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ON THE HYPERGROUP STRUCTURE
OF CENTRAL /(p) SETS

GEORGE BENKE

Let G be a compact group and let I be the set of equi-
valence classes of the continuous irreducible unitary represen-
tations of G. For ye " denote by x; the character of 7, then
for K < I" any function of the form X7, a, %, (1, -+, 7.€ E and
aq, -+ -,a,€C) will be called a central FE-polynomial, and the
set of all such functions will be denoted >9,. A set EcC I’
is a central Sidon set when the norms || ||. and || ||.(|fll. =
> la,l, where f = >l a,x;,) are equivalent on 27, and it is a
central /(p) set when the norms | ||, and || ||, are equivalent
on *2 ;. When G is abelian the algebraic structure of /A(p)
and Sidon set has been studied extensively. In this paper the
structure of central A(p) sets is investigated in terms of the
hypergroup structure of /. In particular it is shown that
central A(p)(p > 2) sets cannot contain arbitrarily long ‘‘arith-
metic progressions.”’

1. Preliminary remarks. Following Helgason [2] we shall say
that a set S is hypergroup if to any pair (¢, 8) of elements from S
there corresponds a measure f,; on S. For I7, a hypergroup structure
is induced by the decomposition of tensor products. Thus if «, B¢
TFa@B =@, lv:a® B]y, where [v: a« ® B] is a nonnegative integer
which is called the multiplicity of v in @ & G, and the measure assigned
to the pair (a, B) is the discrete measure whose mass at v is [v:a ®
B]. From the elementary properties of characters we write %, --- X, =
Yiggr, = Sger [V @+ @ 7,]X,. We shall denote by 1 the class
of the trivial one dimensional representation, and by 7 the class con-
taining the conjugates of representations in ~v. All the basic facts
about representations needed in this paper may be found in [3].

2. A necessary and sufficient condition for central 4(2s). Al-
though the condition we are about to give is cumbersome, it will
allow us to get both necessary conditions and sufficient conditions which
are reminiscent of conditions given by Rudin [6, Thm. 4.5] for the
case where G is the circle group.

THEOREM. Let EC I’ and let s be a matural mumber, then the
following are equivalent.

(a) E is a central A(2s) set.

(b) There exists a constant B depending only on E and s such
that for every choice of positive real numbers a,, ---, ay and elements
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Yy e, Yy € B the inequality

N 1/2\ 2s
MZF(Z U 77, R @) = <B<PZ:1 ai) )
holds, where the inner sum on the left is over all

(klr ) ks)e{ly .._,N}s-

Proof. The logarithmic convexity of the || ||, norms shows that
for p > 2 a set E is central A(p) if || ||, and || ||, are equivalent on
*9 7y [6, Thm. 1.4]. Accordingly, we will work with the || ||, and
[| |l norms.

Suppose that E is a central A(2s) set, and choose positive real
numbers a,, ---, ay and v, ---, vy€ E. Let _#" denote the set {1, ---,
N}, denote elements in ./~ by k, write a, , - - -, a;, as a(k), (v, +,7:) €
E* as v(k) and v, ® -+ @i, as v* were (k,, -+, k,) = k. Define
=2 aX,,, then

= 3 atk)a,

ke s

= 2 all) 3 [ v

ke v

=2 & a®Dr: y"DL;

ke

Using the fact that the irreducible characters are an orthonormal
family and F is a central A(2s) set we have

11 = 10 = S (S a®z v 1) < BIF 1"

To show (b) implies (2), let g = 3\, b,X;, be any central E-polynomial.
As before

gl =2,

< z( S5 [b1(®)7: 7]
7el’ \ke »
which by hypothesis is = (B(SL. 15[ = (Bllg]l)".

COROLLARY. Let EcC I be a central A(2s) set with constant B
so that || fll.s < Bl fll. for all central E-polynomials f, then for any

finite subset F'c K,

7%( Srm®-® 7s]> < B*(card E)* .

(7 eF

Proof. In the theorem set a, = -+ = a, = 1.
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REMARK. A case where this criterion is violated in a very simple
way is that of G = SU(2). Here I" can be written as {1, 2, ---} and
the Clebsch-Gordan [3, p. 1385] formula shows that n @ n =1H3 P
-+ @P2n —1. So if E is any set in I, take F' = {n} C E, then

é[’ﬁ@@@]z:n

and hence I" cannot contain any infinite central A(4) sets. This fact
has already been observed by Helgason [2, p. 789].

3. A sufficient condition for central 4(2s). Let F' be any subset
of I" and write as (v) the s-tuples (v, .-+, 7)€ F*. Write ® (v) for
7 ® -+ ® 7, and for (v) e F* let M((v)) stand for the set of irreducible
components of & (v). Furthermore, define

r(F, M =3 r@OF .
Note that when G is abelian ».(F, v) is the number of ways we can
write v = 7, ® -+ ® 7, where Vi € F' and where a permutation of
the same set of 7,’s is counted as a distinct partition of 7. The
following corollary generalizes Rudin’s result [6, Thm. 4.5(b)].

COROLLARY. Let EC I’ and let s be a natural number. If E is
the union of sets E(i =1, -+, j) for which there exist comstants C;
and D; depending only on E; and s such that

(i) r(E, )= C; for all yeI" and

(ii) card M((v)) < D; for all (v)e E;
then

(@) E is a central A(2s) set and

®) | flles = Ci(C:D)e) 2| flle for all central E-polynomials f.

Proof. We show first that the E; are central 4(2s) sets by apply-
ing the theorem of §2. Choose positive numbers a,, -+, ay and 7v,, ---,
vy € E;. Then

TeI’(kZ a(k)l: ’Y(M])Z

< 3 (3 b ) Z et k)

where ¢(v, k) = 1 if v appears in the decomposition of v* and ¢ =0
otherwise. Observe that > ., (7, k) = card M(v(k)) and so by hypothesis
this sum is

= GD; > a'(k) = CiDi<§la ai)“ .
ke v k=1



22 GEORGE BENKE

Hence E; is a central 4(2s) set and || f||.. = (C:D.)"*|| f ||, for any central
f.

Now suppose that the E;’s are disjoint, for if not they may be
replaced by E;, — Uizt E,. If f= > a,X, is a central E-polynomial
then f = f, + --- + f; where f; = ZreE,—arxr and

1 £l £ 31 il £ 35CDY™ ) 4
= (S @oye) (S ns08)"
= (S @Dy Y £,

since the f; are orthogonal.

REMARKS. (1) The condition (ii) of the previous corollary is also
necessary. Take F = {v, ---, v,J€ £ and apply the corollary in §2.
Then we have

Bsz3( S roml)

rel \(7)eF$

= 5! 3} [7: @ (V)] = s! card M()

where (v) in the last two expressions is the s-tuple whose components
are the elements of F'.

(2) The condition (ii) is always satisfied when sup {deg 7|7 ¢ E} =
P < . For if (v)e E°, then the degree of @ (7) is not larger than
P and hence there can be at most P° elements in M((7)).

4. The relationship between central Sidon and central 4(p)
sets. A set Ec " will be called a central 4 set if there exists a
constant C depending only on E such that || f]|, < Cp'¥| f]. for all
2 < p < o and all central E-polynomials f. In the case of abelian
groups, Rudin [7, p. 128] shows that every Sidon set is a central 4
set. Using essentially the same technique Parker [5, p. 43] extends
this result to central Sidon sets which have a uniform bound on the
degrees of the representations in the set. Moreover, Parker [5, p. 73]
shows by an example that some sort of condition is required; he gives
an example of a central Sidon set which is not even central /A(4).
Using essentially the same technique as Rudin and Parker we will
characterize those central Sidon sets which are also central A(2s) or
central 4. An interesting consequence of this result is that a central
Sidon set which is also central A(p) for all p must be a central 4 set.
It should be noted that sets which are central A(p) for all p <
need not in general be central A sets, in fact such sets exist in every
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infinite abelian group [1, p. 788].

THEOREM. Let EC I be a central Sidon set.

(i) E s central A(2s) if and only if there exists a constant B
depending on E and s, so that |||, < B for all ve E.

(i) FE is central A if and only if there exists a constant B depend-
ing only on E such that || Xl £ B for all yeE and s =1,2, ...,

Proof. Since ||4,]l; =1 for all yeI" we clearly have the “only
if” parts of (i) and (ii).

Suppose E is a central Sidon set and we have a constant B as
in (). Let f=>2,a,X, be a central E-polynomial. Let

with the operation of coordinatewise multiplication and let ¢,: 2 —
{— 1, 1} be projection onto the mth coordinate. Since E is a central
Sidon set, for every we 2 there exists a central measure p, on G
such that f,(v.) = e (@)L, (n =1, -+, N) and [|#,], =< C where C
depends only on E [5, p. 27]. We have

HAIE = 1o * tto* £ = N6 13°1] 126 = £ 1152
= Csz 2 a, Xy, (x)e.(w) rsdx .

Integrating both sides of the inequality over £ and using Fubini’s
theorem and the inequality

(L

whose proof is the same as that of [8, 8.4, p. 213], we have

né be, () rsda)>”2s < 21/?< 51:; 15, [ )1'2

111 = ooz (810012, @) Yda
= @/FO S 0 lan, | 17, 0 12, o

where the sum is over all (n, ---, n,)e{l, ---, N}*. By Holder’s
inequality this expression is

< @VS O S, |an, m;;,(SG 2 )
=@/ 5 0SB
that is, || fll.. = (CBV'2V 25| f .

REMARKS. (1) Since deg v =||%;||. =lim, .|| X, || (ii) is a restate-
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ment of Parker’s result.
(2) The following are equivalent.

(a) There exists a constant B depending only on E and s so that
X lls < B for all ve K.

(b) There exist constants C and D depending only on E and s

so that
(i) [o: @] = C for all 0" and ve F where (v) is the

s-tuple whose components are v, and
(i) card M((v)) = D for all ve E.
The orthogonality of the characters gives

A Sax;i;dx
[ ® (N[ ® (D] | 17,

Il

I
M

Since the terms in this last sum are positive we have the equivalence
of (a) and (b).

5. Product groups and lacunary projections. Let G, ae I be
a collection of compact groups with dual objects I",. Let G = []..; G. be
the complete direct product and 77 = [[%.; I". be the incomplete direct
product. Then I" is the dual object of G and the operations are all
the obvious coordinatewise ones [3, p. 27]. Let o,/ and let z,:
G — G, be the projection onto the a’th coordinate, then o,om, eI
Write ¢/ for the j-fold tensor product of o, in I', and let M(oi) be
the set of irreducible components of o7 in I,

THEOREM. Let G and I' be as above and consider K = {v,=
o0 ae It. A necessary and sufficient condition that E be a central
A(2s) set is that there exist comstants K and L both depending only
on s and the set {o,|ae I} so that

(@) [rar0i] = Lfor all t,el’y and acl, and

(b) card M(o3) £ K for all ac L

Proof. Parker [5, p. 70] shows that E is a central Sidon set,
hence by the theorem in §4 we need a uniform bound on |[[%,, ||, as
« ranges over I. Since Haar measure on G is just the product of
the Haar measures on the G,, we have ||X; [[,, = [|X,_||., but by remark
(2) of §4 this is equivalent to the conditions (a) and (b).
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REMARK. If sup {deg o,|ae I} = P < o, then K is a central 4(2s)
set.

6. Intersections with arithmetic progressions. Let oe I’ and
let N be a natural number, we define the arithmetic progression of
length N generated by o to be

Ao, N) = U M(o?)
where o7 is the j-fold tensor product of o.

THEOREM. Let E be a central A(p) set (p > 2) with constant B so
that || fll, = Bl| fll. for all central E-polynomials f. Let ce I, then

card (A(s, N) N E) = 0 (N*4ee?) g5 N-— co .

Proof. Choose € and let D3y = 3¢ s0.0m) 4, X, and
Fiy =Dy P/( 3 d))

7€ A4(0,2N)

SO

Fiy = (X &) (2 ) d7)
= (% (2 da,[C: Y @ TDX)/(X dF)

where the inner sum is over all (v, y)e A(o, 2N) x A(g, 2N). If we
write Fiy = Der dea(Fy, )X, then Mayer [4, p. 688] shows that for
all N sufficiently large and {e A(g, N)

a(Fiy, €) Z 14(N)/der,(2N)

where 7, is a polynomial of degree < d?. Choose » > 0 small enough
so that (27W@esn? — p)=t < 2@een? 4 ¢ Then for this 7 and {e A(g, N)
we have for N sufficiently large that

(1) a(Fiy, §) z @71 — 7)/d, .

We also have |[Fiy|, = [|[Fiy|l. = (Dix(e))*/(X. d7), and since X.(e) = d,
we have

1Fille= 3 dr = 7o(N)

€ A(g,2N)
for all N sufficiently large as shown in [4, p. 687]. Hence
(2) [|Fiy]l, £ KNtes?

for all N sufficiently large. Let f = Sicrnawm Xz» define a(f, {) so
that f = Sicerdia(f, O)X;, and suppose N is large enough to satisfy (1)
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and (2).
Then

card (E N A(o, N)) = “Zrdca(f, )

= (2?&’;,172"__,77 C;dca(f, £)(2 e _ 7)
< ﬁ 3, dea(f, Odca(Fiy, O)

— (2—(dega>2 _ ﬁ)—lSGf(x)F;N(x)dx
=@ =) F LI Favll, -

The logarithmic convexity of the || ||, norms gives || ||, < || ||| |[>.
Using this fact and the hypothesis that £ was a central /A(p) set, the
last expression is

= B@ s + o)l f LI Fay 12701 Fix |37

Note that || f|l, = (card (A(o, N) N E))'* and || Fiy|l, = Fgy(1) =1, so
that by (2) we have

(card (A(g, N) N E))"* < B(2*s"* 4 g)(KNeso?yi»

for all N sufficiently large, the size of N depending only on ¢ and e.

COROLLARY. Let E be a central A set, and let e I". Then

card (A(o, N) N E) = 0(log N) .

Proof. For a central A set we may take B = Cp'* where C
depends only on E. In the last inequality of the previous proof, set
p = 4log (KN, then

card (A(c, N)N E) < (2(dega)z + ¢)*C%4 log (KN(dega)Z)

for all N sufficiently large.
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