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OPEN PROJECTIONS AND BOREL STRUCTURES
FOR C*-ALGEBRAS

HERBERT HALPERN

In this paper the relationships existing among the Boolean
o-algebra generated by the open central projections of the
enveloping von Neumann algebra <7 of a C*-algebra %7, the
Borel structure induced by a natural topology on the quasi-
spectrum of %7, and the type of % are discussed. The natural
topology is the hull-kernel topology. It is shown that this
topology is induced by the open central projections and is the
quotient topology of the factor states of % (with the relativized
w*-topology) under the relation of quasi-equivalence. The
Borel field is shown to be Borel isomorphic with the Boolean
o-algebra multiplied by the least upper bound of all minimal
central projections. Finally, it is shown that % is GCR if
and only if the Boolean s-algebra (resp. algebra) contains all
minimal projections in the center of <7, or equivalently, if and
only if every point in the quasi-spectrum is a Borel set.

T. Digernes and the present author [10] showed that .o is CCR
if and only if the open projections are strongly dense in the center of
&#. They also showed that the complete Boolean algebra generated
by the open central projections is equal to the set of all central pro-
jections in <Z whenever .7 is GCR. Recently, T. Digernes [9] obtained
the converse of this result for separable C*-algebras.

2. The Boolean algebra of open projections. Let <& be a von
Neumann algebra with center 2 and let .o~ be a uniformly closed
*-gubalgebra of <Z. A projections P in 2 is said to be open relative
to .o if there is a two-sided ideal _# in .&7 whose strong closure is
ZP. In the sequel all ideals (unless specifically excluded) will be
assumed to be closed two-sided ideals. The definition corresponds to
the definition of Akemann [1, Definition II.1] for C*-algebras with
identity. The set (<7 .o7) of all open central projections of <&
relative to .97 contains 0,1 and the least upper bound (resp. greatest
lower bound) of any (resp. any finite) subset [1, Proposition IL.5,
Theorem I1.7].

Now let <# be the enveloping von Neumann algebra of .o/, The
algebra .o~ will be identified with its embedded image in < In
this case the set Z(Z, &) will be denoted simply by & and the
projection in .&” will be called open projections. The smallest Boolean
algebra (resp. c-algebra) containing & will be denoted by (<) (resp.
().
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Let .o~ be the set of all unitary equivalence classes of irreducible
representations of . The set &7 is called the spectrum of .7, For
every irreducible representation o of .o on the Hilbert space H(p),
let [0] denote the class in . of which o is the representative. If X
is a subset of .57, let (X)) = n{kert|reX}. Here ker t is uniquely
defined by ker z = ker p for per. Then setting X~ = {ce.o7 [ ker 7>
(X)) for X+ @ and @~ = @, we obtain a closure operation .o~ The
topology defined by this closure operation is called the hull-kernel
topology and is the family of subsets of .o/ given by

{fre.os |kerc 5. 7}| 7 is an ideal of .}

(cf. [12, §3]). Let obe a representation of .o and let o~ denote the uni-
que extension of o to a o-weakly continuous representation of <% on H(p)
such that 07 (£#) is the o-weak closure of o(.%7). If Ae 2 and te 7
there is a unique scalar A™(z) such that A™ (7)1, = 07 (4) for all pe~.
Here 1, is the identity operator on H(o). With this notation, the
hull-kernel topology of .7 is given by {{re o7 | P™(7) = 1}| Pe &#}.

Let SO(&/A ) (resp. S(VQ/A’ )) denote the ring (resp. o-ring) generated
by the open subsets of .57 Then there is a projection-valued measure
v of S(.,Q?) onto (7)) such that v({r ¢ 54 | P~(z) =1}) = P ([19, Theorem
1.9], cf. [12, 5.7.6]).

LeEMMA 1. Let .o be a C*-algebra, let <& be the enveloping von
Neumann algebra of &7 and let P be the set of all open projections
of the center Z of <& Lel Q be a minimal projection of % and let
P, be the least upper bounded of all minimal projections of Z.
Then <ZQ s a type I factor whenever Q is in the Boolean o-algebra
()P,

Proof.t If X, and X, are open subsets of &7 with X, D X,, then
(X, — X)) (7)) = (X)) (7) — v(X)"(r) =1 for every te X, — X, and
Y(X, — X)) (t) = 0 for every 7¢ X, — X,. Since every set X in SO(VQ/A)
is the union of a finite number of mutually disjoint sets of the form
X, — X, where X, X, are open in &7 and X,D X, we see that
Y(X)™(z) = 1if and only if e X. Since every element X in S(.&/A ) is
the union of a monotonally increasing sequence of sets {X,} in So(.,Q? ),
we get that v(X)“(c) = 1 for every ze¢ X.

Now there is a set XeS(.7) with ¥(X) P, = Q. If re X then
Q () =1, and s0 0°(Q) = 1 for per. This means that the kernel of o~
is & (1 — Q). Since p is irreducible on .o and since p~(<Z), which is

! This proof was suggested by the referee. My original proof was based on the
results of [10].
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isomorphic to ZQ, is equal to the weak closure of p(.%7"), we conclude
that <ZQ is a type I factor.

The next result characterizes a GCR algebra in terms of the
open central projections of its enveloping algebra.

THEOREM 2. Let 57 be a C*-algebra, let <7 be the enveloping von
Neumann algebra of &7 and let &7 be the set of open projections of
the center 2 of <& Then the following statements are equivalent:

(1) 7 is GCR;

(2) () contains all minimal projections 2 ; and

(3) () contains all mirntmal projections of %

Proof. (1) = (2). We apply the fact that the set of open central
projections in the enveloping von Neumann algebra of a CCR algebra
is strongly dense in the set of central projection [10, Theorem 2].

There is a set {P;|0 <1 = k} of projections in .7 indexed by
the ordinals such that (i) P, =0, P, =1, (i) P; < P;..(2 < k), (iii)
V{P;|i < j} = P; if j is a limit ordinal with § < k; and (iv) &Z; =
B (P;i., — P;) is the strong closure of a CCR ideal 7% in .&7(1 — P)
[10, proof of Theorem 3]. Let @ be a minimal projection in 2~ There
is an ordinal 7 < k such that @ < P;,, — P;. Let ._# be the ideal in
&7 given by . = {Ae v | AP; = A}. Setting 7' ={Aec.v | AQ —
P,) e _#}, we obtain an ideal ._#’ of .o containing .# such that _#'/_#
is isomorphic to .%4. Let p be the unique extension of the represen-
tation A + . — A1 — P)) of _#'/_# onto % to a o-weakly continuous
representation of the enveloping von Neumann algebra & of _#'/_#
onto the strong closure <7, of _% on the subspace of the Hilbert space
of &Z corresponding to the projection 1 — P; (ef. [12, 12.1.5]). Now,
if Pe A(&, *'/.7), we show that o(P) + P;is in & Indeed, there
is an ideal .2 in _#’/_# such that & P is the strong closure of .9~
in & Let . 2" be anidealin _#' with 2" ©._# such that 2%/ = 2%~
Then we have that the strong closure of 2#7'(1 — P;) = o(5%¢7) in
FZ(1 — P;) is equal to o(ZP) = Z,0(P) = & p(P). This means that
the strong closure of 97" in &# is equal to =% (0(P) + P;). Hence
o(P) + P; is in P. Because . % is CCR, the set F(%, ~'/.7) is
strongly dense in the set of central projections of & [10, Theorem 2].
Recalling that o maps the center of & onto the center of <Z; [14, III,
§ 5, Problem 7], we obtain a net {R,} of projections in . which
majorizes P; and is majorized by P,,, and which converges strongly
to P;,, — Q. Since @ is a minimal projection, there is an %, such that
R,Q =0 whenever n =7, This means that the open projection
R = V{R,|n = n,} is majorized by P;,, — @. But it is also clear that
P, — Q< R. Hence, we get that P,,, — @ = R and consequently
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that Qe (Z). .

(2) = (8). Obvious.

(B)=(4). If .o~ is not a GCR algebra, then .o has a type III
factor representation [24]. This means that there is a minimal pro-
jection @ € 2 such that <#Q is a type III factor. This is impossible
by Lemma 1. Hence . is a GCR algebra.

3. Borel structure on the quasi-spectrum. Throughout this sec-
tion let .o~ be a C*-algebra, let <& be the enveloping von Neumann
algebra of .o and let &7 be the set of open projections of the center 2~
of & The weak (resp. strong) topology of subalgebras of <& will
refer to the weak-operator (resp. strong-operator) topology. If o is a
representation of .o on a Hilbert space H(p), let 0~ be the unique
extension of o to a o-weakly continuous representation of <& on H(p)
so that the weak closure of o(.%) is equal to 07 (&) [12, 12.1.5]. If
0 is nondegenerate (i.e., the identity of H(p) lies in the weak closure
of p(.&)), then p(<Z) is the von Neumann algebra generated by o(.&)
[14, I, §3, Theorem 2].

Now two nondegenerate representations o, and o, of %7 are said
to be quasi-equivalent (notation: o,~p,) if o; and o, have the same
kernel. The relation of quasi-equivalence partitions the set of (non-
degenerate) representations of & into quasi-equivalence classes. The
class containing p is denoted by [0]. If p,e[p], then ker p = ker p,
and thus for every class [p], there is a uniquely associated ‘ideal
ker [0] = ker o of & Furthermore, if pis a factor representation of
&7 (i.e., p7(&Z) is a factor von Neumann algebra), then so is every o,
in the class [o] (cf. [12, §5]).

Let .o~ be the set of all quasi-equivalence classes of factor repre-
sentations. The set .o~ is called the quasi-spectrum of &7 If Ae 2
and 7e .57, then there is a unique scalar A~(7) such that p~(4) =
A~ (7)1y, for every per. Here 1y, is the identity operator on H(p).
So every Ac 2 defines a complex-valued function A~ on &7 (cf. [7,
§4]). Now it is clear that the map A— A~ is a bounded *-homomorphism
of 2 into the C*-algebra F (%) of bounded complex-valued functions
on .. For each 7e . there is a unique minimal projection of the
algebra 2~ such that Q7(z) = 1. Conversely, if Q is a minimal pro-
jection of 2 there is a unique 7 e .5 such that @ (z) = 1. Thus there
is a one-to-one map of the set of minimal projections of 2 onto .97
Therefore, if P,, denotes the least upper bound of all minimal projections
in 2, then P, = 1. Furthermore, if .7 is an ideal of .o~ and Pe &
is such that <# P is the strong closure of .7 then

(1) [tress |kertp Fl={tesy |P(r)=1}.
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Now let 7e .7 The ideal ker 7 is a prime ideal in the sense that
ker z contains the intersection of two ideals .” and _# in .o if and
only if it contains one of them. Indeed, if pe[r] and p(”) = (0),
then the strong closure of 07(_#) is 0" (&%); otherwise, 0~ (<Z) would
have a nontrivial center (cf. [11]). There is a net {4,} in . with
lim 0~(A,) = 1 (strongly). Hence, for any Ae_# we have that

0(4) = 0(A4) = lim p™(44,) = lim p(44,) = 0 .

This means p(_#) = (0). Thus ker ¢ is a prime ideal. For any nonvoid
subset X of .o we let #(X) = N{kert|cec X} and we let

X~ = (tev |ker D I(X)} .

Setting @~ = @, we get a unique topology on 7, called the hull-kernel
topology, such that the closure of a subset X of &7 is X (cf. [12, 3.1]).
The hull-kernel topology on .%” generates a Borel structure S(.%) on
S .

Thus the construction of the hull-kernel topology for the quasi-
spectrum is analogous to that of the hull-kernel topology of the spectrum.
We shall see further parallels in Propositions 3 and 9. However, the
greater size of the quasi-spectrum allows us to prove Theorem 11.

PROPOSITION 3. Let &7 be a C*-algebra, let <& be the enveloping
von Neumann algebra of &7, let & be the center of <&, and let P,
be the least upper bound of all minimal projections in 2. Let &
the weak (-operator) sequential closure of the *-subalgebra of % P,
generated by FPP,. Then & is the C*-algebra generated by {FHP,.
Also there is an isomorphism N of & onto the C*-algebra B(.57) of
bounded S(&/ )-Borel functions on the quasi-spectrum S of & such
that the image of {PYP, is the set of all characteristic functions in
B(.s7). Furthermore, the map N s bi-continuous in the sense that
{\MC,)} converges pointwise to MC) if and only if {C,} is a sequence
m & that converges weakly to C.

REMARK. On 2 P, the notions of strong and weak sequential
convergence coincide.

Proof. The restriction » of A — A~ to & is a *-homomorphism of
& into F(xv). If {C,} is a sequence in & that converges weakly to
C, then {C,Q} converges uniformly to CQ for each minimal projection
@ of 27 and so lim M(C,) = MC) in the topology of pointwise conver-
gence of F(.%7). Hence ) is continuous. If MC) = 0 for some Ce &,
then C7(z) =0 forall ze o7 and so CQ = 0 for all minimal projections
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@. This means C = CP, = 0 and so \ is an isomorphism. Clearly,
the inverse is continuous. We also have that

IMC) || = Tub {|MC)()| |77}

(2) = lub{|| CQ|| | @ minimal} = || C||,

for every C e &. Furthermore, the image of &P, under A\ is the set
of all characteristic functions of open subsets of .o~ by relation (1).
Hence A maps the *-algebra generated by 2P, into B(&/ ). By the
continuity of )\ and the norm preserving property (2), the map \ takes
Z into B(.).

Now we show that \ (2°) is sequentially closed in B(.o7). Let {C,}
be a sequence in %~ such that {\(C,)} converges pointwise to a func-
tion fe B(.%7). Since A is a *-isomorphism, we may assume that f
and each C, is self-adjoint. Now if C and D are self-adjoint in &
there is a projection P in & with PC + (1 — P)D = C\/ D in the lattice
of self-adjoint elements in % P,. In fact, the spectral projections
{F(«)} and {F(«)} of C and D respectively are in &. For example, let
« be given and let g, be the function of a real variable given by
9.8)=0if t =z, 9.(t)=1if t £a— n", and g, linear on [a—n™", «a].
Then {g,(C)} is a monotonally increasing sequence in &~ whose least
upper bound is E(«). Let {r,} be an enumeration of the rationals. Then
P is the least upper bound of the sequence of projections {F'(r,)(1—
Etr))|r, <ryn m=1,2 ...}, Indeed, if @ is a minimal projection
with @ < P, then Q < F(r,.) 1 — E(r,)) for some 7, < r,. This means
that Q@ < F(r,) and @ =1 — E(r,), and thus that DQ <7,Q < r,Q <
CQ. Conversely, let @ be a minimal projection with DQ < CQ. Then
there are », and r, with DQ < r,Q < 7, < CQ. This means that
Q< F(r,)A — E(r,)). Since P, is the least upper bound of minimal
projections, the projection P satisfies the requirements. We notice that
MC V D) = MCP) + M(1 — P)D) = NMC) V MD) since \ preserves order
and since M(P) and A1 — P) are characteristic functions of disjoint sets
whose union is .97 The analogous statements hold for C A D. These
facts allow us to assume that {C,} is bounded since we may replace
each C, by C,A | f1| Pn. Nowlet D, = V{C,|k = n}. We have that
D, lies in & since D, is the strong limit of the sequence {V {C,|p =
k= =n}} in & Since ) is continuous, we get that

MD,) =lim MV (Cilpzk=n}) =V {MC)Ek=n}.
By the same reasoning we get that

MA D)= AVIMC) | b =n}.

Now C= A D,e% and f = lim \(C,) = lim sup M(C,). Hence we have
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that f = A(C). This proves that A maps & onto a sequentially closed
subalgebra of B(7) containing the characteristic functions of all open
sets. Hence \(Z°) maps onto B(.¥).

We now show M{P)P,) is the set of all characteristic functions
of Borel sets. However, a proof similar to the one we have already
given shows that M({&?)P,,) is a o-complete Boolean algebra of charac-
teristic functions. This Boolean algebra contains all characteristic
functions of open sets and hence it coincides with the set of charac-
teristic functions in B(.%7).

Finally, we show that & is the C*-algebra %; generated by
(ZPYP,. Let fe B(.7) be real-valued and let # be a natural number.
Then there is a partition {X; |k = 0, £1, -+, +n} of .o into disjoint
Borel sets such that each X, is contained in the set

fress [kn || fIl Sf@) =+ Dn7 [ £11}

If we set g, € B(.7) equal to the characteristic function of X, for every
k, we get |[|[Sa.g, — f|| <n* for suitable scalars «,. Because
Y, a9, € M(F,) and because A is an isometry, we get that fe\(Z&).
Due to the fact \ is a *-isomorphism, we get that &; = &

For the spectrum of a C*-algebra we have the following result.

PROPOSITION 4. Let .7 be a C*-algebra, let <& be the enveloping
von Neumann algebra of .7, and let &P be the set of open projections
of the center 2 of <& Let &7 be the set of equivalence classes of
trreducible representations of 7 with the hull-kernel topology. Then
there is an isomorphism ¢ of the C*-algebra #Z gemerated by ()
onto the algebra B(‘,Q/;) of all bounded complex-valued Borel fumnc-
tions on S such that the image of (P 1is the set of all characteristic
Sunctions in B(.,Q?). Furthermore, ¢ is continuous in the sense that
{#(A,)} converges to ¢(A) whenever {A,} is a sequence in P that
converges strongly to A in .

Proof. Let P, be the least upper bound of all minimal projections
Q in 2 such that &#Q is type I. There is an isomorphism + of the
smallest weakly sequentially closed *-subalgebra & of 2 P, containing
{FYP, onto B(.,Q/A) such that {<”)P, maps onto the set of all charac-
teristic functions of B(.%). Also <7 is the C*-algebra generated by
{&#)P,. This follows in the same way as Proposition 3.

We also have that the map A — AP, is a homomorphism of .2
onto . Setting ¢(A) = v(4P,), we obtain a homomorphism of &
onto B(.,Q/A) that is continuous in the specified sense.
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We show that ¢ is an isomorphism. There is a projection-valued
operator v defined on the Borel sets S(&/A ) of . such that v({r e
&/?] P(r) = 1}) = P for every open projection P ([19, Theorem 1.9],
cf. [12, 5.7.6]). Identifying the characteristic functions of B(.o7 ) with
their supports, we get that v.-y(PP,) = P for every Pe.Z” and so
v-¢(P) = P for every Pe .. This means that v-¢(P)= P for every
Pe (). Now suppose ¢(A) =0 for some Ac & Given ¢ >0, there
exist orthogonal projections P,,- - -, P, in {.Z”)) and positive scalars «,, - - -,
a, such that || 3 a,P; — A*A|| <e. This means that || > a;8(P;) || <e.
Since the ¢(P;) are disjoint characteristic functions, we have that
#(P;) = 0 for every 7 with «; =¢. This means P; = v-¢(P;) = 0 for
all such 4. Hence we have that || > a;P;|| < e and so that || 4| =
|| A*A |l < 2. Since ¢ > 0 is arbitrary, we have that A = 0. Hence
¢ is an isomorphism.

COROLLARY 5. Let .7 be a C*-algebra, let &7 be the spectrum
of .7, and let .o7 be the quasi-spectrum of .57 Suppose that both &7
and o7 have the hull-kernel topology. Then there is a pointwise con-
tinuous isomorphism of the algebo‘a B(.%7) of bounded Borel funcmons
on .7 onto the algebra B(&/ ) of bounded Borel functions on YA

Proof. Let .Z7 be the set of open projections in the center 2 of
the enveloping von Neumann algebra <& of .92 Let P, be the least
upper bound of all minimal projections @ in 2" such that <ZQ is type 1
and let P, be the least upper bound of all minimal projections in 27
Then the C*-algebra < generated by ()P, is isomorphic to B(JQ/A )
under a bi-continuous map for the strong and the pointwise topology
(Proposition 4), and the C*-algebra & generated by ()P, is iso-
morphic to B(&/ ) under a Dbi-continuous map for the strong and
pointwise topology (Proposition 3). But the C*-algebra <2 generated
by (<7) is isomorphic to < under the map A — AP, Hence the
map A — AP, is an isomorphism of 2 onto <. This isomorphism is
certainly strongly continuous. Hence, there is a pointwise continuous

isomorphism of B(.o7) onto B(&? ).

REMARK. The set of bounded continuous complex-valued functions
on .o has been described recently ([5], [13]). Due to the fact that
.o~ need not be separated, the continuous functions do not approximate
the Borel functions.

We describe a class of elements that lie in C*-algebra .&# generated
by (7). Let Z be the spectrum of 2. For every Ae .2z and { in
Z, let A({) denote the image of A under the canonical map of <% onto
the algebra <# reduced modulo the ideal generated by {. There is
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an element 4(A4) € 2 such that y(A4)"({) = || A({)|| for all {c Z. Here
P (A)"(Q) is the Gelfand transform of +(A) evaluated at { [18, Lemma
10].

PROPOSITION 6. Let . be a C*-algebra, let <& be its enveloping
von Neumann algebra, let P be the set of open projections of the
center & of B, and let & be the uniformly closed *-subalgebra of %
generated by P. Then, for every A€ .7, the element +(A) lies in &.

Proof. Since & is a C*-algebra and since (4) = (A*A4)"?, it is
sufficient to show 4(4)e & for every 4 in .%7*. We have that there
is a projection P in 2 such that

{£eZ| P7(Q) = 1} = clos {Ce Z |y (4)(5) > 0}

since Z is extremally disconnected. But it is clear that P is an open
projection since <Z P is the strong closure of the principal ideal gener-
ated by A. Now, for any a > 0, let f, be the continuous function of
a real-variable given by f.(t) =0 if ¢t £ a and f.(t) =t — « for ¢t > a.
Then there is an open projection P with

{Ce Z| P(Q) = 1} = clos{le Z|y(f.(A4)) () > 0}
and_ )

{eZ|P7(0) =1} = clos {e Z|y(A)({) > a} .
Now let # be a natural number. Let Py(k=0,1, ---, n — 1) be the
open projections given by

{eZ| P70 =1} = clos{Ce Z|y(A) () > nk|[ All} -

Let Q.= P,_,— P, for1<k<mn-1and @, = P,_,. Then we have
that
[[¥(A) — 207k || Al Q|
= lub {[ y(4)°(0) — 27k 1A Q)| [LeZ} =n [ All .

Hence, the element (4) is in .

For a separable C*-algebra, we have a better result. We preserve
the same notation as the preceding proposition.

COROLLARY 7. Let &7 be a separable C*-algebra, then the C*-
algebra # in 2 generated by () is equal to the weak sequential
closure of the C*-algebra gemerated by {y(4)|Ae '}

Proof. Let Pe & and let .# be an ideal in .o whose strong
closure is <#P. The ideal .# is a principal ideal generated by an
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element A of .o [23, 6.5, Corollary]. This means that P is smallest
projection in 2~ with Pyr(A) = ++(A). Hence P is in the weak sequential
closure =2, of the C*-algebra generated by +(.%7). This proves that
(<) and thus &2 is contained in %,

Conversely, each element ++(A4) is contained in % (Proposition 6).
Let P, be the least upper bound of all projections @ in .&” such that
ZQ is a type 1 factor. The map A — AP, of the weak sequential
closure .~ of & in <7 is a weak sequentially continuous isomor-
phism onto the weak sequential closure of .o~ P, [6, Theorem 3.10].
Since ., C .7~ and & C . and since Z#P, = & is weakly sequen-
tially closed (cf. Proposition 4), we may find, for each Ac <%, a Be &
such that AP, = BP,. This means that A = B. Hence & cC .
Thus we get that &2 = A#,.

Now let .7 be a separable C*-algebra and let .o~ be the weak
sequential closure of .%7 in its enveloping algebra <# The center
2 (") is contained in the center 2~ of &2 As is pointed out by
E. B. Davies (cf. [6, p. 154] for the analogous statement for .57) each
open projection in 2 isin 2°(.57"~). This means that B(.%) is contained
in the algebra {4~ |A e 2°(. ")} C F(.57). Thus the Davies Borel struc-
tures on A (i.e., the weakest Borel structure such that all functions
{A~ | Ae 27 (77)} are Borel on .%) is finer than the structure S(.%7)
induced by the hull-kernel topology. In fact the Davies Borel structure
separates points whereas the Borel structure S(.%) does not in certain
cases (for example, a separable uniformly hyperfinite C*-algebra). The
C*-algebra Z generated by the Boolean o-algebra (<) is contained
in 2°(577). In order that 2 (") = <&, a necessary and sufficient
condition is that the Davies and hull-kernel Borel structure on .7
coincide. Now, if .o~ is a GCR algebra, then all the Borel structures
on .57 coincide [12, 3.8.3] and so 27 (. ") = 2. We note that a special
case of this result is mentioned by Glimm [19, p. 899]. Conversely,
if the Davies and the hull-kernel Borel structure coincide on .7 then
& is GCR. Indeed, it is sufficient to show that two irreducible
representations o, and p, with the same kernels are equivalent [20].
It is this result, which is unavailable in the nonseparable case, that
Digernes [9] used to characterize a separable GCR algebra. We have
that P ([0.]) = P~ ([o.]) for every open projection P in 2. Indeed, if
7 is an ideal in .9~ whose strong closure is <& P, then P ([0;]) =0
if and only if _# is contained in the kernel of p,, But this means
that P ([0,]) = P ([p.]) for all P in (<) and thus the Davies Borel
structure fails to separate [0,] and [0.]. This implies that [0,] = [0.]
[8, Theorem 2.9]. Hence the algebra .o is GCR. It is to be noted
that Effros [15] proved that A is GCR if and only if the Mackey and
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Davies Borel structure coincides on %

We now examine the hull-kernel topology of the quasi-spectrum
more closely. We show that this topology is induced by the canonical
mapping of the factor states into the quasi-spectrum.

Let .o be a C*-algebra and let f be a state of &% Let L(f) be
left ideal of .o7 given by L(f) = {A e 7 | f(A*A) = 0}, let H(f) be the
completion of the residue class . — L(f) with the inner product
(A — L(f), B— L(f)) = f(B*A), and let o, be the (nondegerate) repre-
sentations of .97 on the Hilbert space H(f) induced by left multipli-
cation of . on & — L(f). The representation p; is called the
canonical representation of &7 induced by f. There is a cyclic unit
vector z, under 0,(.57) for H(f) (equal to 1 — L(f) if .~ has identity
1 or equal to lim 4, — L(f) if {4,} is an increasing approximate identity
in the positive part of the unit sphere of .o if .9~ has no identity)
such that o, .-0,(4) = (0,(A)x,, ;) = f(A) for all Ae .~ The state f
is called a factor (or primary) state if o, is a factor representation of
. Let () be the space of all factor states of .9~ with its rela-
tivized w*-topology. We write f~ g for f, g in &# (%) to denote
Of ~ Oy-

Now suppose that .o~ is a C*-algebra without an identity. Then
an identity 1 may be adjoined to .7 to obtain a C*-algebra .97 with
identity so that .o is a maximal ideal of .7 (cf. [12, 1.2.3]). Each
state f on .~ has a unique extension f, to a state of .97 obtained by
setting f.(1) = 1. The Hilbert spaces H(f) and H(f,) can be identified
with each other so that o, restricted to .o~ is precisely po,. Further
more, the identity of .97 gets carried into the identity operator on H(f)
(cf. [12, 2.1.4]). Therefore, the state f, is a factor state if and only
if f is. Furthermore, if f and g are factor states of .o/ then f~ ¢
if and only if f, ~ g,. Now let f, be the unique factor state of .97
that vanishes on . If f be a factor state of .7 not equal to f,
then the ideal p/(.%7) of ps(.%7,) is nonzero and therefore is strongly
dense in 0(.%%) (cf. [11]). For any &€ > 0 there is a net {B,} in &
with lub|| B, || =1 + ¢ such that {0,(B,)} converges strongly to the
identity [22]. Hence, the restriction g of f to .97 has norm not less
than (1 + €)™ since

llgll = (1 + &)™ lim sup | g(B,) |
= (1 + )7 lim sup | (0/(Ba)zs, @) | = (1 + )7

Therefore, g is a factor state of .o with g, = f. This means that the
map e of & (.%7) into F () defined by e(f) = f, is a one-to-one map
of F(.57) onto .F (%) — {fo} = F ().

It is clear that e is a continuous map # (%) into & (.2%).
Furthermore, if 77 is open in #(.%7), then ¢(7") is relatively open in
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(). Since & '(%7) is open in F (.7 ), we may conclude that
e(7") is open in & (.%7). So the map e is also an open map.

We now prove that quasi-equivalence is an open relation in the
space Z () by showing the saturation 27~ of an open subset .27 of
F(¥) given by 2~ ={fe F (A)| f ~ ge =2} is open.

LEMMA 8. The saturation under the relation of quasi-equivalence
of an open subset of the space of factor states of a C*-algebra is open.

Proof. Let 7" be an open subset of the space & (.o7) of factor
states of the C*-algebra . We assume that .9 has an identity, and
later we remove this assumption. Let g be a factor state in the satu-
ration 7”7 of 27 We construct a neighborhood 97~ of g such that
2w~ < 7°~. There is an element h e 7" with g ~ h. There are elements
C,GC, -+--,C,in & and a 6 with 0 <6 < 1 such that

{feF ()| 1f(C) —MC)|<d,i=1, .., n}

is contained in 7 Without loss of generality we may assume that
C, =1. Due to the fact that g ~ h, there is an isomorphism ¢ of the
von Neumann algebra o,(.%)"” generated by 0,(.%) on H(g) onto the
von Neumann algebra 0,(.o7)” generated by p,(.7) on H(h) such that
8(0,()) = 0,(7) for every Ae. .o (cf. [12, §5]). Since an iso-
morphism of von Neumann algebras is o-weakly continuous, [14, I,
§ 4, Theorem 2, Corollary 1], the functional ®,,-¢ is a o-weakly con-
tinuous state of 0,(.%7)" such that ®,,-¢-0, = h. This means that
there is a sequence {;} in H(g) such that > || z;|]> < + o and such
that Y, = @,,-¢ on 0,()" [14, I, §3, Theorem 2]. Setting
7 = o6 max {|| C;|]|1 = 7 < n})™", we may find a natural number m such
that

(3) 2@, [m+1=1< +eo} ][ <7

Since each z; lies in the closure of o,(.%7)x,, there are A, A4,, ---, 4,
in .% such that the vectors p,(4;)x, = y; in H(g) satisfy

(4) ., — o, || <m™
fori=1,---, m.

Now let ¢ = m™7). We show every f in the neighborhood 77 of
g given by

v ={fe F ()| [[(AiC;A) — 9(AiCiA) | <e
forali=1,---,m;j=1, -+, n}

is contained in 7°~. Setting f’ equal to
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f'(4) = S {f(AFAA) |1 <7 =m]
for all Ae .o/ we obtain a positive functional on .o~ whose norm is
given by || f'll = ') = 3. f(AFA;). Because C, =1, we get
| f'(1) — X g(AFA) | = S| f(AFA) — g(AFA) | <7 .
But we have that
12 9(AF4) — 1| = | X g(AF4) — Y 0,,(1)|
=|3{o, D1 =i m}— 3 {0,(1) |1 S i< 4o}
s3{llo,ll — e, lllll =7 =< m}
+ [ {0, m+1 <9< +oo}]| <29

by relations (8) and (4). This means that
(5) [f/) —1]<8p<1.

Hence, we have f'(1) == 0. Setting f” = f'/|| f'|l, we obtain a state
f" of &7 such that f” ~ f ([4] and [12, 5.8.6]).
We shall now show that f”e . First we have that

[ (C) ] = fFrOTFCCHE = fD Gl
for all ¢ =1, ..., m. By relation (5) this yields
Lf'(C) — f"(Cl = 11— Q) Q)T F(C)]
SI1=7FMIIGI <2,
for every ¢ =1, ---, n. Furthermore, for all i, we get
| f1(C)) — h(C)) |
= 2l f(AFC:A) — 9(A7CA) | 11 =5 = m}
(7) + {1 @,,(0,(C)) — 0,,(0,(C)) | |1 = j = m}

+ | 0., (0,C) m + 1 S5 < + oo} |
<me + |Gl + 711 G| = /2

(6)

by relations (8) and (4). Combining (6) and (7), we obtain

| F(C) — M(C) | = | f"(C) — f(CI
+1F(C) — MC)| <d2+d2=0,

for all ¢ =1, ---, ». This proves that f”e & Hence, the lemma is
true for C*-algebras with identity.

Suppose . is a C*-algebra without identity. Let .o be the
C*-algebra obtained from .2 by adjoining the identity. We use the
notation developed in the paragraph preceding this lemma. If 7 is
an open subset of # (%), then ¢(7”) is open in F(%7%). But the
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saturation e(77)” of e(7") in F () is ¢(7""). By the first part of
the proof ¢(7")™ is open. Thus the set 77~ = ¢7'(e(?7)) = e (e(7"7)) is
open in F(.%).

ProOPOSITION 9. Let &7 be a C*-algebra. The map f—[o/] is a
continuous open mapping of the space F () of factor states of &
onto the quasi-spectrum 7 of & with its hull-kernel topology.

Proof. Let ¢ denote the map f—[o;]. Let 0 be any nondegenerate
factor representation of .%~ on a Hilbert space H. There is a unit
vector ¢ € H such that f(4) = (0(A)x, x) is a state of .o There is an
isometric isomorphism U of H(f) onto the invariant subspace K = closure
o()x of H defined by U(A — L(f)) = p(4)x that carries p; onto the
subrepresentation p | K of p. Since [p | K] = [p] [12, 5.8.5], we get
that [0,] = [0]. Hence, the image of ¢ is equal to .o

Now let {f,} be a net in & () that converges to j in the
w*-topology. Let X be an open subset of . containing [0;]. There
is an ideal .7 in .o with X = {te .o/ |kert » .#}. This mean there
is an A€ ” such that f(4) = 0. There is an %, such that f,(4) =0
whenever n = n,. Hence, the classes [0, ] are in X whenever n = n,.
This means {[o; ]} converges to [0,]. Thus ¢ is continuous.

For the proof that ¢ is an open map, we consider two cases: (1)
&7 has an identity, and (2) . has no identity. First assume .o~
has an identity. Let 7° be an open subset of & (%). We prove
#(77) open in .57 By Lemma 8, we may assume that 7° is saturated.
The complement 27 of 7" in & (") is also saturated. It is sufficient
to show that ¢(97") is closed in .o since ¢(%) = % — ¢(77). In
fact, we shall show that ¢(%#") = {re .o | ker t D #}, where .7 =
N {ker p, | fe 977). First it is clear that ¢(%#") C {re .7 | kerzc D _7}.
Conversely, let f be a pure state in & () with ker p, > ._7. Then
there is a net {f;} in 27" and unit vectors x;e H(f;) for each ¢ such
that f =lim w,,-0;, in the w*-topology ([16], cf. [12, 8.4.2 (i))]). How-
ever, each state g; = @,,- 0, is a factor state of .o~ and is thus quasi-
equivalent to f; ([4] and [12, 5.8.5]). This means that g;e %77 and
therefore, that the limit f of the net {g;} is in 9. Hence the set
#(27") contains [o,] whenever f is a pure state with ker p,> .7 Now
let f be an arbitrary factor state of .o~ with ker p,>.% Then we
have that _# = ker o, is a prime ideal containing .# (cf. introductory
paragraphs of § 3). Let g be the state of the C*-algebra &7/ 7 = &
given by g(A + _#) = f(A). Let .2 be the maximal GCR ideal of
%. First we assume that % = (0}, i.e., & is an NGCRE algebra.
Then the state space and the pure state space of & coincide [25,
Theorem 2]. There is a net {g;} of pure states of & that converges
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in the w*-topology to g. Setting fi(4) = g:(4 + _#) for all Ae.
we get a net {f;} of pure states in .o that converges to f in the
w*-topology. Since each f;c 97~ by the first part of the proof, we get
f e and thus [p;] € (%#"). Now let %~ + (0). We then have that
the representation o, of & is quasi-equivalent to an irreducible repre-
sentation. Indeed, we have that o,(2¢”)», is dense in H(g) since p,
is a factor representation of &. But the von Neumann algebra o,(.57)"
generated by 0,(22”") on H(g) is a type I algebra (cf. [12, 5.5.2]). This
means that 0,(2¢”)” has a nonzero abelian projection E. However,
the projection E is also an abelian projection for the von Neumann
algebra generated by p,(.27/_#). Hence p, is quasi-equivalent to an
irreducible representation (cf. [12, 5.4.11]). Since the representation
© of o7 defined by o(4) = p,(A + _#) is unitarily equivalent to o,
we see that o, is quasi-equivalent to an irreducible representation. So
there is a pure state A of & such that A~ ~ f. This means that
[os] =[p.] is in ¢(7#7). This completes the proof that ¢(7#7) is closed.
Hence, the map ¢ is an open map.

Now suppose that .o~ does not have an identity. Let .97 be the
C*-algebra obtained from .o~ by the adjunction of the identity. Let
¢ be the map of & (.57) onto .57 given by ¢ () = [0,]. Let 7 be
open in & (). By using Lemma 8, we may assume that 7 is
saturated. We have that e(7”) is an open saturated set in & (.%%),
whose image ¢'(¢(?")) is an open subset in .%7. There is an ideal .7
in .o with ¢(e?)) = {re 7 |kert p.#}. We show that ¢(?") =
{te.r |kert5.# N5} Indeed, let fe & () and let e(f) = g. If
fe 77, then ker p, 2.7 and so thereis an Ac.” with g(4) +0. If
{A,} is an increasing approximate identity in the unit sphere of .o
we have that lim f(A,4) = lim g(4,4) = g(4) because A,Ae 7N .
for all n. This means that ker [0;] 2.7 N .9~ Conversely, if ker
[os] 7N 7 then f(_7 N &) + 0 and so ker [p,] % There is an
he 7 such that e(h) ~ ¢g. This implies that & ~ f and [0;]€4(7). So

#(7) ={re.or |kert D 7N )

We can interpret Proposition 9 in terms of representations. An
infinite dimensional Hilbert space H is said to have sufficiently high
dimension for the factor states of .97 if there is a faithful represen-
tation 0, of .9~ on H such that, for any factor state f of .o/ there
is a unit vector e H with f = w,-0,. Now let H be a Hilbert space
of sufficiently high dimension. (If .o~ is separable, any infinite dimen-
sional space has sufficiently high dimension.) Let CFac(.%7 H) be the
family of all representations o on H for which there is a unit vector
€ H such that f = w,-p is a factor state and such that o vanishes
on the orthogonal complement of the closure of the linear manifold
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o(s7)x. A topology may be defined on CFac (.o H) by allowing a net
{0.} converge to p if and only if {0,(A)} converges to p(4) in the
strong topology on H for every Ae . o7.

PROPOSITION 10. Let &7 be a C*-algebra, let H be a Hilbert space
of sufficiently high dimension for the factor representations of 7
Let » be the map that carries each pec CFac (57 H) into its class [p]
in % Then + is a continuous open map of CFac (.57 H) onto S

Proof. It is clear that ¢ maps CFac (.7 H) continuously onto
S

We show that + is an open mapping. Let Z be an open subset
of CFac (.57, H). Using virtually the same proof as K. Bichteler [3,
Proposition 2.4(i)], we can find an open subset 7” of & (.%7") such that
W(Z) = (7). However, we have shown that ¢(?°) is open in &7
(Proposition 9). Thus (%) is open in %7 and + is an open map.

REMARK. An infinite dimensional Hilbert space K is said to have
sufficiently high dimension for the irreducible representations of .o
if there is a faithful representation o, of .o~ on K such that, for every
pure state f of .97 there is a unit vector x e K for which f = w,- 0,
A space H that has sufficiently high dimension for the factor repre-
sentations certainly has sufficiently high dimension for the irreducible
representations. Then let K have sufficiently high dimension for the
irreducible representations. Let Irr (.7 K) be the family of all repre-
sentations o of %7 on K for which there is a unit vector x in K such
that ®,.-p is a pure state and p vanishes on the orthogonal complement
of the closure of p(.7)x. Then L. T. Gardner [17] proved o— [p] is
a continuous open map of Irr (.&7 K) onto the spectrum of .o (with
the hull-kernel topology). Notice that Irr (.7 H) < CFac (.7 H).

We now characterize a GCR algebra in terms of the Borel strue-
ture on the quasi-spectrum.

THEOREM 11. Let &7 be a C*-algebra. The following are equiva-
lent:

(1) o7 is a GCR algebra; and

(2) every point of the quasi-spectrum o7 of .7 is a Borel set
in the Borel structure induced by the hull-kernel topology.

Proof. (1) = (2). If re.% let Q be the unique minimal projection
of the center 2  of the enveloping von Neumann <Z algebra of &
such that @7(z) =1. By Theorem 2, the projection @ is in the Boolean
algebra generated by the open central projections & of <& By
Proposition 3 we conclude that the characteristic function of the set
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{z} is in the algebra of bounded Borel function on . Hence, the set
{z} is a Borel set of .o

(2) = (1). Let @ be an arbitrary minimal projection in 2. The
image of @ under the map ) defined in Proposition 3 is the charac-
teristic function of a point set in .%% If P, is the least upper bound
of the minimal projection of %, then Qe {<Z°)P, (Proposition 3). By
Lemma 1 we have that <#Q is type I. Because @ is arbitrary, the
algebra .o~ must be GCR [24].

Added May 1, 1973. For separable C*-algebra .27 I have proved
that the quotient Borel structure on .o induced by the map f— [p;]
of the factor states of .o~ with the relativized w*-topology into .o~ is
the Mackey Borel structure of .o
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