sup <£, -s*> ̂  0 .
ί e 5 Γ teT

This can be proved using (11.3) and (11.1). Now take S and T to
be the sets

S - {(w, t)\t = A*w] , T= DL*x Dκ* .

Trivially, S1 = {(v, ί/) | v + A22/ = 0} and

sup <(w, ί), (v, |/)> - sup <w, v> + sup <ί, y> .
(w,t)eT weD^ teDg*
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Also, Lemma 4 implies that

sup (w, v) = — inf {rec L(u, •)( — v)}

weDL* ueCL

and

sup <£, y) — sup {recK(x, -)(y)} .
t e Djζ* x e C jζ

Combining these facts, we see that
(v, y) e S1 and sup ((w, t), (v, y)} ̂  0

(w,t) eT

occur if and only if (v = — A2y and)

xeCκ ueCL

Hence it is clear that (i) holds if and only if A}τiDL*f] τiDκ* Φ 0 ,
and the proof is complete.

LEMMA 6. If there exists a pair (x, y) e X x Y such that the
level sets

[xf I K(x\ y) - LA(x\ y) ̂  a} and {yf \ K(x, yr) - LA(x, yf) ̂  a]

are bounded for every aeR, then (II) is strongly consistent.

Proof. Assume such a pair (x, y) exists. Then by (34.3), (9.5)
and (9.3), the function

f=K(x, • ) - LA(x, •)

is closed proper convex and

rec/ = rec K(x, •) — (recL^α;, ))A2 .

By hypothesis, the level sets of / are bounded, so that by (8.7), /
has no recession vectors. Thus,

W, τecK(x, )(y') ̂  recL(A^, )(A2y') = * y' = 0 .

Now let yr be any vector satisfying the hypothesis of condition (i) of
Lemma 5. Since xeCκ and Axx eCL, we conclude that

recK(x, -)(y') ̂  recL^α;, -)(A2y
9) ,

which by the fact just established implies yf — 0. Clearly y' = 0
satisfies the conclusion of condition (i) of Lemma 5. In a similar way,
one can verify that condition (ii) of Lemma 5 is satisfied. Strong
consistency of (II) now follows by Lemma 5.

Finally, we need the following simple result.
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LEMMA 7. Let f be a proper convex function on Rn. Then the
following two conditions are equivalent:

( i ) {x \f(x) ^ a} is bounded for every ae R;
(ii) {x\ (c\f)(x) <Ξ; a} is bounded for every ae R.

These conditions imply
(iii) (τecf)(x) > 0 for every x Φ 0;

the converse holds when f is closed.

Proof. By (7.6) and (8.7).

Proof of Theorem 6. By strong consistency, Theorem 3 and (37.5),
the Kuhn-Tucker conditions are satisίiable if and only if H has a
saddle point. By strong consistency and Lemma 1, H is closed and
proper. Therefore, by (37.5.3) the condition (0, 0) e int (dom H*) implies
both that the Kuhn-Tucker conditions are satisfiable and (by (23.4))
that the set of optimal solutions of (I) is bounded. To establish the
condition (0, 0) e int (dom H*), it suffices by (13.3) and Lemma 4 to
show that

reciϊ(α;, •)(#') > 0 for every y' Φ 0

and

rec H( , y){xf) < 0 for every x' Φ 0 .

But these two conditions are immediate consequences of the bound-
edness hypothesis, Lemma 7, and the identities

H(x, •) = cl (K(x, -) - LA(x, •) + *(•! Y))

and

# ( . , y) = cl(#(., y) - LA( , y) - ί(. \X)) .

It remains only to show that (II) is strongly consistent. Using the
strong consistency of (I) once more, one can show routinely that

and

By these identities combined with the previous ones, the boundedness
hypothesis, and Lemma 7, it follows that

{x' I K(x', y) - LA(x', y) ^ a) and {yf | K(χ, yf) - LA(x, yf) ^ a}

are bounded for each ae R. Hence (II) is strongly consistent by
Lemma 6.
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