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OPEN PROJECTIONS AND BOREL STRUCTURES
FOR C*-ALGEBRAS

HERBERT HALPERN

In this paper the relationships existing among the Boolean
(j-algebra generated by the open central projections of the
enveloping von Neumann algebra & of a C*-algebra J ^ the
Borel structure induced by a natural topology on the quasi-
spectrum of sf, and the type of sf are discussed. The natural
topology is the hull-kernel topology. It is shown that this
topology is induced by the open central projections and is the
quotient topology of the factor states of SZ (with the relativized
i0*-topology) under the relation of quasi-equivalence. The
Borel field is shown to be Borel isomorphic with the Boolean
cr-algebra multiplied by the least upper bound of all minimal
central projections. Finally, it is shown that ^ is GCR if
and only if the Boolean σ-algebra (resp. algebra) contains all
minimal projections in the center of ^ , or equivalently, if and
only if every point in the quasi-spectrum is a Borel set.

T. Digernes and the present author [10] showed that J ^ is CCR
if and only if the open projections are strongly dense in the center of
^?. They also showed that the complete Boolean algebra generated
by the open central projections is equal to the set of all central pro-
jections in έ% whenever j ^ is GCR. Recently, T. Digernes [9] obtained
the converse of this result for separable C*-algebras.

2* The Boolean algebra of open projections• Let & be a von
Neumann algebra with center %* and let Szf be a uniformly closed
*-subalgebra of &. A projections P in JΓ is said to be open relative
to Ssf if there is a two-sided ideal *J* in j y whose strong closure is
&P. In the sequel all ideals (unless specifically excluded) will be
assumed to be closed two-sided ideals. The definition corresponds to
the definition of Akemann [1, Definition II.1] for C*-algebras with
identity. The set &*(&, J^f) of all open central projections of &
relative to j ^ contains 0,1 and the least upper bound (resp. greatest
lower bound) of any (resp. any finite) subset [1, Proposition II.5,
Theorem II.7].

Now let & be the enveloping von Neumann algebra of Ĵ C The
algebra s^ will be identified with its embedded image in &?. In
this case the set &(0f, Ssf) will be denoted simply by & and the
projection in & will be called open projections. The smallest Boolean
algebra (resp. σ-algebra) containing & will be denoted by <^> (resp.
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Let sf be the set of all unitary equivalence classes of irreducible
representations of Ssf. The set S^f is called the spectrum of Ĵ Γ For
every irreducible representation p of Ssf on the Hubert space H(p),
let [p] denote the class in s i of which p is the representative. If X
is a subset of si, let *J^(X) — Π {ker τ\ τ eX}. Here ker τ is uniquely
defined by ker τ — ker p for pe τ. Then setting X~ = {τ e s i | ker τ 3
^(X)} for X ^ 0 and 0~ = 0 , we obtain a closure operation si. The
topology defined by this closure operation is called the hull-kernel
topology and is the family of subsets of Szf given by

{{τ 6 s i I ker τ 7^ ^) \ ^ is an ideal of sf}

(cf. [12, § 3]). Let p be a representation of s$? and let (f denote the uni-
que extension of p to a σ-weakly continuous representation of έ@ on H(p)
such that p~(0) is the σ-weak closure of p(sy). If A e % and τ e s i
there is a unique scalar AΓ(τ) such that AΓ(τ)lH[p) = ρ^(A) for all p e T.
Here l f f (p) is the identity operator on H{p). With this notation, the
hull-kernel topology of s i is given by {{re sf\P~(τ) = l}\Pe^}.

Let S0(S^) (resp. S(J^P)) denote the ring (resp. cr-ring) generated
by the open subsets of sf. Then there is a projection-valued measure
7 of S(sP) onto <(^» such that γ({τ e J ^ | P^(τ) = 1}) = P ([19, Theorem
1.9], cf. [12, 5.7.6]).

LEMMA 1. Lei Stf he a C*-algebraf let ^ be the enveloping von
Neumann algebra of sf and let & be the set of all open projections
of the center % of έ%. Let Q be a minimal projection of % and let
Pm be the least upper bounded of all minimal projections of ^Γ.
Then £%Q is a type I factor whenever Q is in the Boolean a-algebra

Proof.1 If Xι and X2 are open subsets of j y with Xι Z) X2t then
7(-XΊ - X2T(τ) = 7(-Xi)̂ (r) - 7(X2Γ(τ) = 1 for every τ e X, - X2 and
7(Xi — X2)^(^) = 0 for every τ ί X1 — X2. Since every set X in S0(SΪ?)

is the union of a finite number of mutually disjoint sets of the form
Xx — X2 where Xu X2 are open in ,s>? and X1Z) X2, we see that
7(Xy(τ) = 1 if and only if τ e X Since every element X in $(sf) is
the union of a monotonally increasing sequence of sets {Xn} in S0(si),
we get that 7(X)^(r) = 1 for every r e l .

Now there is a set X e S ( j ^ ) with 7(XΓPm = Q. If τeX then
ζΓ(r) = 1, and so p^(Q) — 1 for per. This means that the kernel of p*
is ^ ( 1 — Q). Since ^ is irreducible on s^ and since p~(&), which is

1 This proof was suggested by the referee. My original proof was based on the
results of [10].



OPEN PROJECTIONS AND BOREL STRUCTURES FOR C*-ALGEBRAS 83

isomorphic to ^ Q , is equal to the weak closure of p(J^)> we conclude
that ^ Q is a type I factor.

The next result characterizes a GCR algebra in terms of the
open central projections of its enveloping algebra.

THEOREM 2. Let Ssf be a C*-algebra, let £%? be the enveloping von
Neumann algebra of S$f, and let 0* be the set of open projections of
the center %" of έ%?. Then the following statements are equivalent'.

(1) J ^ is GCR;
(2) <^> contains all minimal projections ^Γ; and
(3) ((^)) contains all minimal projections of %?.

Proof. (1) => (2). We apply the fact that the set of open central
projections in the enveloping von Neumann algebra of a CCR algebra
is strongly dense in the set of central projection [10, Theorem 2].

There is a set {P* | 0 g i ^ k) of projections in & indexed by
the ordinals such that (i) Po = 0, Pk = 1, (ii) P< < Pi+ι(i < Jc), (iii)
V {-Pi I i < j) = Pj if j is a limit ordinal with j <̂  k; and (iv) ^P^ =
&(Pi+ί - Pi) is the strong closure of a CCR ideal J f in j ^ ( l - P̂ )
[10, proof of Theorem 3]. Let Q be a minimal projection in 3Γ. There
is an ordinal i < k such that Q ^ Pi+ί — P;. Let ^ be the ideal in
j ^ given by ^ = {A e sx? \ APi = A}. Setting ^ = {A e Szf \ A(l -
Pi) e ^"}, we obtain an ideal ^' of j ^ containing ^ such that J^'l^
is isomorphic to «^. Let p be the unique extension of the represen-
tation A + <J? —> A(l — Pi) of ij^'/ij^ onto ̂  to a tf-weakly continuous
representation of the enveloping von Neumann algebra ^ of ^f/^
onto the strong closure ^ of ^ on the subspace of the Hubert space
of & corresponding to the projection 1 — Pi (cf. [12, 12.1.5]). Now,
if Pe^(<έ?, ^Ί^), we show that ρ(P) + Pi is in ^ . Indeed, there
is an ideal Sf~ in ^ f \ ^ such that ^P is the strong closure of
in <£f. Let J T ' be an ideal in J?' with J T ' D^>^ such that 3Tr\J^=
Then we have that the strong closure of 3ίΓ'{\. — Pi) = p(^) in
^ ( 1 - P̂ ) is equal to p(^P) = ^ip(P) = ^p(P). This means that
the strong closure of 3fΓ' in & is equal to &(ρ(P) + Pi). Hence
p(P) + P, is in P. Because ^ is CCi2, the set ^ ( ^ J?'\^) is
strongly dense in the set of central projections of ^ [10, Theorem 2].
Recalling that p maps the center of <& onto the center of ^ [14, III,
§5, Problem 7], we obtain a net {Rn} of projections in ^ which
majorizes Pi and is majorized by Pi+ι and which converges strongly
to P ί + 1 — Q. Since Q is a minimal projection, there is an n0 such that
RnQ = 0 whenever n ^ wo This means that the open projection
R — V {̂ ^ I ^ ^ ô} is majorized by Pi+1 — Q. But it is also clear that
P ί + 1 — Q ^ R. Hence, we get that Pi+1 — Q = R and consequently
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that Q
(2) => (3). Obvious.
(3) =* (4). If j ^ is not a GCR algebra, then j*f has a type III

factor representation [24]. This means that there is a minimal pro-
jection Qe%ί such that &Q is a type III factor. This is impossible
by Lemma 1. Hence j ^ is a GCR algebra.

3* Borel structure on the quasi-spectrum* Throughout this sec-
tion let jzf be a C*-algebra, let & be the enveloping von Neumann
algebra of jzf, and let & be the set of open projections of the center %"
of &. The weak (resp. strong) topology of subalgebras of & will
refer to the weak-operator (resp. strong-operator) topology. If p is a
representation of j ^ on a Hubert space H{p), let p~ be the unique
extension of p to a σ-weakly continuous representation of & on H(p)
so that the weak closure of p(J*f) is equal to ρ~{0) [12, 12.1.5]. If
p is nondegenerate (i.e., the identity of H(p) lies in the weak closure
of p(ιS^)), then p{&) is the von Neumann algebra generated by p{sf)
[14, I, § 3, Theorem 2].

Now two nondegenerate representations ρx and p2 of j ^ are said
to be quasi-equivalent (notation: px~p2) if p7 and p2 have the same
kernel. The relation of quasi-equivalence partitions the set of (non-
degenerate) representations of j ^ into quasi-equivalence classes. The
class containing p is denoted by [p]. If fte[/0], then ker |0 = ker ft
and thus for every class [p], there is a uniquely associated ideal
ker [p] = ker p of J^f. Furthermore, if pis a factor representation of
J ^ (i.e., ρ^(^) is a factor von Neumann algebra), then so is every p1

in the class [p] (cf. [12, §5]).
Let sf be the set of all quasi-equivalence classes of factor repre-

sentations. The set s^f is called the quasispectrum of Jzf. If A e %>
and τ e J^; then there is a unique scalar A~(r) such that p~(A) =
A"(r)lH((ί) for every ^ e τ. Here lH{p) is the identity operator on H(p).
So every Ae %T defines a complex-valued function AT o n j / (cf. [7,
§ 4]). Now it is clear that the map A—> AT is a bounded *-homomorphism
of %* into the C*-algebra F(sf) of bounded complex-valued functions
on j ^ For each τejzf there is a unique minimal projection of the
algebra 3? such that Q^{τ) = 1. Conversely, if Q is a minimal pro-
jection of %, there is a unique τ e J ^ such that ζΓ(τ) = 1. Thus there
is a one-to-one map of the set of minimal projections of % onto jy:
Therefore, if Pm denotes the least upper bound of all minimal projections
in %Ί then PZ — 1. Furthermore, if ^ is an ideal of s^f and
is such that έ%P is the strong closure of J^, then

(1) {r
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Now let τ e Ssf. The ideal ker τ is a prime ideal in the sense that
ker τ contains the intersection of two ideals J? and ^ in s*f if and
only if it contains one of them. Indeed, if pe[τ] and p{^) Φ (0),
then the strong closure of p~(<J*) is ρ~{0)\ otherwise, ρ^{0) would
have a nontrivial center (cf. [11]). There is a net {An} in ^ with

(A%) = 1 (strongly). Hence, for any i e ^ we have that

p(A) = ρ~(A) = lim ρ^(AAn) = lim ρ(AAn) = 0 .

This means p(^f) = (0). Thus ker τ is a prime ideal. For any nonvoid
subset X of s/y we let J? (X) = D {ker τ | τ e X} and we let

X- = (τ 6 J ^ I ker τ

Setting 0~ = 0 , we get a unique topology on Ssf, called the hull-kernel
topology, such that the closure of a subset X of j y is X~ (cf. [12, 3.1]).
The hull-kernel topology on j^f generates a Borel structure S(Jϊf) on

Thus the construction of the hull-kernel topology for the quasi-
spectrum is analogous to that of the hull-kernel topology of the spectrum.
We shall see further parallels in Propositions 3 and 9. However, the
greater size of the quasi-spectrum allows us to prove Theorem 11.

PROPOSITION 3. Let sxf be a C*-algebra, let & be the enveloping
von Neumann algebra of Stf, let % be the center of &, and let Pm

be the least upper bound of all minimal projections in %'. Let ^
the weak (-operator) sequential closure of the *-subalgebra of
generated by έ^Pm. Then <& is the C*-algebra generated by
Also there is an isomorphism λ of ^ onto the C*-algebra B(jzf) of
bounded S(S*f)-Borel functions on the quasi-spectrum JK? of J^ such
that the image of ((^}Pm is the set of all characteristic functions in
B(Stf). Furthermore, the map λ is bi-continuous in the sense that
{MCn)} converges pointwise to λ(C) if and only if {Cn} is a sequence
in c^ that converges weakly to C.

REMARK. On ^Pm the notions of strong and weak sequential
convergence coincide.

Proof. The restriction λ of A —»A~ to ^ is a *-homomorphism of
^ into F(j^P). If {Cn} is a sequence in ^ that converges weakly to
C, then {CnQ} converges uniformly to CQ for each minimal projection
Q of % and so lim X(Cn) = λ(C) in the topology of pointwise conver-
gence of F(j^f). Hence λ is continuous. If λ(C) = 0 for some Ce <&,
then CΓ(r) = 0 for all τ 6 Ssf and so CQ = 0 for all minimal projections
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Q. This means C = CPm — 0 and so λ is an isomorphism. Clearly,
the inverse is continuous. We also have that

l |λ(C)| |=lub{|λ(C)(r) | \τ
= lub {|| CQ || I Q minimal} = || C|| ,

for every C e cέ?. Furthermore, the image of ^Pm under λ is the set
of all characteristic functions of open subsets of j y by relation (1).
Hence λ maps the *-algebra generated by S^Pm into B(j^). By the
continuity of λ and the norm preserving property (2), the map λ takes
<& into B(j*f).

Now we show thatλ (%?) is sequentially closed in B(j^). Let {Cn}
be a sequence in ctf such that {λ(CΛ)} converges pointwise to a func-
tion feB(j^P). Since λ is a ^-isomorphism, we may assume that /
and each CΛ is self-adjoint. Now if C and D are self-adjoint in ^
there is a projection P in ^ with PC + (1 - P)D = C V £ in the lattice
of self-adjoint elements in ^ " P w . In fact, the spectral projections
{E(ά}} and {F(a)} of C and .D respectively are in ^ For example, let
α: be given and let gn be the function of a real variable given by
gn{t) = 0 if ί >̂ α:, #%(£) = 1 if £ <̂  α — n~\ and #„ linear on [a—n~\ ά\.
Then {#Λ(C)} is a monotonally increasing sequence in ^ whose least
upper bound is E(a). Let {r̂ } be an enumeration of the rationale. Then
P is the least upper bound of the sequence of projections {jP(rm)(l —
E(rn)) I rm < rn; n, m = 1, 2, •}. Indeed, if Q is a minimal projection
with Q ^ P, then ζ) ̂  F(rw)(l - ^(r j ) for some rm < rΛ. This means
that Q g F(rm) and Q ^ 1 - E(rn), and thus that DQ g rTOQ < r,Q ^
CQ. Conversely, let Q be a minimal projection with DQ < CQ. Then
there are rm and rn with i)Q < rmQ < r%Q < CQ. This means that
Q ^ F(rm)(l — E(rn)). Since Pm is the least upper bound of minimal
projections, the projection P satisfies the requirements. We notice that
λ(C V J5) = λ(CP) + λ((l - P)D) = λ(C) V X(D) since λ preserves order
and since λ(P) and λ(l — P) are characteristic functions of disjoint sets
whose union is J ^ The analogous statements hold for CΛD. These
facts allow us to assume that {Cn} is bounded since we may replace
each Cn by Cn A \\ f || Pm. Now let Dn=\f{Ck\k^ n). We have that
Dn lies in ^ since Dn is the strong limit of the sequence {V {Ck \p ^
k ^ n}} in ^ Since λ is continuous, we get that

X(Dn) = lim λ( V {Ck I V ^ Λ ̂  w}) = V

By the same reasoning we get that

Now C = A Dne^ and / = lim \(Ck) = lim sup λ(Cfc). Hence we have
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that / = λ(C). This proves that λ maps ^ onto a sequentially closed
subalgebra of B(ss?) containing the characteristic functions of all open
sets. Hence λ ( ^ ) maps onto B(J*P).

We now show λ(((^))Pm) is the set of all characteristic functions
of Borel sets. However, a proof similar to the one we have already
given shows that λ(((^))Pw) is a ^-complete Boolean algebra of charac-
teristic functions. This Boolean algebra contains all characteristic
functions of open sets and hence it coincides with the set of charac-
teristic functions in B(j^).

Finally, we show that ^ is the C*-algebra ^ generated by
((^}>Pm Let feB(j%f) be real-valued and let n be a natural number.
Then there is a partition {Xk \ k = 0, ± 1 , , ±n] of s/ into disjoint
Borel sets such that each Xk is contained in the set

If we set gk e B(j^) equal to the characteristic function of Xk for every
k, we get |JΣαJbf7* — f\\ ^ w"1 for suitable scalars ak. Because
Σ α * Λ e M ^ ) a n ( * because λ is an isometry, we get that / e λ ( ^ 0 ) .
Due to the fact λ is a *-isomorphism, we get that <ĝ  = <ĝ

For the spectrum of a C*-algebra we have the following result.

PROPOSITION 4. Let J^ be a C*-algebra, let & be the enveloping
von Neumann algebra of Jϊf, and let & be the set of open projections
of the center 3? of &. Let J%f be the set of equivalence classes of
irreducible representations of Jάf with the hull-kernel topology. Then
there is an isomorphism φ of the C*-algebra & generated by ((^))
onto the algebra B(j%f) of all bounded complex-valued Borel func-
tions on S^ such that the image of ((^)) is the set of all characteristic
functions in B(j^P). Furthermore, φ is continuous in the sense that
{φ(An)} converges to φ(A) whenever {An} is a sequence in & that
converges strongly to A in &.

Proof. Let Po be the least upper bound of all minimal projections
Q in %* such that &Q is type I. There is an isomorphism ψ of the
smallest weakly sequentially closed ^-subalgebra s& of %*P0 containing
((^))P0 onto B(^P) such that ((^))P0 maps onto the set of all charac-
teristic functions of B(j*f). Also £& is the C*-algebra generated by
((^))P0. This follows in the same way as Proposition 3.

We also have that the map A-+AP0 is a homomorphism of &
onto j ^ . Setting φ(A) = f(4P0), we obtain a homomorphism of &
onto B(J^) that is continuous in the specified sense.
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We show that φ is an isomorphism. There is a projection-valued
operator 7 defined on the Borel sets S(J^f) of JZ? such that γ({τe
j y I P~(r) = 1}) = P for every open projection P ([19, Theorem 1.9],
cf. [12, 5. 7. 6]). Identifying the characteristic functions of B{*szf) with
their supports, we get that j-ψ(PP0) = P for every Pe^ and so
y φ(P) = P for every P e ^ . This means that Ύ-φ(P) = P for every
P e ((^)). Now suppose ^(A) = 0 for some A e &. Given ε > 0, there
exist orthogonal projections Plf , Pn in ((.^)) and positive scalars αL, ,
an such that || Σ ^ Λ - A*A \\<ε. This means that || Σ ^ ( ^ ) II < e.
Since the (̂P )̂ are disjoint characteristic functions, we have that
Φ(Pi) = 0 for every i with # { ^ ε. This means P* = Ύ'Φ(Pi) = 0 for
all such ί. Hence we have that ||Σ<^P;II < e a n d so that || A\\2 —
\\A*A\\ < 2ε. Since ε > 0 is arbitrary, we have that A — 0. Hence
φ is an isomorphism.

COROLLARY 5. Let j y be a C*-algebra, let Ssf be the spectrum
of Jzf, and let <S%f be the quasi-spectrum of jzf. Suppose that both Ssf
and J ^ have the hull-kernel topology. Then there is a pointwise con-
tinuous isomorphism of the algebra B(j^) of bounded Borel functions
on J^P onto the algebra B(j^P) of bounded Borel functions on Sf.

Proof. Let & be the set of open projections in the center 3? of
the enveloping von Neumann algebra & of Ĵ C Let Po be the least
upper bound of all minimal projections Q in %* such that ^Q is type I
and let Pm be the least upper bound of all minimal projections in %'.
Then the C*-algebra ϋ^ generated by ((^)}P0 is isomorphic to B(j%f)
under a bi-continuous map for the strong and the pointwise topology
(Proposition 4), and the C*-algebra <& generated by ((^))PW is iso-
morphic to J3(jy) under a bi-continuous map for the strong and
pointwise topology (Proposition 3). But the C*-algebra & generated
by ((.^)) is isomorphic to & under the map A —> AP0. Hence the
map A —* APQ is an isomorphism of ^ onto &. This isomorphism is
certainly strongly continuous. Hence, there is a pointwise continuous
isomorphism of B(S?) onto ^

REMARK. The set of bounded continuous complex-valued functions
on s>? has been described recently ([5], [13]). Due to the fact that
j ^ need not be separated, the continuous functions do not approximate
the Borel functions.

We describe a class of elements that lie in C*-algebra & generated
by ((^». Let Z be the spectrum of %. For every Ae & and ζ in
Z, let A(ζ) denote the image of A under the canonical map of & onto
the algebra & reduced modulo the ideal generated by ζ. There is
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an element ψ(A) e 3T such that ψ(AΓ(ζ) = \\A(ζ) || for all ζeZ. Here
τ/r(A)~(ζ) is the Gelfand transform of ψ(A) evaluated at ζ [18, Lemma
10].

PROPOSITION 6. Let Jϊf be a C*-algebra, let & be its enveloping
von Neumann algebra, let & be the set of open projections of the
center % of <S&, and let 'if be the uniformly closed *-subalgebra of %"
generated by &>. Then, for every A e Ssf, the element ψ(A) lies in g*.

Proof. Since if is a C*-algebra and since ψ(A) = ψ(A*A)lι\ it is
sufficient to show ψ(A) e g7 for every A in j*f+. We have that there
is a projection P in 3? such that

{ζ e ZI P~(ζ) = 1} = clos {ζ e Z\ ψ (Af(Q > 0}

since Z is extremally disconnected. But it is clear that P is an open
projection since &P is the strong closure of the principal ideal gener-
ated by A. Now, for any a > 0, let fa be the continuous function of
a real-variable given by fa(t) = 0 if t <̂  a and fa(t) = t — a for t> a.
Then there is an open projection P with

{ζ e ZI P~(ζ) - 1} = clos {ζ 6 ZI t(/α(A)Γ(ζ) > 0}

and so

{ζ G ZI P~(ζ) = 1} = clos {ζ G ZI f (AΠQ > α} .

Now let n be a natural number. Let P f̂c = 0, 1, , n — 1) be the
open projections given by

{ζG ZI P Γ ( Q - 1} - clos {ζG Z\ ψ(AΓ(ζ) > nr'k \\A\\} .

Let Qk = P*-! - P* for 1 ^ /c ̂  w - 1 and Qn - Pw_lβ Then we have
that

.= lub {| ^(AΓ(ζ) - Σ w-^ M i l Q(ζ)

Hence, the element ^(A) is in if.

For a separable C*-algebra, we have a better result. We preserve
the same notation as the preceding proposition.

COROLLARY 7. Let Szf be a separable C*-algebra, then the C*-
algebra & in %" generated, by ((^)> is equal to the weak sequential
closure of the C*-algebra generated by {ψ(A)\Ae

Proof. Let Pe &> and let ^ be an ideal in Ssf whose strong
closure is &P. The ideal ^ / is a principal ideal generated by an
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element A of Szf [23, 6.5, Corollary]. This means that Pis smallest
projection in ^Γ with Pψ(A) = ψ(A). Hence P is in the weak sequential
closure ^?0 of the C*-algebra generated by ψ(s$f). This proves that
((^)) and thus & is contained in ^?0.

Conversely, each element ψ(A) is contained in & (Proposition 6).
Let Po be the least upper bound of all projections Q in j ^ such that
&Q is a type I factor. The map A—>APQ of the weak sequential
closure j y ^ of Ss? in έ%? is a weak sequentially continuous isomor-
phism onto the weak sequential closure of s*fP0 [6, Theorem 3.10],
Since &0 c j / " and & c j y and since ^ P o = ^ is weakly sequen-
tially closed (cf. Proposition 4), we may find, for each A e &0, a Be &
such that AP0 — BP0. This means that A = P. Hence ^ 0 c ^ .
Thus we get that & = ^ 0 .

Now let j ^ be a separable C*~algebra and let s^f^ be the weak
sequential closure of s%f in its enveloping algebra &. The center
%{S/^) is contained in the center % of &. As is pointed out by
E. B. Davies (cf. [6, p. 154] for the analogous statement for J^?) each
open projection in %* is in ^ Γ ( j ^ ) . This means that B(s$f) is contained
in the algebra {A^ \ A e ^Γ(j^O) c F(jzf). Thus the Davies Borel struc-
tures on A (i.e., the weakest Borel structure such that all functions
{A~ I A 6 ^( jy^)} are Borel on jx?) is finer than the structure S(S*P)
induced by the hull-kernel topology. In fact the Davies Borel structure
separates points whereas the Borel structure S{j*f) does not in certain
cases (for example, a separable uniformly hyperfinite C*-algebra). The
C* -algebra & generated by the Boolean σ-algebra ((^)) is contained
in ^ ( j ^ ^ ) . In order that ^ Γ ( j ^ ) = ^?, a necessary and sufficient
condition is that the Davies and hull-kernel Borel structure on j^?
coincide. Now, if J ^ is a GCR algebra, then all the Borel structures
on j^f coincide [12, 3.8.3] and so ^{Jzf") = f̂5. We note that a special
case of this result is mentioned by Glimm [19, p. 899]. Conversely,
if the Davies and the hull-kernel Borel structure coincide on J ^ then
Szf is GCR. Indeed, it is sufficient to show that two irreducible
representations px and ρ2 with the same kernels are equivalent [20].
It is this result, which is unavailable in the nonseparable case, that
Digernes [9] used to characterize a separable GCR algebra. We have
that P (̂[ί>i]) = P~([ft]) for every open projection P in %. Indeed, if
^ is an ideal in Szf whose strong closure is ^ P , then P^([ft]) = 0
if and only if ^ is contained in the kernel of ft. But this means
that P^([ft]) = P~([ft]) for all P in «^}) and thus the Davies Borel
structure fails to separate [ft] and [ft]. This implies that [ft] = [ft]
[8, Theorem 2.9]. Hence the algebra Ssf is GCR. It is to be noted
that Effros [15] proved that A is GCR if and only if the Mackey and
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Davies Borel structure coincides on
We now examine the hull-kernel topology of the quasi-spectrum

more closely. We show that this topology is induced by the canonical
mapping of the factor states into the quasi-spectrum.

Let Jzf be a C*-algebra and let / be a state of sf. Let L{f) be
left ideal of j ^ given by L{f) = {A e j*\f(A*A) = 0}, let H(f) be the
completion of the residue class J ^ — L(f) with the inner product
(A - L(f), B - L(f)) = f(B*A), and let ρf be the (nondegerate) repre-
sentations of j ^ on the Hubert space H{f) induced by left multipli-
cation of sf on jzf — L(f). The representation ρf is called the
canonical representation of j y induced by /. There is a cyclic unit
vector xf under pf(J^) for H(f) (equal to 1 — L(f) if Szf has identity
1 or equal to lim An — L(f) if {An} is an increasing approximate identity
in the positive part of the unit sphere of s%f if *S*f has no identity)
such that ωXf-ρf(A) = (ρf{A)xf, xf) = f(A) for all A e J*f. The state /
is called a factor (or primary) state if pf is a factor representation of
j^Γ Let ^ " ( j y ) be the space of all factor states of s%f with its rela-
tivized w*-topology. We write f ~ g for /, g in J^(j%f) to denote

Pf ~ A
Now suppose that j ^ is a C*-algebra without an identity. Then

an identity 1 may be adjoined to szf to obtain a C* -algebra J ^ with
identity so that sf is a maximal ideal of J^< (cf. [12, 1.2.3]). Each
state / on j y has a unique extension /β to a state of j ^ obtained by
setting fe(l) = 1. The Hubert spaces #(/) and H(fe) can be identified
with each other so that pfe restricted to szf is precisely pf. Further
more, the identity of J^e gets carried into the identity operator on H(f)
(cf. [12, 2.1.4]). Therefore, the state fe is a factor state if and only
if / is. Furthermore, if / and g are factor states of j ^ then / ~ g
if and only if fe — ge. Now let f0 be the unique factor state of j^<
that vanishes on jzf. If / be a factor state of Jzfe not equal to /0,
then the ideal pf{J^) of pf(^fe) is nonzero and therefore is strongly
dense in ρf(JK) (cf. [11]). For any ε > 0 there is a net {Bn} in Ssf
with lub| | B%\\ <̂  1 + ε such that {pf(Bn)} converges strongly to the
identity [22]. Hence, the restriction g of / to sf has norm not less
than (1 + ε)"1 since

|| flr || ^ (1 + e)-1 lim sup | flr(J5») |

- (1 + ε)-1 lim sup | {ρf{Bn)xf, xf) | ^ (1 + ε)"1 .

Therefore, g is a factor state of j%? with ge = f. This means that the
map e of ^(j^f) into ^(s^) defined by e(f) = fe is a one-to-one map
of J^-(JT) onto ,_^(J^) - {/o} - J ^ ' ( J ^ ) .

It is clear that e is a continuous map J^^Szf) into ^ (J^I).
Furthermore, if 3^ is open in J^iSsf), then e(^) is relatively open in
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Since ^'(SK) is open in ^(J^fe), we may conclude that
e(Y*) is open in ^ ( J ^ ) . So the map e is also an open map.

We now prove that quasi-equivalence is an open relation in the
space ^{Stf) by showing the saturation <g?~ of an open subset <%? of

given by gf~ = {/e^{A) \ f~ gejgf} is open.

LEMMA 8. The saturation under the relation of quasi-equivalence
of an open subset of the space of factor states of a C*-algehra is open.

Proof. Let T* be an open subset of the space ^ ( j y ) of factor
states of the C*-algebra Ssf. We assume that J^ has an identity, and
later we remove this assumption. Let g be a factor state in the satu-
ration 3^" of 5̂ 7 We construct a neighborhood W~ of g such that
cy^ £. ^ - ^ There is an element heT^ with g ~ h. There are elements
Cl9 C2, , C» in j y and a δ with 0 < 8 < 1 such that

{/e j F ^ ) I |/(Q) - Λ((7«) | < «, i = 1, ...,*}

is contained in 5̂ Γ Without loss of generality we may assume that
d = 1. Due to the fact that g ~ h, there is an isomorphism φ of the
von Neumann algebra pg(J&Ύ' generated by pg(S^) on H(g) onto the
von Neumann algebra ph(J#Ύf generated by ph{j*f) on H{h) such that
Φ{pg{Ssf)) = ph(J^) for every A e j ^ (cf. [12, § 5]). Since an iso-
morphism of von Neumann algebras is σ-weakly continuous, [14, I,
§4, Theorem 2, Corollary 1], the functional a>Xh φ is a σ-weakly con-
tinuous state of pg{J&)" such that ωXh-φ pg = ft,. This means that
there is a sequence {#<} in Jϊ(flr) such that Σ l l # ί l l 2 < + °° a n ( i s u c h
that Σi<*>χi = ωχk'Φ

 o n Pai^Y [14, I, §3, Theorem 2]. Setting
57 = 3(6 max {|| C< j | | 1 ̂  i ^ w})""1, we may find a natural number m such
that

( 3 ) | | Σ { ^ . | m + l ^ ί < + o o } | | < 5 7 .

Since each xζ lies in the closure of pg{S$?)xg, there are AL, A2f - -, Am

in j ^ such that the vectors pg{A^xg = ̂  in J5Γ(fir) satisfy

(4) \\ωXi~ωn\\<m-ιη

for i = 1, , m.

Now let ε = m"1^. We show every/ in the neighborhood 'W of
flf given by

for all i — 1, , m; i = 1, , n}

is contained in 2^". Setting / ' equal to
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f'(A) = Σ {/(AίAAt) |1 ^ i gm]

for all A e Jzf, we obtain a positive functional on Jzf whose norm is
given by || f\\ = /'(I) = Σ/(Λ M<). Because C, = 1, we get

I /'(l) - Σ 0 ( A W I ̂  Σ I/(A? A,) - ffiAfAi) \<η.

But we have that

Σ g(A}A,) - 11 = IΣ g{MAύ - Σ ω.t(l) |
1 ^ i ^ m} - Σ {^(1) 11 g i

+ IIΣ {<».< I TO + l ^ ί < + » } | | < 2 i ?

by relations (3) and (4). This means that

(5)

Hence, we have /'(I) Φ 0. Setting / " =/'/ll/ΊI» ^ e obtain a state
/ " of sx? such that / " ~ / ([4] and [12, 5.3.6]).

We shall now show that / " 6 ~ ψ". First we have that

ct \
for all i — 1, , m. By relation (5) this yields

for every ί = 1, •••,%. Furthermore, for all i, we get

I / ' ( Q - h(C{) I

^ Σ {I f{AJCtAs) - giAfCA,) \ \ l £ j £ m }

( 7 ) + Σ {| o)Vj(pg(Cf)) - ωx.{pg{C%)) 111 ̂  j ^ m}

+ I Σ {a>.s(p.(Cύ) | w + l ^ i < + o o } |

< me + η\\ Ct\\ + 57||C4|| ^ 3/2

by relations (3) and (4). Combining (6) and (7), we obtain

\Γ(Cd - h(Ct)\ £\f"(Cά - f'(Ct)\

for all i = 1, •••,». This proves that f"e 5^ Hence, the lemma is
true for C*-algebras with identity.

Suppose jzf is a C*-algebra without identity. Let J ^ be the
C* -algebra obtained from Jzf by adjoining the identity. We use the
notation developed in the paragraph preceding this lemma. If f is
an open subset of ^(_&O, then e(T) is open in <β~(Ssζ). But the
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saturation e{Ty of e{T) in ^ ( j ^ ) is e{T~). By the first part of
the proof e{TY is open. Thus the set T~ = e~\e{yy) = e~ι{e{T^)) is
open in

PROPOSITION 9. Let j y he a C*-algebra. The map f-+[pf] is a
continuous open mapping of the space ^(Sf) of factor states of
onto the quasi-spectrum S^f of S>f with its hull-kernel topology.

Proof. Let φ denote the map /—> [pf]. Let p be any nondegenerate
factor representation of Jzf on a Hubert space H. There is a unit
vector xeH such that f(A) = (p(A)x, x) is a state of Ĵ Γ There is an
isometric isomorphism U of H{f) onto the invariant subspace K — closure
ρ{Szf)x of H defined by U(A — L(f)) ~ ρ(A)x that carries pf onto the
subrepresentation p [ K of p. Since [p \ K] = [p] [12, 5.3.5], we get
that [pf] = [/o]. Hence, the image of φ is equal to J^f.

Now let {/„} be a net in ά^{Szf) that converges to / in the
w*-topology. Let X be an open subset of s? containing \pf\. There
is an ideal <J? in j^f with X = {τ e Sf\ ker z ;£> <J?}. This mean there
is an A e j ^ such that f(A) Φ 0. There is an n0 such that fn(A) Φ 0
whenever n ^ w0. Hence, the classes [pfn] are in X whenever n ^ 7̂ 0.
This means {[ρfn]} converges to [pf]. Thus φ is continuous.

For the proof that φ is an open map, we consider two cases: (1)
Sf has an identity, and (2) j y has no identity. First assume S^
has an identity. Let T be an open subset of ^(s^). We prove
Φ(T") open in Ĵ C By Lemma 8, we may assume that T* is saturated.
The complement W~ of 3^ in , f ( j / ) is also saturated. It is sufficient
to show that φ{W~) is closed in s$P since φ{W) = .i^7 — ̂ (5^). In
fact, we shall show that φ(Ύ^) = {ze s^f \ ker Γ D ^"}, where ^ =
Π {ker /O/ I/e ̂ "} . First it is clear that φi^) c {r e J ^ | ker r ID ̂ } .
Conversely, let / be a pure state in ^~{sf) with ker ρfΌ^. Then
there is a net {/J in ^ " and unit vectors ^ G H(fi) for each ΐ such
that / = lim coXi pfi in the ω*-topology ([16], cf. [12, 3.4.2 (ii)]). How-
ever, each state g{ = a)Xi-pf. is a factor state of sf and is thus quasi-
equivalent to /,. ([4] and [12, 5.3.5]). This means that &e W, and
therefore, that the limit / of the net {gt} is in ^ Γ Hence the set
Φ(Ύ^) contains [pf] whenever / is a pure state with ker pf Z) Jf. Now
let / be an arbitrary factor state of Szf with ker pf ID ^ Then we
have that ^J? — ker pf is a prime ideal containing ^ (cf. introductory
paragraphs of § 3). Let g be the state of the C*-algebra *Szf\J? — ^
given by g(A + J") = /(A). Let ^ T ' be the maximal GCi2 ideal of
<if. First we assume that 3ίΓr = (0), i.e., <§f is an iVGCJ? algebra.
Then the state space and the pure state space of ^ coincide [25,
Theorem 2]. There is a net {&} of pure states of ^ that converges
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g

in the w*-topology to g. Setting f4(A) = g^A + ^f) for all
we get a net {/J of pure states in J ^ that converges to / in the
w*-topology. Since each /* e W~ by the first part of the proof, we get
/ e 5 ^ and thus [pf] G φ(?T~). Now let 3Γf Φ (0). We then have that
the representation pg of <& is quasi-equivalent to an irreducible repre-
sentation. Indeed, we have that pa(Sf')xa is dense in H(g) since p
is a factor representation of <g*. But the von Neumann algebra pQ(3ίΓ')"
generated by ρQ(3ίΓ') on iJ(#) is a type I algebra (cf. [12, 5.5.2]). This
means that pg(J%Γ')" has a nonzero abelian projection Έ. However,
the projection E is also an abelian projection for the von Neumann
algebra generated by PX<S$?\ ̂ ). Hence pg is quasi-equivalent to an
irreducible representation (cf. [12, 5.4.11]). Since the representation
p of ^f defined by p(A) = ρg(A + ^) is unitarily equivalent to pf,
we see that pf is quasi-equivalent to an irreducible representation. So
there is a pure state h of Ssf such that h ~ f. This means that
IP/] — lPh] is in φ{Ύ^). This completes the proof that φ{W~) is closed.
Hence, the map φ is an open map.

Now suppose that Szf does not have an identity. Let J%?e be the
C*-algebra obtained from jzf by the adjunction of the identity. Let
Φ' be the map of ^ ( J ^ ) onto Ĵ < given by φ'{f) = [ρf]. Let T be
open in ^~(szf). By using Lemma 8, we may assume that T is
saturated. We have that e(T^) is an open saturated set in J?~{s/e),
whose image Φ'(e($Γ)) is an open subset in j&l. There is an ideal <y
in j^< with Φ'{e(T)) = {re JK I ker τ φj*}. We show that φ{T) =
{τ e j ^ I ker τ 2> ^ n <Ssf}> Indeed, let fe ^(Stf) and let e(f) = #. If
/ G ^ then ker ρgΦ<J^ and so there is a n A e ^ f with g(A) ^ 0 . If
{Aw} is an increasing approximate identity in the unit sphere of
we have that \imf{AnA) = limsr(AwA) = r̂(A) because AnAe^f)
for all n. This means that ker [pf] 0 ^ Π J ^ Conversely, if ker
[pf] ϊ J ^ Π t i ^ then f(^f] Ssf) Φ 0 and so ker [ρg] φ ^ There is an
h G Y* such that e(λ) ~ βr. This implies that h~f and [^J G ̂ (3^). So

= {T G J ^ I ker τ

We can interpret Proposition 9 in terms of representations. An
infinite dimensional Hubert space H is said to have sufficiently high
dimension for the factor states of J ^ if there is a faithful represen-
tation p0 of sf on H such that, for any factor state / of j ^ there
is a unit vector x e H with / = a)x pQ. Now let H be a Hubert space
of sufficiently high dimension. (If j ^ is separable, any infinite dimen-
sional space has sufficiently high dimension.) Let CFac (J< H) be the
family of all representations p on H for which there is a unit vector
xeH such that / = 0)x p is a factor state and such that p vanishes
on the orthogonal complement of the closure of the linear manifold
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A topology may be defined on CFac (ĵ < H) by allowing a net
{pn} converge to p if and only if {ρn(A)} converges to ρ(A) in the
strong topology on H for every A e Ssf.

PROPOSITION 10. Le£ J ^ be a C*~algebra, let H be a Hubert space
of sufficiently high dimension for the factor representations of Jϊf.
Let ψ be the map that carries each p e CFac (J%ζ H) into its class [p]
in J ^ Then ψ is a continuous open map of CFac (Jzζ H) onto

Proof. It is clear that φ maps CFac ( J ^ H) continuously onto

We show that ψ is an open mapping. Let ̂  be an open subset
of GFac (Stζ H). Using virtually the same proof as K. Bichteler [3,
Proposition 2.4(i)], we can find an open subset Y* of ά? (J^f) such that
α/r(̂ /) = ό(T*). However, we have shown that φ^Γ) is open in
(Proposition 9). Thus ψ{^) is open in *s*f and ψ is an open map.

REMARK. An infinite dimensional Hubert space K is said to have
sufficiently high dimension for the irreducible representations of j y
if there is a faithful representation p0 of j y on K such that, for every
pure state / of J ^ there is a unit vector xe K for which / — o)x-p0.
A space H that has sufficiently high dimension for the factor repre-
sentations certainly has sufficiently high dimension for the irreducible
representations. Then let K have sufficiently high dimension for the
irreducible representations. Let Irr (szζ K) be the family of all repre-
sentations p of j%7 on K for which there is a unit vector x in K such
that (θz-ρ is a pure state and p vanishes on the orthogonal complement
of the closure of p(j^)x. Then L. T. Gardner [17] proved p—>[ρ] is
a continuous open map of Irr (J< K) onto the spectrum of Ssf (with
the hull-kernel topology). Notice that Irr ( J ^ H) c CFac (J< H).

We now characterize a GCR algebra in terms of the Borel struc-
ture on the quasi-spectrum.

THEOREM 11. Let Szf be a C*-algebra. The following are equiva-
lent:

(1) j ^ is a GCR algebra) and
(2) every point of the quasi-spectrum j y of Stf is a Borel set

in the Borel structure induced by the hull-kernel topology.

Proof. (1) => (2). If τ e S/, let Q be the unique minimal projection
of the center % of the enveloping von Neumann & algebra of jzf
such that ζΓ(τ) = 1. By Theorem 2, the projection Q is in the Boolean
algebra generated by the open central projections & of &. By
Proposition 3 we conclude that the characteristic function of the set
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{r} is in the algebra of bounded Borel function on Ĵ C Hence, the set
{τ} is a Borel set of sf.

(2) => (1). Let Q be an arbitrary minimal projection in %*. The
image of Q under the map λ defined in Proposition 3 is the charac-
teristic function of a point set in J%?. If Pm is the least upper bound
of the minimal projection of %, then Qe{{^))Pm (Proposition 3). By
Lemma 1 we have that ^Q is type I. Because Q is arbitrary, the
algebra jzf must be GCR [24].

Added May 1, 1973. For separable C*-algebra J ^ I have proved
that the quotient Borel structure on J^f induced by the map f-+[pf]
of the factor states of s$f with the relativized w*-topology into sf is
the Mackey Borel structure of J^?
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