OPEN PROJECTIONS AND BOREL STRUCTURES FOR C^* -ALGEBRAS

HERBERT HALPERN

In this paper the relationships existing among the Boolean σ -algebra generated by the open central projections of the enveloping von Neumann algebra $\mathscr O$ of a C^* -algebra $\mathscr N$, the Borel structure induced by a natural topology on the quasispectrum of $\mathscr N$, and the type of $\mathscr N$ are discussed. The natural topology is the hull-kernel topology. It is shown that this topology is induced by the open central projections and is the quotient topology of the factor states of $\mathscr N$ (with the relativized w^* -topology) under the relation of quasi-equivalence. The Borel field is shown to be Borel isomorphic with the Boolean σ -algebra multiplied by the least upper bound of all minimal central projections. Finally, it is shown that $\mathscr N$ is GCR if and only if the Boolean σ -algebra (resp. algebra) contains all minimal projections in the center of $\mathscr O$, or equivalently, if and only if every point in the quasi-spectrum is a Borel set.

- T. Digernes and the present author [10] showed that \mathscr{M} is CCR if and only if the open projections are strongly dense in the center of \mathscr{D} . They also showed that the complete Boolean algebra generated by the open central projections is equal to the set of all central projections in \mathscr{D} whenever \mathscr{M} is GCR. Recently, T. Digernes [9] obtained the converse of this result for separable C^* -algebras.
- 2. The Boolean algebra of open projections. Let \mathscr{B} be a von Neumann algebra with center \mathscr{E} and let \mathscr{A} be a uniformly closed *-subalgebra of \mathscr{B} . A projections P in \mathscr{E} is said to be open relative to \mathscr{A} if there is a two-sided ideal \mathscr{I} in \mathscr{A} whose strong closure is $\mathscr{B}P$. In the sequel all ideals (unless specifically excluded) will be assumed to be closed two-sided ideals. The definition corresponds to the definition of Akemann [1, Definition II.1] for C^* -algebras with identity. The set $\mathscr{P}(\mathscr{B},\mathscr{A})$ of all open central projections of \mathscr{B} relative to \mathscr{A} contains 0,1 and the least upper bound (resp. greatest lower bound) of any (resp. any finite) subset [1, Proposition II.5, Theorem II.7].

Now let \mathscr{B} be the enveloping von Neumann algebra of \mathscr{A} . The algebra \mathscr{A} will be identified with its embedded image in \mathscr{B} . In this case the set $\mathscr{P}(\mathscr{B},\mathscr{A})$ will be denoted simply by \mathscr{P} and the projection in \mathscr{P} will be called *open* projections. The smallest Boolean algebra (resp. σ -algebra) containing \mathscr{P} will be denoted by $\langle \mathscr{P} \rangle$ (resp. $\langle \mathscr{P} \rangle$).

Let $\widehat{\mathscr{A}}$ be the set of all unitary equivalence classes of irreducible representations of \mathscr{A} . The set $\widehat{\mathscr{A}}$ is called the *spectrum* of \mathscr{A} . For every irreducible representation ρ of \mathscr{A} on the Hilbert space $H(\rho)$, let $[\rho]$ denote the class in $\widehat{\mathscr{A}}$ of which ρ is the representative. If X is a subset of $\widehat{\mathscr{A}}$, let $\mathscr{I}(X) = \bigcap \{\ker \tau \mid \tau \in X\}$. Here $\ker \tau$ is uniquely defined by $\ker \tau = \ker \rho$ for $\rho \in \tau$. Then setting $X^- = \{\tau \in \widehat{\mathscr{A}} \mid \ker \tau \supset \mathscr{I}(X)\}$ for $X \neq \emptyset$ and $\emptyset^- = \emptyset$, we obtain a closure operation $\widehat{\mathscr{A}}$. The topology defined by this closure operation is called the *hull-kernel* topology and is the family of subsets of $\widehat{\mathscr{A}}$ given by

$$\{\{\tau \in \hat{\mathscr{A}} \mid \ker \tau \not\supset \mathscr{I}\} \mid \mathscr{I} \text{ is an ideal of } \mathscr{A}\}$$

(cf. [12, § 3]). Let ρ be a representation of $\mathscr A$ and let ρ denote the unique extension of ρ to a σ -weakly continuous representation of $\mathscr A$ on $H(\rho)$ such that ρ ($\mathscr A$) is the σ -weak closure of $\rho(\mathscr A)$. If $A \in \mathscr A$ and $\tau \in \mathscr A$ there is a unique scalar A (τ) such that A (τ)1 $_{H(\rho)} = \rho$ (A) for all $\rho \in \tau$. Here 1 $_{H(\rho)}$ is the identity operator on $H(\rho)$. With this notation, the hull-kernel topology of $\mathscr A$ is given by $\{\{\tau \in \mathscr A \mid P$ (τ) = 1 $\}$ | $P \in \mathscr P$ }.

Let $S_0(\hat{\mathscr{A}})$ (resp. $S(\hat{\mathscr{A}})$) denote the ring (resp. σ -ring) generated by the open subsets of $\hat{\mathscr{A}}$. Then there is a projection-valued measure γ of $S(\hat{\mathscr{A}})$ onto $\langle\!\langle \mathscr{S} \rangle\!\rangle$ such that $\gamma(\{\tau \in \hat{\mathscr{A}} \mid P^*(\tau) = 1\}) = P$ ([19, Theorem 1.9], cf. [12, 5.7.6]).

LEMMA 1. Let \mathscr{A} be a C^* -algebra, let \mathscr{B} be the enveloping von Neumann algebra of \mathscr{A} and let \mathscr{S} be the set of all open projections of the center \mathscr{Z} of \mathscr{B} . Let Q be a minimal projection of \mathscr{Z} and let P_m be the least upper bounded of all minimal projections of \mathscr{Z} . Then $\mathscr{B}Q$ is a type I factor whenever Q is in the Boolean σ -algebra $\langle\!\langle \mathscr{S} \rangle\!\rangle P_m$.

Proof.¹ If X_1 and X_2 are open subsets of \mathscr{N} with $X_1 \supset X_2$, then $\gamma(X_1 - X_2)^{\sim}(\tau) = \gamma(X_1)^{\sim}(\tau) - \gamma(X_2)^{\sim}(\tau) = 1$ for every $\tau \in X_1 - X_2$ and $\gamma(X_1 - X_2)^{\sim}(\tau) = 0$ for every $\tau \notin X_1 - X_2$. Since every set X in $S_0(\mathscr{N})$ is the union of a finite number of mutually disjoint sets of the form $X_1 - X_2$ where X_1, X_2 are open in \mathscr{N} and $X_1 \supset X_2$, we see that $\gamma(X)^{\sim}(\tau) = 1$ if and only if $\tau \in X$. Since every element X in $S(\mathscr{N})$ is the union of a monotonally increasing sequence of sets $\{X_n\}$ in $S_0(\mathscr{N})$, we get that $\gamma(X)^{\sim}(\tau) = 1$ for every $\tau \in X$.

Now there is a set $X \in S(\hat{\mathscr{A}})$ with $\gamma(X)^{\sim} P_m = Q$. If $\tau \in X$ then $Q^{\sim}(\tau) = 1$, and so $\rho^{\sim}(Q) = 1$ for $\rho \in \tau$. This means that the kernel of ρ^{\sim} is $\mathscr{B}(1-Q)$. Since ρ is irreducible on \mathscr{A} and since $\rho^{\sim}(\mathscr{B})$, which is

¹ This proof was suggested by the referee. My original proof was based on the results of [10].

isomorphic to $\mathcal{B}Q$, is equal to the weak closure of $\rho(\mathcal{A})$, we conclude that $\mathcal{B}Q$ is a type I factor.

The next result characterizes a GCR algebra in terms of the open central projections of its enveloping algebra.

THEOREM 2. Let \mathscr{A} be a C^* -algebra, let \mathscr{B} be the enveloping von Neumann algebra of \mathscr{A} , and let \mathscr{F} be the set of open projections of the center \mathscr{Z} of \mathscr{B} . Then the following statements are equivalent:

- (1) \mathscr{A} is GCR:
- (2) $\langle \mathscr{P} \rangle$ contains all minimal projections \mathscr{Z} ; and
- (3) $\langle \mathscr{P} \rangle$ contains all minimal projections of \mathscr{Z} .

Proof. (1) \Rightarrow (2). We apply the fact that the set of open central projections in the enveloping von Neumann algebra of a CCR algebra is strongly dense in the set of central projection [10, Theorem 2].

There is a set $\{P_i \mid 0 \le i \le k\}$ of projections in \mathscr{S} indexed by the ordinals such that (i) $P_0 = 0$, $P_k = 1$, (ii) $P_i < P_{i+1}(i < k)$, (iii) $\bigvee \{P_i \mid i < j\} = P_j \text{ if } j \text{ is a limit ordinal with } j \leq k; \text{ and (iv) } \mathscr{B}_i = i$ $\mathscr{B}(P_{i+1}-P_i)$ is the strong closure of a CCR ideal \mathscr{I}_i in $\mathscr{A}(1-P_i)$ [10, proof of Theorem 3]. Let Q be a minimal projection in \mathcal{Z} . There is an ordinal i < k such that $Q \leq P_{i+1} - P_i$. Let \mathscr{I} be the ideal in \mathcal{A} given by $\mathcal{I} = \{A \in \mathcal{A} \mid AP_i = A\}$. Setting $\mathcal{I}' = \{A \in \mathcal{A} \mid A(1 - A)\}$ $P_i \in \mathcal{I}_i$, we obtain an ideal \mathcal{I}' of \mathcal{A} containing \mathcal{I} such that \mathcal{I}'/\mathcal{I} is isomorphic to \mathcal{I}_i . Let ρ be the unique extension of the representation $A + \mathcal{I} \to A(1 - P_i)$ of \mathcal{I}'/\mathcal{I} onto \mathcal{I}_i to a σ -weakly continuous representation of the enveloping von Neumann algebra & of \(\mathcal{I}' | \mathcal{I}' \) onto the strong closure \mathcal{G}_i of \mathcal{I}_i on the subspace of the Hilbert space of \mathscr{B} corresponding to the projection $1 - P_i$ (cf. [12, 12.1.5]). Now, if $P \in \mathscr{S}(\mathscr{C}, \mathscr{I}'/\mathscr{I})$, we show that $\rho(P) + P_i$ is in \mathscr{S} . Indeed, there is an ideal \mathcal{K} in \mathcal{I}'/\mathcal{I} such that $\mathscr{C}P$ is the strong closure of \mathcal{K} in \mathscr{C} . Let \mathscr{K}' be an ideal in \mathscr{J}' with $\mathscr{K}'\supset \mathscr{J}$ such that $\mathscr{K}'/\mathscr{J}=\mathscr{K}$. Then we have that the strong closure of $\mathcal{K}'(1-P_i) = \rho(\mathcal{K})$ in $\mathscr{B}(1-P_i)$ is equal to $\rho(\mathscr{C}P)=\mathscr{B}_i\rho(P)=\mathscr{B}\rho(P)$. This means that the strong closure of \mathcal{K}' in \mathscr{B} is equal to $\mathscr{B}(\rho(P) + P_i)$. Hence $\rho(P) + P_i$ is in P. Because \mathscr{I}_i is CCR, the set $\mathscr{P}(\mathscr{C}, \mathscr{I}'/\mathscr{I})$ is strongly dense in the set of central projections of \mathscr{C} [10, Theorem 2]. Recalling that ρ maps the center of \mathscr{C} onto the center of \mathscr{G}_i [14, III, § 5, Problem 7], we obtain a net $\{R_n\}$ of projections in \mathscr{S} which majorizes P_i and is majorized by P_{i+1} and which converges strongly to $P_{i+1}-Q$. Since Q is a minimal projection, there is an n_0 such that $R_nQ=0$ whenever $n\geq n_0$. This means that the open projection $R = \mathbf{V}\{R_n \mid n \geq n_0\}$ is majorized by $P_{i+1} - Q$. But it is also clear that $P_{i+1}-Q \leq R$. Hence, we get that $P_{i+1}-Q=R$ and consequently

that $Q \in \langle \mathscr{P} \rangle$.

- $(2) \Rightarrow (3)$. Obvious.
- $(3) \Rightarrow (4)$. If $\mathscr M$ is not a GCR algebra, then $\mathscr M$ has a type III factor representation [24]. This means that there is a minimal projection $Q \in \mathscr X$ such that $\mathscr BQ$ is a type III factor. This is impossible by Lemma 1. Hence $\mathscr M$ is a GCR algebra.
- 3. Borel structure on the quasi-spectrum. Throughout this section let \mathscr{A} be a C^* -algebra, let \mathscr{B} be the enveloping von Neumann algebra of \mathscr{A} , and let \mathscr{P} be the set of open projections of the center \mathscr{X} of \mathscr{B} . The weak (resp. strong) topology of subalgebras of \mathscr{B} will refer to the weak-operator (resp. strong-operator) topology. If ρ is a representation of \mathscr{A} on a Hilbert space $H(\rho)$, let ρ^{\sim} be the unique extension of ρ to a σ -weakly continuous representation of \mathscr{B} on $H(\rho)$ so that the weak closure of $\rho(\mathscr{A})$ is equal to $\rho^{\sim}(\mathscr{B})$ [12, 12.1.5]. If ρ is nondegenerate (i.e., the identity of $H(\rho)$ lies in the weak closure of $\rho(\mathscr{A})$), then $\rho(\mathscr{B})$ is the von Neumann algebra generated by $\rho(\mathscr{A})$ [14, I, § 3, Theorem 2].

Now two nondegenerate representations ρ_1 and ρ_2 of \mathscr{L} are said to be *quasi-equivalent* (notation: $\rho_1 \sim \rho_2$) if ρ_1^{\sim} and ρ_2^{\sim} have the same kernel. The relation of quasi-equivalence partitions the set of (nondegenerate) representations of \mathscr{L} into quasi-equivalence classes. The class containing ρ is denoted by $[\rho]$. If $\rho_1 \in [\rho]$, then ker $\rho = \ker \rho_1$ and thus for every class $[\rho]$, there is a uniquely associated ideal $\ker [\rho] = \ker \rho$ of \mathscr{L} . Furthermore, if ρ is a factor representation of \mathscr{L} (i.e., $\rho^{\sim}(\mathscr{L})$) is a factor von Neumann algebra), then so is every ρ_1 in the class $[\rho]$ (cf. [12, § 5]).

Let \mathscr{A} be the set of all quasi-equivalence classes of factor representations. The set \mathscr{A} is called the quasi-spectrum of \mathscr{A} . If $A \in \mathscr{X}$ and $\tau \in \mathscr{A}$, then there is a unique scalar $A^{\sim}(\tau)$ such that $\rho^{\sim}(A) = A^{\sim}(\tau)1_{H(\rho)}$ for every $\rho \in \tau$. Here $1_{H(\rho)}$ is the identity operator on $H(\rho)$. So every $A \in \mathscr{X}$ defines a complex-valued function A^{\sim} on \mathscr{A} (cf. [7, § 4]). Now it is clear that the map $A \to A^{\sim}$ is a bounded *-homomorphism of \mathscr{X} into the C^* -algebra $F(\mathscr{A})$ of bounded complex-valued functions on \mathscr{A} . For each $\tau \in \mathscr{A}$ there is a unique minimal projection of the algebra \mathscr{X} such that $Q^{\sim}(\tau) = 1$. Conversely, if Q is a minimal projection of \mathscr{X} , there is a unique $\tau \in \mathscr{A}$ such that $Q^{\sim}(\tau) = 1$. Thus there is a one-to-one map of the set of minimal projections of \mathscr{X} onto \mathscr{A} . Therefore, if P_m denotes the least upper bound of all minimal projections in \mathscr{X} , then $P_m^{\sim} = 1$. Furthermore, if \mathscr{I} is an ideal of \mathscr{A} and $P \in \mathscr{P}$ is such that $\mathscr{Q}P$ is the strong closure of \mathscr{I} , then

(1)
$$\{\tau \in \widehat{\mathscr{A}} \mid \ker \tau \not\supset \mathscr{I}\} = \{\tau \in \widehat{\mathscr{A}} \mid P^*(\tau) = 1\}.$$

Now let $\tau \in \mathscr{A}$. The ideal ker τ is a *prime* ideal in the sense that ker τ contains the intersection of two ideals \mathscr{I} and \mathscr{I} in \mathscr{A} if and only if it contains one of them. Indeed, if $\rho \in [\tau]$ and $\rho(\mathscr{I}) \neq (0)$, then the strong closure of $\rho^{\sim}(\mathscr{I})$ is $\rho^{\sim}(\mathscr{B})$; otherwise, $\rho^{\sim}(\mathscr{B})$ would have a nontrivial center (cf. [11]). There is a net $\{A_n\}$ in \mathscr{I} with $\lim \rho^{\sim}(A_n) = 1$ (strongly). Hence, for any $A \in \mathscr{I}$, we have that

$$\rho(A) = \rho^{\sim}(A) = \lim \rho^{\sim}(AA_n) = \lim \rho(AA_n) = 0.$$

This means $\rho(\mathcal{J}) = (0)$. Thus ker τ is a prime ideal. For any nonvoid subset X of $\widehat{\mathcal{A}}$, we let $\mathcal{J}(X) = \bigcap \{\ker \tau \mid \tau \in X\}$ and we let

$$X^- = (\tau \in \widehat{\mathscr{A}} \mid \ker \tau \supset I(X))$$
.

Setting $\varnothing^- = \varnothing$, we get a unique topology on $\widehat{\mathscr{A}}$, called the *hull-kernel topology*, such that the closure of a subset X of $\widehat{\mathscr{A}}$ is X^- (cf. [12, 3.1]). The hull-kernel topology on $\widehat{\mathscr{A}}$ generates a Borel structure $S(\widehat{\mathscr{A}})$ on $\widehat{\mathscr{A}}$.

Thus the construction of the hull-kernel topology for the quasi-spectrum is analogous to that of the hull-kernel topology of the spectrum. We shall see further parallels in Propositions 3 and 9. However, the greater size of the quasi-spectrum allows us to prove Theorem 11.

PROPOSITION 3. Let \mathscr{A} be a C^* -algebra, let \mathscr{B} be the enveloping von Neumann algebra of \mathscr{A} , let \mathscr{Z} be the center of \mathscr{B} , and let P_m be the least upper bound of all minimal projections in \mathscr{Z} . Let \mathscr{C} the weak (-operator) sequential closure of the *-subalgebra of $\mathscr{Z}P_m$ generated by $\mathscr{P}P_m$. Then \mathscr{C} is the C^* -algebra generated by $(\mathscr{P})^*P_m$. Also there is an isomorphism λ of \mathscr{C} onto the C^* -algebra $B(\mathscr{A})$ of bounded $S(\mathscr{A})$ -Borel functions on the quasi-spectrum \mathscr{A} of \mathscr{A} such that the image of $(\mathscr{P})^*P_m$ is the set of all characteristic functions in $B(\mathscr{A})$. Furthermore, the map λ is bi-continuous in the sense that $\{\lambda(C_n)\}$ converges pointwise to $\lambda(C)$ if and only if $\{C_n\}$ is a sequence in \mathscr{C} that converges weakly to C.

Remark. On $\mathcal{Z}P_m$ the notions of strong and weak sequential convergence coincide.

Proof. The restriction λ of $A \to A^{\sim}$ to $\mathscr C$ is a *-homomorphism of $\mathscr C$ into $F(\mathscr A)$. If $\{C_n\}$ is a sequence in $\mathscr C$ that converges weakly to C, then $\{C_nQ\}$ converges uniformly to CQ for each minimal projection Q of $\mathscr E$ and so $\lim \lambda(C_n) = \lambda(C)$ in the topology of pointwise convergence of $F(\mathscr A)$. Hence λ is continuous. If $\lambda(C) = 0$ for some $C \in \mathscr C$, then $C^{\sim}(\tau) = 0$ for all $\tau \in \mathscr A$ and so CQ = 0 for all minimal projections

Q. This means $C = CP_m = 0$ and so λ is an isomorphism. Clearly, the inverse is continuous. We also have that

(2)
$$||\lambda(C)|| = \operatorname{lub}\{|\lambda(C)(\tau)| \mid \tau \in \widehat{\mathscr{A}}\}$$

$$= \operatorname{lub}\{||CQ|| \mid Q \text{ minimal}\} = ||C||,$$

for every $C \in \mathscr{C}$. Furthermore, the image of $\mathscr{P}P_m$ under λ is the set of all characteristic functions of open subsets of $\widehat{\mathscr{A}}$ by relation (1). Hence λ maps the *-algebra generated by $\mathscr{P}P_m$ into $B(\widehat{\mathscr{A}})$. By the continuity of λ and the norm preserving property (2), the map λ takes \mathscr{C} into $B(\widehat{\mathscr{A}})$.

Now we show that $\lambda(\mathscr{C})$ is sequentially closed in $B(\mathscr{A})$. Let $\{C_n\}$ be a sequence in \mathscr{C} such that $\{\lambda(C_n)\}$ converges pointwise to a function $f \in B(\mathscr{A})$. Since λ is a *-isomorphism, we may assume that fand each C_n is self-adjoint. Now if C and D are self-adjoint in \mathscr{C} there is a projection P in \mathscr{C} with $PC + (1 - P)D = C \vee D$ in the lattice of self-adjoint elements in $\mathcal{Z}P_m$. In fact, the spectral projections $\{E(\alpha)\}\$ and $\{F(\alpha)\}\$ of C and D respectively are in \mathscr{C} . For example, let α be given and let g_n be the function of a real variable given by $g_n(t)=0$ if $t\geq \alpha$, $g_n(t)=1$ if $t\leq \alpha-n^{-1}$, and g_n linear on $[\alpha-n^{-1},\,\alpha]$. Then $\{g_n(C)\}\$ is a monotonally increasing sequence in $\mathscr C$ whose least upper bound is $E(\alpha)$. Let $\{r_n\}$ be an enumeration of the rationals. Then P is the least upper bound of the sequence of projections $\{F(r_m)(1 E(r_n) \mid r_m < r_n; n, m = 1, 2, \cdots \}$. Indeed, if Q is a minimal projection with $Q \leq P$, then $Q \leq F(r_m)(1 - E(r_n))$ for some $r_m < r_n$. This means that $Q \leq F(r_m)$ and $Q \leq 1 - E(r_n)$, and thus that $DQ \leq r_m Q < r_n Q \leq r_n Q$ CQ. Conversely, let Q be a minimal projection with DQ < CQ. Then there are r_m and r_n with $DQ < r_m Q < r_n Q < CQ$. This means that $Q \leq F(r_m)(1 - E(r_n))$. Since P_m is the least upper bound of minimal projections, the projection P satisfies the requirements. We notice that $\lambda(C \vee D) = \lambda(CP) + \lambda((1-P)D) = \lambda(C) \vee \lambda(D)$ since λ preserves order and since $\lambda(P)$ and $\lambda(1-P)$ are characteristic functions of disjoint sets whose union is \mathcal{A} . The analogous statements hold for $C \wedge D$. These facts allow us to assume that $\{C_n\}$ is bounded since we may replace each C_n by $C_n \wedge ||f|| P_m$. Now let $D_n = \bigvee \{C_k | k \ge n\}$. We have that D_n lies in \mathscr{C} since D_n is the strong limit of the sequence $\{\mathbf{V}\{C_k\mid p\geq$ $k \ge n$ } in \mathscr{C} . Since λ is continuous, we get that

$$\lambda(D_n) = \lim \lambda(\mathbf{V} \{C_k \mid p \ge k \ge n\}) = \mathbf{V} \{\lambda(C_k) \mid k \ge n\}.$$

By the same reasoning we get that

$$\lambda(\bigwedge D_n) = \bigwedge \{\lambda(C_k) \mid k \geq n\}$$
.

Now $C = \bigwedge D_n \in \mathscr{C}$ and $f = \lim \lambda(C_k) = \lim \sup \lambda(C_k)$. Hence we have

that $f = \lambda(C)$. This proves that λ maps $\mathscr C$ onto a sequentially closed subalgebra of $B(\mathscr A)$ containing the characteristic functions of all open sets. Hence $\lambda(\mathscr C)$ maps onto $B(\mathscr A)$.

We now show $\lambda(\langle\!\langle \mathscr{S} \rangle\!\rangle P_m)$ is the set of all characteristic functions of Borel sets. However, a proof similar to the one we have already given shows that $\lambda(\langle\!\langle \mathscr{S} \rangle\!\rangle P_m)$ is a σ -complete Boolean algebra of characteristic functions. This Boolean algebra contains all characteristic functions of open sets and hence it coincides with the set of characteristic functions in $B(\widehat{\mathscr{A}})$.

Finally, we show that $\mathscr C$ is the C^* -algebra $\mathscr C_0$ generated by $(\mathscr S)P_m$. Let $f\in B(\mathscr A)$ be real-valued and let n be a natural number. Then there is a partition $\{X_k\,|\,k=0,\,\pm 1,\,\cdots,\,\pm n\}$ of $\mathscr A$ into disjoint Borel sets such that each X_k is contained in the set

$$\{\tau \in \hat{\mathscr{A}} \mid kn^{-1} \mid \mid f \mid \mid \leq f(\tau) \leq (k+1)n^{-1} \mid \mid f \mid \mid \}$$
.

If we set $g_k \in B(\widehat{\mathscr{A}})$ equal to the characteristic function of X_k for every k, we get $||\sum \alpha_k g_k - f|| \le n^{-1}$ for suitable scalars α_k . Because $\sum \alpha_k g_k \in \lambda(\mathscr{C}_0)$ and because λ is an isometry, we get that $f \in \lambda(\mathscr{C}_0)$. Due to the fact λ is a *-isomorphism, we get that $\mathscr{C}_0 = \mathscr{C}$.

For the spectrum of a C^* -algebra we have the following result.

PROPOSITION 4. Let \mathscr{A} be a C^* -algebra, let \mathscr{B} be the enveloping von Neumann algebra of \mathscr{A} , and let \mathscr{F} be the set of open projections of the center \mathscr{Z} of \mathscr{B} . Let \mathscr{A} be the set of equivalence classes of irreducible representations of \mathscr{A} with the hull-kernel topology. Then there is an isomorphism ϕ of the C^* -algebra \mathscr{B} generated by (\mathscr{F}) onto the algebra $B(\mathscr{A})$ of all bounded complex-valued Borel functions on \mathscr{A} such that the image of (\mathscr{F}) is the set of all characteristic functions in $B(\mathscr{A})$. Furthermore, ϕ is continuous in the sense that $\{\phi(A_n)\}$ converges to $\phi(A)$ whenever $\{A_n\}$ is a sequence in \mathscr{B} that converges strongly to A in \mathscr{B} .

Proof. Let P_0 be the least upper bound of all minimal projections Q in \mathscr{Z} such that $\mathscr{B}Q$ is type I. There is an isomorphism ψ of the smallest weakly sequentially closed *-subalgebra \mathscr{D} of $\mathscr{Z}P_0$ containing $\langle\!\langle \mathscr{P} \rangle\!\rangle P_0$ onto $B(\mathscr{L})$ such that $\langle\!\langle \mathscr{P} \rangle\!\rangle P_0$ maps onto the set of all characteristic functions of $B(\mathscr{L})$. Also \mathscr{D} is the C^* -algebra generated by $\langle\!\langle \mathscr{P} \rangle\!\rangle P_0$. This follows in the same way as Proposition 3.

We also have that the map $A \to AP_0$ is a homomorphism of \mathscr{D} onto \mathscr{D} . Setting $\phi(A) = \psi(AP_0)$, we obtain a homomorphism of \mathscr{D} onto $B(\mathscr{D})$ that is continuous in the specified sense.

We show that ϕ is an isomorphism. There is a projection-valued operator γ defined on the Borel sets $S(\mathscr{L})$ of \mathscr{L} such that $\gamma(\{\tau \in \mathscr{L} \mid P^{\sim}(\tau) = 1\}) = P$ for every open projection P ([19, Theorem 1.9], cf. [12, 5, 7, 6]). Identifying the characteristic functions of $B(\mathscr{L})$ with their supports, we get that $\gamma \cdot \psi(PP_0) = P$ for every $P \in \mathscr{P}$ and so $\gamma \cdot \phi(P) = P$ for every $P \in \mathscr{P}$. This means that $\gamma \cdot \phi(P) = P$ for every $P \in \mathscr{P}$. Now suppose $\phi(A) = 0$ for some $A \in \mathscr{P}$. Given $\varepsilon > 0$, there exist orthogonal projections P_1, \dots, P_n in (\mathscr{P}) and positive scalars $\alpha_1, \dots, \alpha_n$ such that $\|\sum \alpha_i P_i - A^*A\| < \varepsilon$. This means that $\|\sum \alpha_i \phi(P_i)\| < \varepsilon$. Since the $\phi(P_i)$ are disjoint characteristic functions, we have that $\phi(P_i) = 0$ for every i with $\alpha_i \geq \varepsilon$. This means $P_i = \gamma \cdot \phi(P_i) = 0$ for all such i. Hence we have that $\|\sum \alpha_i P_i\| < \varepsilon$ and so that $\|A\|^2 = \|A^*A\| < 2\varepsilon$. Since $\varepsilon > 0$ is arbitrary, we have that A = 0. Hence ϕ is an isomorphism.

COROLLARY 5. Let \mathscr{A} be a C^* -algebra, let $\widehat{\mathscr{A}}$ be the spectrum of \mathscr{A} , and let $\widehat{\mathscr{A}}$ be the quasi-spectrum of \mathscr{A} . Suppose that both $\widehat{\mathscr{A}}$ and $\widehat{\mathscr{A}}$ have the hull-kernel topology. Then there is a pointwise continuous isomorphism of the algebra $B(\widehat{\mathscr{A}})$ of bounded Borel functions on $\widehat{\mathscr{A}}$ onto the algebra $B(\widehat{\mathscr{A}})$ of bounded Borel functions on $\widehat{\mathscr{A}}$.

Proof. Let $\mathscr S$ be the set of open projections in the center $\mathscr X$ of the enveloping von Neumann algebra $\mathscr B$ of $\mathscr M$. Let P_0 be the least upper bound of all minimal projections Q in $\mathscr X$ such that $\mathscr BQ$ is type I and let P_m be the least upper bound of all minimal projections in $\mathscr X$. Then the C^* -algebra $\mathscr D$ generated by $(\mathscr P)P_0$ is isomorphic to $B(\mathscr A)$ under a bi-continuous map for the strong and the pointwise topology (Proposition 4), and the C^* -algebra $\mathscr C$ generated by $(\mathscr P)P_m$ is isomorphic to $B(\mathscr A)$ under a bi-continuous map for the strong and pointwise topology (Proposition 3). But the C^* -algebra $\mathscr R$ generated by $(\mathscr P)$ is isomorphic to $\mathscr D$ under the map $A \to AP_0$. Hence the map $A \to AP_0$ is an isomorphism of $\mathscr C$ onto $\mathscr D$. This isomorphism is certainly strongly continuous. Hence, there is a pointwise continuous isomorphism of $B(\mathscr A)$ onto $B(\mathscr A)$.

REMARK. The set of bounded continuous complex-valued functions on $\widehat{\mathscr{A}}$ has been described recently ([5], [13]). Due to the fact that $\widehat{\mathscr{A}}$ need not be separated, the continuous functions do not approximate the Borel functions.

We describe a class of elements that lie in C^* -algebra $\mathscr R$ generated by $\langle\!\langle \mathscr S \rangle\!\rangle$. Let Z be the spectrum of $\mathscr Z$. For every $A \in \mathscr B$ and ζ in Z, let $A(\zeta)$ denote the image of A under the canonical map of $\mathscr B$ onto the algebra $\mathscr B$ reduced modulo the ideal generated by ζ . There is

an element $\psi(A) \in \mathcal{Z}$ such that $\psi(A)^{\hat{}}(\zeta) = ||A(\zeta)||$ for all $\zeta \in Z$. Here $\psi(A)^{\hat{}}(\zeta)$ is the Gelfand transform of $\psi(A)$ evaluated at ζ [18, Lemma 10].

PROPOSITION 6. Let \mathscr{A} be a C^* -algebra, let \mathscr{B} be its enveloping von Neumann algebra, let \mathscr{F} be the set of open projections of the center \mathscr{Z} of \mathscr{B} , and let \mathscr{E} be the uniformly closed *-subalgebra of \mathscr{Z} generated by \mathscr{F} . Then, for every $A \in \mathscr{A}$, the element $\psi(A)$ lies in \mathscr{E} .

Proof. Since $\mathscr E$ is a C^* -algebra and since $\psi(A) = \psi(A^*A)^{1/2}$, it is sufficient to show $\psi(A) \in \mathscr E$ for every A in $\mathscr M^+$. We have that there is a projection P in $\mathscr E$ such that

$$\{\zeta \in Z \mid P^{\hat{}}(\zeta) = 1\} = \operatorname{clos} \{\zeta \in Z \mid \psi(A)^{\hat{}}(\zeta) > 0\}$$

since Z is extremally disconnected. But it is clear that P is an open projection since $\mathscr{B}P$ is the strong closure of the principal ideal generated by A. Now, for any $\alpha > 0$, let f_{α} be the continuous function of a real-variable given by $f_{\alpha}(t) = 0$ if $t \leq \alpha$ and $f_{\alpha}(t) = t - \alpha$ for $t > \alpha$. Then there is an open projection P with

$$\{\zeta \in Z \mid P^{\uparrow}(\zeta) = 1\} = \operatorname{clos} \{\zeta \in Z \mid \psi(f_{\sigma}(A))^{\uparrow}(\zeta) > 0\}$$

and so

$$\{\zeta \in Z \mid P^{\hat{}}(\zeta) = 1\} = \operatorname{clos} \{\zeta \in Z \mid \psi(A)^{\hat{}}(\zeta) > \alpha\}$$
.

Now let n be a natural number. Let $P_k(k=0,1,\dots,n-1)$ be the open projections given by

$$\{\zeta \in Z \mid P_k^{\smallfrown}(\zeta) = 1\} = \operatorname{clos} \{\zeta \in Z \mid \psi(A)^{\smallfrown}(\zeta) > n^{-1}k \mid\mid A\mid\mid \}$$
 .

Let $Q_k = P_{k-1} - P_k$ for $1 \le k \le n-1$ and $Q_n = P_{n-1}$. Then we have that

$$\begin{split} ||\psi(A) - \sum n^{-1}k \, || \, A \, || \, Q_k \, || \\ &= \text{lub} \, \{ | \, \psi(A) \hat{\,\,\,}(\zeta) - \sum n^{-1}k \, || \, A \, || \, Q(\zeta) \, | \, \, | \, \zeta \in Z \} \leqq n^{-1} \, || \, A \, || \, . \end{split}$$

Hence, the element $\psi(A)$ is in \mathscr{E} .

For a separable C^* -algebra, we have a better result. We preserve the same notation as the preceding proposition.

COROLLARY 7. Let \mathscr{A} be a separable C^* -algebra, then the C^* -algebra \mathscr{R} in \mathscr{Z} generated by $\langle\!\langle \mathscr{S} \rangle\!\rangle$ is equal to the weak sequential closure of the C^* -algebra generated by $\{\psi(A) \mid A \in \mathscr{A}\}$.

Proof. Let $P \in \mathcal{I}$ and let \mathcal{I} be an ideal in \mathcal{A} whose strong closure is $\mathcal{I}P$. The ideal \mathcal{I} is a principal ideal generated by an

element A of \mathscr{A} [23, 6.5, Corollary]. This means that P is smallest projection in \mathscr{X} with $P\psi(A) = \psi(A)$. Hence P is in the weak sequential closure \mathscr{R}_0 of the C^* -algebra generated by $\psi(\mathscr{A})$. This proves that $\langle\!\langle \mathscr{P} \rangle\!\rangle$ and thus \mathscr{R} is contained in \mathscr{R}_0 .

Conversely, each element $\psi(A)$ is contained in \mathscr{R} (Proposition 6). Let P_0 be the least upper bound of all projections Q in \mathscr{A} such that $\mathscr{R}Q$ is a type I factor. The map $A \to AP_0$ of the weak sequential closure \mathscr{A} of \mathscr{A} in \mathscr{R} is a weak sequentially continuous isomorphism onto the weak sequential closure of $\mathscr{R}P_0$ [6, Theorem 3.10]. Since $\mathscr{R}_0 \subset \mathscr{A}$ and $\mathscr{R} \subset \mathscr{A}$ and since $\mathscr{R}P_0 = \mathscr{D}$ is weakly sequentially closed (cf. Proposition 4), we may find, for each $A \in \mathscr{R}_0$, a $B \in \mathscr{R}$ such that $AP_0 = BP_0$. This means that A = B. Hence $\mathscr{R}_0 \subset \mathscr{R}$. Thus we get that $\mathscr{R} = \mathscr{R}_0$.

Now let \mathscr{A} be a separable C^* -algebra and let \mathscr{A} be the weak sequential closure of $\mathcal M$ in its enveloping algebra $\mathcal B$. The center $\mathscr{Z}(\mathscr{A}^{\sim})$ is contained in the center \mathscr{Z} of \mathscr{P} . As is pointed out by E. B. Davies (cf. [6, p. 154] for the analogous statement for \mathscr{A}) each open projection in \mathcal{Z} is in $\mathcal{Z}(\mathcal{A}^{\sim})$. This means that $B(\hat{\mathcal{A}})$ is contained in the algebra $\{A \in \mathcal{Z}(\mathcal{N})\} \subset F(\mathcal{N})$. Thus the Davies Borel structures on A (i.e., the weakest Borel structure such that all functions $\{A^{\sim} \mid A \in \mathcal{Z}(\mathcal{A}^{\sim})\}\$ are Borel on \mathcal{A}) is finer than the structure $S(\mathcal{A})$ induced by the hull-kernel topology. In fact the Davies Borel structure separates points whereas the Borel structure $S(\mathcal{A})$ does not in certain cases (for example, a separable uniformly hyperfinite C^* -algebra). The C^* -algebra \mathscr{R} generated by the Boolean σ -algebra $\langle \mathscr{S} \rangle$ is contained in $\mathscr{Z}(\mathscr{N})$. In order that $\mathscr{Z}(\mathscr{N}) = \mathscr{R}$, a necessary and sufficient condition is that the Davies and hull-kernel Borel structure on Â coincide. Now, if \mathcal{A} is a GCR algebra, then all the Borel structures on \mathscr{A} coincide [12, 3.8.3] and so $\mathscr{Z}(\mathscr{A}) = \mathscr{R}$. We note that a special case of this result is mentioned by Glimm [19, p. 899]. Conversely, if the Davies and the hull-kernel Borel structure coincide on Â, then \mathscr{A} is GCR. Indeed, it is sufficient to show that two irreducible representations ρ_1 and ρ_2 with the same kernels are equivalent [20]. It is this result, which is unavailable in the nonseparable case, that Digernes [9] used to characterize a separable GCR algebra. We have that $P^{*}([\rho_{1}]) = P^{*}([\rho_{2}])$ for every open projection P in \mathcal{Z} . Indeed, if \mathscr{I} is an ideal in \mathscr{A} whose strong closure is $\mathscr{B}P$, then $P^{*}([\rho_{i}])=0$ if and only if \mathscr{I} is contained in the kernel of ρ_i . But this means that $P^{\sim}([\rho_1]) = P^{\sim}([\rho_2])$ for all P in $\langle \mathcal{P} \rangle$ and thus the Davies Borel structure fails to separate $[\rho_1]$ and $[\rho_2]$. This implies that $[\rho_1] = [\rho_2]$ [8, Theorem 2.9]. Hence the algebra \mathcal{A} is GCR. It is to be noted that Effros [15] proved that A is GCR if and only if the Mackey and

Davies Borel structure coincides on Â.

We now examine the hull-kernel topology of the quasi-spectrum more closely. We show that this topology is induced by the canonical mapping of the factor states into the quasi-spectrum.

Let \mathscr{M} be a C^* -algebra and let f be a state of \mathscr{M} . Let L(f) be left ideal of \mathscr{M} given by $L(f) = \{A \in \mathscr{M} \mid f(A^*A) = 0\}$, let H(f) be the completion of the residue class $\mathscr{M} - L(f)$ with the inner product $(A - L(f), B - L(f)) = f(B^*A)$, and let ρ_f be the (nondegerate) representations of \mathscr{M} on the Hilbert space H(f) induced by left multiplication of \mathscr{M} on $\mathscr{M} - L(f)$. The representation ρ_f is called the canonical representation of \mathscr{M} induced by f. There is a cyclic unit vector x_f under $\rho_f(\mathscr{M})$ for H(f) (equal to 1 - L(f) if \mathscr{M} has identity 1 or equal to $\lim_{x_f} A_n - L(f)$ if $\{A_n\}$ is an increasing approximate identity in the positive part of the unit sphere of \mathscr{M} if \mathscr{M} has no identity) such that $\omega_{x_f} \cdot \rho_f(A) = (\rho_f(A)x_f, x_f) = f(A)$ for all $A \in \mathscr{M}$. The state f is called a factor (or primary) state if ρ_f is a factor representation of \mathscr{M} . Let $\mathscr{M}(\mathscr{M})$ be the space of all factor states of \mathscr{M} with its relativized w^* -topology. We write $f \sim g$ for f, g in $\mathscr{M}(\mathscr{M})$ to denote $\rho_f \sim \rho_g$.

Now suppose that \mathcal{A} is a C^* -algebra without an identity. Then an identity 1 may be adjoined to \mathcal{A} to obtain a C^* -algebra \mathcal{A}_* with identity so that \mathcal{M} is a maximal ideal of \mathcal{M}_e (cf. [12, 1.2.3]). Each state f on \mathcal{A} has a unique extension f_e to a state of \mathcal{A}_e obtained by setting $f_{\epsilon}(1) = 1$. The Hilbert spaces H(f) and $H(f_{\epsilon})$ can be identified with each other so that ρ_{f_e} restricted to \mathscr{A} is precisely ρ_f . Further more, the identity of \mathcal{N}_e gets carried into the identity operator on H(f)(cf. [12, 2.1.4]). Therefore, the state f_e is a factor state if and only if f is. Furthermore, if f and g are factor states of \mathcal{A} , then $f \sim g$ if and only if $f_{\scriptscriptstyle e} \sim g_{\scriptscriptstyle e}$. Now let $f_{\scriptscriptstyle 0}$ be the unique factor state of $\mathscr{N}_{\scriptscriptstyle e}$ that vanishes on \mathcal{A} . If f be a factor state of \mathcal{A}_e not equal to f_0 , then the ideal $\rho_f(\mathcal{A})$ of $\rho_f(\mathcal{A}_e)$ is nonzero and therefore is strongly dense in $\rho_f(\mathcal{A}_e)$ (cf. [11]). For any $\varepsilon > 0$ there is a net $\{B_n\}$ in \mathcal{A} with $||B_n|| \le 1 + \varepsilon$ such that $\{\rho_f(B_n)\}$ converges strongly to the identity [22]. Hence, the restriction g of f to \mathcal{A} has norm not less than $(1 + \varepsilon)^{-1}$ since

$$egin{aligned} ||\,g\,|| &\geq (1+arepsilon)^{-1} \lim\sup|\,g(B_{\it n})\,| \ &= (1+arepsilon)^{-1} \lim\sup|\,(
ho_{\it f}(B_{\it n})x_{\it f},\,x_{\it f})\,| \geq (1+arepsilon)^{-1} \;. \end{aligned}$$

Therefore, g is a factor state of \mathscr{A} with $g_e = f$. This means that the map e of $\mathscr{F}(\mathscr{A})$ into $\mathscr{F}(\mathscr{A}_e)$ defined by $e(f) = f_e$ is a one-to-one map of $\mathscr{F}(\mathscr{A})$ onto $\mathscr{F}(\mathscr{A}_e) - \{f_0\} = \mathscr{F}'(\mathscr{A}_e)$.

It is clear that e is a continuous map $\mathscr{F}(\mathscr{A})$ into $\mathscr{F}(\mathscr{A}_e)$. Furthermore, if \mathscr{V} is open in $\mathscr{F}(\mathscr{A})$, then $e(\mathscr{V})$ is relatively open in

 $\mathcal{F}'(\mathcal{A}_e)$. Since $\mathcal{F}'(\mathcal{A}_e)$ is open in $\mathcal{F}(\mathcal{A}_e)$, we may conclude that $e(\mathcal{V})$ is open in $\mathcal{F}(\mathcal{A}_e)$. So the map e is also an open map.

We now prove that quasi-equivalence is an open relation in the space $\mathscr{F}(\mathscr{A})$ by showing the *saturation* \mathscr{X} of an open subset \mathscr{X} of $\mathscr{F}(\mathscr{A})$ given by $\mathscr{X} = \{ f \in \mathscr{F}(A) \mid f \sim g \in \mathscr{X} \}$ is open.

LEMMA 8. The saturation under the relation of quasi-equivalence of an open subset of the space of factor states of a C*-algebra is open.

Proof. Let \mathscr{V} be an open subset of the space $\mathscr{J}(\mathscr{A})$ of factor states of the C^* -algebra \mathscr{A} . We assume that \mathscr{A} has an identity, and later we remove this assumption. Let g be a factor state in the saturation \mathscr{V}^{\sim} of \mathscr{V} . We construct a neighborhood \mathscr{W} of g such that $\mathscr{W} \subset \mathscr{V}^{\sim}$. There is an element $h \in \mathscr{V}$ with $g \sim h$. There are elements C_1, C_2, \cdots, C_n in \mathscr{A} and a δ with $0 < \delta < 1$ such that

$$\{f \in \mathscr{F}(\mathscr{A}) \mid |f(C_i) - h(C_i)| < \delta, i = 1, \dots, n\}$$

is contained in \mathscr{C} . Without loss of generality we may assume that $C_1=1$. Due to the fact that $g\sim h$, there is an isomorphism ϕ of the von Neumann algebra $\rho_g(\mathscr{A})''$ generated by $\rho_g(\mathscr{A})$ on H(g) onto the von Neumann algebra $\rho_h(\mathscr{A})''$ generated by $\rho_h(\mathscr{A})$ on H(h) such that $\phi(\rho_g(\mathscr{A}))=\rho_h(\mathscr{A})$ for every $A\in\mathscr{A}$ (cf. [12, § 5]). Since an isomorphism of von Neumann algebras is σ -weakly continuous, [14, I, § 4, Theorem 2, Corollary 1], the functional $\omega_{x_h}\cdot\phi$ is a σ -weakly continuous state of $\rho_g(\mathscr{A})''$ such that $\omega_{x_h}\cdot\phi\cdot\rho_g=h$. This means that there is a sequence $\{x_i\}$ in H(g) such that $\sum ||x_i||^2<+\infty$ and such that $\sum \omega_{x_i}=\omega_{x_h}\cdot\phi$ on $\rho_g(\mathscr{A})''$ [14, I, § 3, Theorem 2]. Setting $\gamma=\delta(6\max\{||C_i|||1\leq i\leq n\})^{-1}$, we may find a natural number m such that

(3)
$$||\sum \{\omega_{x_i}| m+1 \leq i < +\infty\}|| < \eta$$
.

Since each x_i lies in the closure of $\rho_g(\mathscr{A})x_g$, there are A_1, A_2, \dots, A_m in \mathscr{A} such that the vectors $\rho_g(A_i)x_g = y_i$ in H(g) satisfy

$$||\omega_{x_s} - \omega_{y_s}|| < m^{-1} \eta$$

for $i = 1, \dots, m$.

Now let $\varepsilon = m^{-1}\eta$. We show every f in the neighborhood \mathscr{W} of g given by

$$\mathscr{W} = \{ f \in \mathscr{F}(\mathscr{A}) \mid |f(A_i^*C_jA_i) - g(A_i^*C_jA_i)| < \varepsilon$$
 for all $i = 1, \dots, m; j = 1, \dots, n \}$

is contained in \mathscr{V}^{\sim} . Setting f' equal to

$$f'(A) = \sum \{f(A_i^* A A_i) \mid 1 \le i \le m\}$$

for all $A \in \mathcal{A}$, we obtain a positive functional on \mathcal{A} whose norm is given by $||f'|| = f'(1) = \sum_i f(A_i^*A_i)$. Because $C_1 = 1$, we get

$$|f'(1) - \sum g(A_i^*A_i)| \leq \sum |f(A_i^*A_i) - g(A_i^*A_i)| < \eta$$
.

But we have that

$$egin{aligned} |\sum g(A_i^*A_i) - 1| &= |\sum g(A_i^*A_i) - \sum \omega_{x_i}(1)| \ &= |\sum \{\omega_{y_i}(1) \, | \, 1 \leq i \leq m\} - \sum \{\omega_{x_i}(1) \, | \, 1 \leq i < + \infty\} \, | \ &\leq \sum \{|||\, \omega_{y_i}\,|| - ||\, \omega_{x_i}\,||| \, | \, 1 \leq i \leq m\} \ &+ ||\sum \{\omega_{x_i} \, | \, m+1 \leq i < + \infty\} \, || < 2\eta \end{aligned}$$

by relations (3) and (4). This means that

$$|f'(1) - 1| < 3\eta < 1$$
.

Hence, we have $f'(1) \neq 0$. Setting f'' = f'/||f'||, we obtain a state f'' of \mathscr{A} such that $f'' \sim f$ ([4] and [12, 5.3.6]).

We shall now show that $f'' \in \mathcal{V}$. First we have that

$$|f'(C_i)| \le f'(1)^{1/2} f'(C_i^*C_i)^{1/2} \le f'(1) ||C_i||$$

for all $i = 1, \dots, m$. By relation (5) this yields

(6)
$$|f'(C_i) - f''(C_i)| = |1 - f'(1)| f'(1)^{-1} |f'(C_i)| \le |1 - f'(1)| ||C_i|| < \delta/2,$$

for every $i = 1, \dots, n$. Furthermore, for all i, we get

$$| f'(C_{i}) - h(C_{i}) |$$

$$\leq \sum \{ | f(A_{j}^{*}C_{i}A_{j}) - g(A_{j}^{*}C_{i}A_{j}) | | 1 \leq j \leq m \}$$

$$+ \sum \{ | \omega_{y_{j}}(\rho_{g}(C_{i})) - \omega_{x_{j}}(\rho_{g}(C_{i})) | | 1 \leq j \leq m \}$$

$$+ | \sum \{ \omega_{x_{j}}(\rho_{g}(C_{i})) | m + 1 \leq j < + \infty \} |$$

$$< m\varepsilon + \eta || C_{i} || + \eta || C_{i} || \leq \delta/2$$

by relations (3) and (4). Combining (6) and (7), we obtain

$$|f''(C_i) - h(C_i)| \le |f''(C_i) - f'(C_i)| + |f'(C_i) - h(C_i)| < \delta/2 + \delta/2 = \delta$$

for all $i = 1, \dots, n$. This proves that $f'' \in \mathcal{V}$. Hence, the lemma is true for C^* -algebras with identity.

Suppose \mathscr{A} is a C^* -algebra without identity. Let \mathscr{A}_e be the C^* -algebra obtained from \mathscr{A} by adjoining the identity. We use the notation developed in the paragraph preceding this lemma. If \mathscr{V} is an open subset of $\mathscr{F}(\mathscr{A})$, then $e(\mathscr{V})$ is open in $\mathscr{F}(\mathscr{A}_e)$. But the

saturation $e(\mathcal{V})^{\sim}$ of $e(\mathcal{V})$ in $\mathscr{F}(\mathscr{N}_e)$ is $e(\mathcal{V}^{\sim})$. By the first part of the proof $e(\mathcal{V})^{\sim}$ is open. Thus the set $\mathscr{V}^{\sim} = e^{-1}(e(\mathcal{V})^{\sim}) = e^{-1}(e(\mathcal{V}^{\sim}))$ is open in $\mathscr{F}(\mathscr{A})$.

PROPOSITION 9. Let \mathscr{A} be a C^* -algebra. The map $f \to [\rho_f]$ is a continuous open mapping of the space $\mathscr{F}(\mathscr{A})$ of factor states of \mathscr{A} onto the quasi-spectrum \mathscr{A} of \mathscr{A} with its hull-kernel topology.

Proof. Let ϕ denote the map $f \to [\rho_f]$. Let ρ be any nondegenerate factor representation of $\mathscr M$ on a Hilbert space H. There is a unit vector $x \in H$ such that $f(A) = (\rho(A)x, x)$ is a state of $\mathscr M$. There is an isometric isomorphism U of H(f) onto the invariant subspace $K = \text{closure } \rho(\mathscr M)x$ of H defined by $U(A - L(f)) = \rho(A)x$ that carries ρ_f onto the subrepresentation $\rho \upharpoonright K$ of ρ . Since $[\rho \upharpoonright K] = [\rho]$ [12, 5.3.5], we get that $[\rho_f] = [\rho]$. Hence, the image of ϕ is equal to $\widehat{\mathscr M}$.

Now let $\{f_n\}$ be a net in $\mathscr{F}(\mathscr{S})$ that converges to f in the w^* -topology. Let X be an open subset of \mathscr{S} containing $[\rho_f]$. There is an ideal \mathscr{F} in \mathscr{S} with $X = \{\tau \in \mathscr{S} \mid \ker \tau \not\supset \mathscr{F}\}$. This mean there is an $A \in \mathscr{F}$ such that $f(A) \neq 0$. There is an n_0 such that $f_n(A) \neq 0$ whenever $n \geq n_0$. Hence, the classes $[\rho_{f_n}]$ are in X whenever $n \geq n_0$. This means $\{[\rho_{f_n}]\}$ converges to $[\rho_f]$. Thus ϕ is continuous.

For the proof that ϕ is an open map, we consider two cases: (1) \mathcal{A} has an identity, and (2) \mathcal{A} has no identity. First assume \mathcal{A} has an identity. Let \mathscr{V} be an open subset of $\mathscr{F}(\mathscr{A})$. $\phi(\mathscr{V})$ open in $\widehat{\mathscr{A}}$. By Lemma 8, we may assume that \mathscr{V} is saturated. The complement \mathcal{W} of \mathcal{V} in $\mathcal{F}(\mathcal{A})$ is also saturated. It is sufficient to show that $\phi(\mathcal{W})$ is closed in $\widehat{\mathcal{A}}$ since $\phi(\mathcal{W}) = \widehat{\mathcal{A}} - \phi(\mathcal{V})$. In fact, we shall show that $\phi(\mathcal{W}) = \{\tau \in \hat{\mathcal{A}} \mid \ker \tau \supset \mathcal{J}\}$, where $\mathcal{J} =$ \bigcap {ker $\rho_f \mid f \in \mathcal{W}$ }. First it is clear that $\phi(\mathcal{W}) \subset \{\tau \in \widehat{\mathcal{A}} \mid \ker \tau \supset \mathcal{J}\}$. Conversely, let f be a pure state in $\mathscr{F}(\mathscr{A})$ with ker $\rho_f \supset \mathscr{I}$. Then there is a net $\{f_i\}$ in \mathcal{W} and unit vectors $x_i \in H(f_i)$ for each i such that $f = \lim \omega_{x_i} \cdot \rho_{f_i}$ in the ω^* -topology ([16], cf. [12, 3.4.2 (ii)]). However, each state $g_i = \omega_{z_i} \cdot \rho_{f_i}$ is a factor state of ${\mathscr M}$ and is thus quasiequivalent to f_i ([4] and [12, 5.3.5]). This means that $g_i \in \mathcal{W}$, and therefore, that the limit f of the net $\{g_i\}$ is in \mathcal{W} . Hence the set $\phi(\mathscr{W})$ contains $[\rho_f]$ whenever f is a pure state with ker $\rho_f \supset \mathscr{I}$. Now let f be an arbitrary factor state of \mathscr{A} with ker $\rho_f \supset \mathscr{I}$. Then we have that $\mathscr{J} = \ker \rho_f$ is a prime ideal containing \mathscr{I} (cf. introductory paragraphs of § 3). Let g be the state of the C*-algebra $\mathcal{A}/\mathcal{I} = \mathcal{C}$ given by $g(A + \mathcal{J}) = f(A)$. Let \mathcal{K}' be the maximal GCR ideal of \mathscr{C} . First we assume that $\mathscr{K}' = (0)$, i.e., \mathscr{C} is an NGCR algebra. Then the state space and the pure state space of & coincide [25, Theorem 2]. There is a net $\{g_i\}$ of pure states of \mathscr{C} that converges

in the w^* -topology to g. Setting $f_i(A) = g_i(A + \mathcal{J})$ for all $A \in \mathcal{A}$, we get a net $\{f_i\}$ of pure states in \mathcal{A} that converges to f in the w^* -topology. Since each $f_i \in \mathcal{W}$ by the first part of the proof, we get $f \in \mathcal{W}$ and thus $[\rho_f] \in \phi(\mathcal{W})$. Now let $\mathcal{K}' \neq (0)$. We then have that the representation ho_g of $\mathscr C$ is quasi-equivalent to an irreducible representation. Indeed, we have that $\rho_q(\mathcal{K}')x_q$ is dense in H(g) since ρ_q is a factor representation of \mathscr{C} . But the von Neumann algebra $\rho_{\mathfrak{g}}(\mathscr{K}')''$ generated by $\rho_q(\mathcal{K}')$ on H(g) is a type I algebra (cf. [12, 5.5.2]). This means that $\rho_{\sigma}(\mathcal{K}')''$ has a nonzero abelian projection E. However, the projection E is also an abelian projection for the von Neumann algebra generated by $\rho_{\mathfrak{g}}(\mathscr{A}/\mathscr{J})$. Hence $\rho_{\mathfrak{g}}$ is quasi-equivalent to an irreducible representation (cf. [12, 5.4.11]). Since the representation ho of ${\mathscr M}$ defined by $ho(A)=
ho_{\mathfrak g}(A+{\mathscr J})$ is unitarily equivalent to $ho_{\mathfrak f},$ we see that ρ_f is quasi-equivalent to an irreducible representation. So there is a pure state h of \mathcal{A} such that $h \sim f$. This means that $[\rho_f] = [\rho_h]$ is in $\phi(\mathscr{W})$. This completes the proof that $\phi(\mathscr{W})$ is closed. Hence, the map ϕ is an open map.

Now suppose that \mathscr{A} does not have an identity. Let \mathscr{K}_{ϵ} be the C^* -algebra obtained from \mathscr{A} by the adjunction of the identity. Let ϕ' be the map of $\mathscr{F}(\mathscr{K}_{\epsilon})$ onto \mathscr{N}_{ϵ} given by $\phi'(f) = [\rho_f]$. Let \mathscr{V} be open in $\mathscr{F}(\mathscr{M})$. By using Lemma 8, we may assume that \mathscr{V} is saturated. We have that $e(\mathscr{V})$ is an open saturated set in $\mathscr{F}(\mathscr{K}_{\epsilon})$, whose image $\phi'(e(\mathscr{V}))$ is an open subset in \mathscr{N}_{ϵ} . There is an ideal \mathscr{F} in \mathscr{N}_{ϵ} with $\phi'(e(\mathscr{V})) = \{\tau \in \mathscr{N}_{\epsilon} \mid \ker \tau \not\supset \mathscr{F}\}$. We show that $\phi(\mathscr{V}) = \{\tau \in \mathscr{N} \mid \ker \tau \not\supset \mathscr{F} \cap \mathscr{M}\}$. Indeed, let $f \in \mathscr{F}(\mathscr{M})$ and let e(f) = g. If $f \in \mathscr{V}$, then $\ker \rho_g \not\supset \mathscr{F}$ and so there is an $A \in \mathscr{F}$ with $g(A) \not= 0$. If $\{A_n\}$ is an increasing approximate identity in the unit sphere of \mathscr{K} , we have that $\lim f(A_nA) = \lim g(A_nA) = g(A)$ because $A_nA \in \mathscr{F} \cap \mathscr{A}$ for all n. This means that $\ker [\rho_f] \not\supset \mathscr{F} \cap \mathscr{K}$. Conversely, if $\ker [\rho_f] \not\supset \mathscr{F} \cap \mathscr{K}$, then $f(\mathscr{F} \cap \mathscr{K}) \not= 0$ and so $\ker [\rho_g] \not\supset \mathscr{F}$. There is an $h \in \mathscr{V}$ such that $e(h) \sim g$. This implies that $h \sim f$ and $[\rho_f] \in \phi(\mathscr{V})$. So $\phi(\mathscr{V}) = \{\tau \in \mathscr{A} \mid \ker \tau \not\supset \mathscr{F} \cap \mathscr{A}\}$.

We can interpret Proposition 9 in terms of representations. An infinite dimensional Hilbert space H is said to have sufficiently high dimension for the factor states of \mathscr{A} , if there is a faithful representation ρ_0 of \mathscr{A} on H such that, for any factor state f of \mathscr{A} , there is a unit vector $x \in H$ with $f = \omega_x \cdot \rho_0$. Now let H be a Hilbert space of sufficiently high dimension. (If \mathscr{A} is separable, any infinite dimensional space has sufficiently high dimension.) Let $\operatorname{CFac}(\mathscr{A}, H)$ be the family of all representations ρ on H for which there is a unit vector $x \in H$ such that $f = \omega_x \cdot \rho$ is a factor state and such that ρ vanishes on the orthogonal complement of the closure of the linear manifold

 $\rho(\mathscr{A})x$. A topology may be defined on CFac (\mathscr{A}, H) by allowing a net $\{\rho_n\}$ converge to ρ if and only if $\{\rho_n(A)\}$ converges to $\rho(A)$ in the strong topology on H for every $A \in \mathscr{A}$.

PROPOSITION 10. Let \mathscr{A} be a C^* -algebra, let H be a Hilbert space of sufficiently high dimension for the factor representations of \mathscr{A} . Let ψ be the map that carries each $\rho \in \mathrm{CFac}(\mathscr{A}, H)$ into its class $[\rho]$ in $\widehat{\mathscr{A}}$. Then ψ is a continuous open map of $\mathrm{CFac}(\mathscr{A}, H)$ onto $\widehat{\mathscr{A}}$.

Proof. It is clear that ϕ maps CFac (\mathscr{A}, H) continuously onto $\widehat{\mathscr{A}}$.

We show that ψ is an open mapping. Let \mathscr{U} be an open subset of CFac (\mathscr{N}, H) . Using virtually the same proof as K. Bichteler [3, Proposition 2.4(i)], we can find an open subset \mathscr{V} of $\mathscr{I}(\mathscr{M})$ such that $\psi(\mathscr{U}) = \phi(\mathscr{V})$. However, we have shown that $\phi(\mathscr{V})$ is open in \mathscr{A} (Proposition 9). Thus $\psi(\mathscr{U})$ is open in \mathscr{A} and ψ is an open map.

REMARK. An infinite dimensional Hilbert space K is said to have sufficiently high dimension for the irreducible representations of \mathscr{A} if there is a faithful representation ρ_0 of \mathscr{A} on K such that, for every pure state f of \mathscr{A} , there is a unit vector $x \in K$ for which $f = \omega_x \cdot \rho_0$. A space H that has sufficiently high dimension for the factor representations certainly has sufficiently high dimension for the irreducible representations. Then let K have sufficiently high dimension for the irreducible representations. Let $\operatorname{Irr}(\mathscr{A},K)$ be the family of all representations ρ of \mathscr{A} on K for which there is a unit vector x in K such that $\omega_x \cdot \rho$ is a pure state and ρ vanishes on the orthogonal complement of the closure of $\rho(\mathscr{A})x$. Then L. T. Gardner [17] proved $\rho \to [\rho]$ is a continuous open map of $\operatorname{Irr}(\mathscr{A},K)$ onto the spectrum of \mathscr{A} (with the hull-kernel topology). Notice that $\operatorname{Irr}(\mathscr{A},H) \subset \operatorname{CFac}(\mathscr{A},H)$.

We now characterize a GCR algebra in terms of the Borel structure on the quasi-spectrum.

Theorem 11. Let \mathscr{A} be a C^* -algebra. The following are equivalent:

- (1) A is a GCR algebra; and
- (2) every point of the quasi-spectrum \mathscr{A} of \mathscr{A} is a Borel set in the Borel structure induced by the hull-kernel topology.

Proof. (1) \Rightarrow (2). If $\tau \in \mathscr{A}$, let Q be the unique minimal projection of the center \mathscr{X} of the enveloping von Neumann \mathscr{B} algebra of \mathscr{A} such that $Q^{\tilde{}}(\tau) = 1$. By Theorem 2, the projection Q is in the Boolean algebra generated by the open central projections \mathscr{P} of \mathscr{B} . By Proposition 3 we conclude that the characteristic function of the set

- $\{\tau\}$ is in the algebra of bounded Borel function on \mathscr{A} . Hence, the set $\{\tau\}$ is a Borel set of \mathscr{A} .
- $(2) \Rightarrow (1)$. Let Q be an arbitrary minimal projection in \mathscr{Z} . The image of Q under the map λ defined in Proposition 3 is the characteristic function of a point set in \mathscr{A} . If P_m is the least upper bound of the minimal projection of \mathscr{Z} , then $Q \in \langle\!\langle \mathscr{S} \rangle\!\rangle P_m$ (Proposition 3). By Lemma 1 we have that $\mathscr{B}Q$ is type I. Because Q is arbitrary, the algebra \mathscr{A} must be GCR [24].

Added May 1, 1973. For separable C^* -algebra \mathscr{A} , I have proved that the quotient Borel structure on $\widehat{\mathscr{A}}$ induced by the map $f \to [\rho_f]$ of the factor states of \mathscr{A} with the relativized w^* -topology into $\widehat{\mathscr{A}}$ is the Mackey Borel structure of $\widehat{\mathscr{A}}$.

Acknowledgment. The author wishes to thank T. Digernes for discussions concerning the material in § 2.

REFERENCES

- 1. C. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis, 4 (1960), 277-294.
- 2. W. G. Bade, Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc., 89 (1955), 345-360.
- 3. K. Bichteler, A generalization to the nonseparable case of Takesaki's duality theorem for C*-algebras, Invent. Math., 9 (1969), 89-98.
- 4. F. Combes, Représentations d'une C*-algèbre et formes linéaires positives, C. R. Acad. Sci., Paris, **260** (1965), 5993-5996.
- 5. J. Dauns and K. Hofmann, Representation of rings by sections, Mem. Amer. Math. Soc., 83 (1969), 180.
- 6. E. B. Davies, On the Borel structure of C*-algebras, Commun. Math. Phys., 8 (1968), 147-163.
- 7. ———, Decomposition of traces on separable C*-algebras, Quart. J. Math., Oxford (2), 20 (1969), 97-111.
- 8. ———, The structure of Σ^* -algebras, Quart. J. Math., Oxford (2), **20** (1969), 351–366.
- 9. T. Digernes, A new characterization of separable GCR algebras, Proc. Amer. Math. Soc., 36 (1972), 448-450.
- 10. T. Digernes and H. Halpern, On open projections of GCR algebras, Canad. J. Math., 24 (1972), 978-982.
- 11. J. Dixmier, Quasi-dual d'un idéal dans une C*-algèbre, Bull. Sci. Math., (2), 87 (1963), 7-11.
- 12. ——, Les C*-Algèbres et Leurs Représentations, Gauthier-Villars, Paris, 1964.
- 13. ——, Ideal center of a C*-algebra, Duke Math. J., **35** (1968), 375-382.
- 14. ———, Les Algèbres d'Opèrateurs Dans L'Espace Hilbertien, Gauthier-Villars, Paris, 1969.
- 15. E. G. Effros, The canonical measures for a separable C*-algebra, Amer. J. Math., 92 (1970), 56-60.
- 16. J. M. G. Fell, The dual spaces of C*-algebras, Trans, Amer. Math. Soc., 94 (1960), 365-403.

- 17. L. T. Gardner, On the "third definition" of the topology on the spectrum of a C*-algebra, Canad. J. Math., 23 (1971), 445-450.
- 18. J. Glimm, A Stone-Weierstrass Theorem for C*-algebras, Ann. of Math., 72 (1960), 216-244.
- 19. ———, Families of induced representations, Pacific J. Math., **12** (1962), 885-911. 20. ———, Type I C*-algebras, Ann. of Math., (2) **73** (1961), 572-612.
- 21. A. Guichardet, Caractères des algèbres de Banach involututives, Ann. Inst. Fourier (Grenoble), **13** (1963), 1-81.
- 22. I. Kaplansky, A theorem on rings of operators, Pacific J. Math., 1 (1951), 227-232.
- 23. R. T. Prosser, On the ideal structure of operator algebras, Memoirs Amer. Math. Soc., No. 45 (1963), 1-27.
- 24. S. Sakai, On a characterization of type I C*-algebras, Bull. Amer. Math. Soc., 72 (1966), 508-512.
- 25. J. Tomiyama and M. Takesaki, Applications of fibre bundles to certain classes of C*-algebras, Tôhoku Math. J., 13 (1961), 498-523.

Received September 25, 1972. This research was supported by the National Science Foundation.

UNIVERSITY OF CINCINNATI