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NORMAL BASES FOR QUADRATIC EXTENSIONS

CHARLES SMALL

This note complements the author’s paper in Journal of
Pure and Applied Algebra, 2 (1972), in which a computation
is made of the functor which associates to each commu-
tative ring k its group Q(k) of quadratic extensions, where
“quadratic extension of k¥” means “Galois extension of &k with
respect to a group of order two”. In general, quadratic
extensions are rank two projective k-modules; the free ones
form a subgroup Q:(k) of Q(k). Among the free ones are some
which admit a normal basis (definition recalled below); these
form a subgroup Quz(k). This paper studies the filtration
0SS Qvs EQr EQ.

The starting point for the computation in [5] was the construction
of a functor &Z and a natural monomorphism g: Z(k) — Q(k) (defi-
nitions recalled below). Our first observation here is that g is an
isomorphism #Z(k) — Qr(k) and that the subfunctor B of <2 which
corresponds to Qy; (via B) is one studied by Micali and Villamayor in
[3]. These results, which follow without difficulty from the work in
[5], allow us to find simple necessary and sufficient conditions for
Qupk) = Qp(k), and at the other extreme to produce an infinite family
of k for which 0 = Q,(k) # Q).

Now it is known that @y, is isomorphic to the Harrison coho-
mology functor H*( , II) where II is the group of order two. (See
[2] and [4] for the following more general result: The group of normal-
basis extensions of k& with Galois group G is naturally isomorphic to
H*k, G) for any abelian group G.) In §2 we establish directly, by
a series of simple calculations, an isomorphism a: H* , II)— R. (In
fact Ba turns out to be the isomorphism H* , II) — Qy; of [2] and
[4].) This provides a new proof of the isomorphism H*( , II) = Qy;
and also, in our opinion, sheds new light on it by identifying the
functor in question with that of Micali-Villamayor. The isomorphism
Qyz = H*( , IlI) generalizes nicely, as indicated above; on the other
hand, for quadratic extensions the description in terms of Harrison
cohomology is unnecessarily complicated and R is considerably easier
to compute with.

Thanks are due to L. N. Childs and M. Orzech for (respectively)
raising and discussing the question.

1. Identification of R & &Z with Qy; & Q. Throughout, & is
an arbitrary commutative ring (with 1) and /7 is the group of order
two. We will associate various groups with &, using the same symbol
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x for the operation in each; our results relate the groups in such a
way that, among other things, this ambiguity of notation is rendered
harmless.

By a quadratic extension of k we mean a (commutative) k-algebra
which is a Galois extension of k& with respect to 77, in the sense of
[1]. If A and B are quadratic extensions of k£ then so is A= B, the
subring of elements of 4 @, B left fixed by o, & o5 (Where o, generates
the Galois group of A/k, etc.). Indeed, » makes the set of isomorphism
classes of quadratic extensions of % into an abelian group of exponent
< 2 (see [5]). This group we denote Q(k). @ is a functor: kt — K
induces Q(k) — Q(K) by A— A Q. K.

In general, quadratic extensions of % are projective of rank two
as k-modules ([1], Lemma 4.1). The free ones form a subgroup @Q(k)
of Q(k). Among the free quadratic extensions are some which admit
a normal basis, that is, a basis of the form {w, cw} where o generates
the Galois group. These form a subgroup Q, (k) of Q(k).

We now recall the construction of the groups “#Z(k) and R(k),
referring to [5] for the proofs. Let U(k) denote the multiplicative
group of units of k. If f: R—k is a homomorphism from a commu-
tative ring R to &k and we fix an element ye R, the set

ky={vek|[( - fy)z)e Uk)

becomes an abelian group under the operation x, *x, = 2, + 2, — f(y)2,2,".
In particular we get a group k, for each n e Z from the unique homo-
morphism Z — k. Write =, or x, where necessary, for the group
operation in k,.

PROPOSITION 1. (%) = 2(1 — ) defines a natural homomorphism
ik, — k, whose kernel is the group I(k) of idempotents of k.

Proof. We have first to show that x €k, implies 2(1 — z)ek, and
that (2, *, ) = (yx,) *, (vx,). Both are trivial. The statement
about the kernel just says (1 — z) = 0 =2 = 2%

Now define R(k) = coker (), so that the sequence

0 —— I(k) — Iy —~

k, R(k) 0

is exact. Note that z ek, implies that z =& = 20(1 — 2%) is in (k,).
This shows that R(k), with the operation * induced by =,, is a group
of exponent < 2. The functor R was first considered in [3, § 7], where
it is called G.

To construct <Z(k) we consider first the set .77(k) of triples

! The reader will have no trouble completing the definition to make k1— ky a functor.
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(u, a, ) where we U(k) and a, x €k satisfy a*u + 4o = 1. If (u, q, x)
and (v, o/, ') are in (k) then so is (u, a, )= (¥, ¢, ') = (wu’, ad’,
x + & — 4xa’), and * is commutative and associative and has (1, 1, 0)
as neutral element. Define “(u, a, x) ~ (¥, &/, &) by v, b’ to mean:
ve Uk), bek, w=vu, a’v=a—2b, x'=x + bla—bu. Write (u, a, x) ~
W, o, &) iff (u, a, x) ~ (@, o', ') by v, b for some v, be k. Then ~ is
an equivalence relation on .7 (k), and is compatible with . (Again, for
complete proofs see [5].) Hence = induces an operation, again denoted
x, on the set .77 (k)/ ~ of equivalence classes. In fact .7 (k)/ ~ with
this operation is a group of exponent <2, since (1, 1, 0) ~ (¢ a?, 20 — 427)
by v=wu, b=2x, for any (u, a, )€ .7 (k). This group we call Z(k).
“# is, in the obvious way, a functor.

PROPOSITION 2. The map from k,to .7 (k) given by x+— (1 — 42,1, )
induces a natural injective homomorphism R(k) — 2 (k).

Proof. Immediate from the definitions.

We will identify R(k) with its image in .ZZ(k); thus an element
of ZZ(k) is in R(k) iff it has a representative (u, a, ) with a = 1. It
should be noted that when 2¢ U(k), R(k) = <2 (k) = Uk)/U(k)?, and
when % has characteristic two, R(k) = #(k) = k+/P(k*), where k*
is the additive group of & and Z:k* —k* is the homomorphism
P(x) = 2 + . See example (1) below for the equality of R and <#
in these extreme cases, and see [5] for the identification with the
group of square classes (resp. Z”-classes) of k.

Now, given (u, a, x) € .7 (k), let k{u, a, x} denote a free k-module
ks @ kt with elements I, st, ts, %, t* os, ot defined by

I =as + 2t

st = ts = 2zs — aut

s =ul
(*thzt-xl

os = —s8

ot=101—1¢.

THEOREM 3. The first four equations of (x) (extended linearly)
gwe k{u, a, x} a well-defined structure of k-algebra with | = 1, whose
isomorphism class depends only on the class of (u, a, x) in F(k). The
map o given by the remaining two equations (extended linearly) is
an algebra automorphism of order two, and k{u, a, } is a quadratic
extension of k with Galois group generated by . The map B: 2 (k)—Q(k)
induced in this way is an injective homomorphism, natural in k. The
image of B is precisely Qp(k); the image of the restriction of B to R(k)
is precisely Qyx(k).
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REMARK. When 2¢ U(k), any (u, a, x)€ .7 (k) is equivalent to
(w, 1, 2") with 4’ =1 — 42’ (see below, Example (1)) and k{«’, 1, 2’} is
just k[X]/(X* — w’) with the expected Galois automorphism “o(X) =
—X”. When & has characteristic two, any (u, a, ) e .7 (k) is equiv-
alent to (1,1, 2’') (again, see Example (1) below) and k{1, 1, '} is
EIX]/(X® + X + 2') with the expected Galois automorphism “o(X) =
X +1”. See [5] for the proofs.

Proof. For everything except the last sentence, and for a basis-
free description of k{u, a, x}, we refer to [5, Theorem 2]. If A is a
quadratic extension of %, the k-linear trace map tr: A — k given by
tr (x) = ox + o is onto [1, Lemma 1.6] and therefore splits, so that, as
k-modules, A = k@ M for some rank one projective, viz. M = ker (tr).
Now A is free if and only if M is free, for M = A43(A). On the other
hand, Theorem 3 of [5] shows that M is free if and only if A is in
the image of 3. Hence g is an isomorphism .Z (k) — Q(k) as claimed.*

To see that @ restricts to an isomorphism R(k) — Qy(k), suppose
first that the quadratic extension A is in B(R(k)). According to the
first part of the theorem, A has a k-basis {s, t} with 6t =1 — ¢ and
1 = s+ 2t. But then clearly ¢t and ot = s + ¢t form a normal basis for
A. Conversely, suppose that A = kw P k(ow) is a normal-basis quad-
ratic extension. Choose an element bw + c(ow) of trace one; then
1=0btr(w) + ctr(ow) = (b + ¢)trw. Hence tr(w) is invertible, and
we can replace w by ¢ = (tr w)~'w to get a normal basis 4 = kt @D k(ot)
with ot =1 —¢t. Now let s = gt — t. Then s = —s, and moreover,
since the trace of an arbitrary element bt + c(at) is just b + ¢, we
have ks = ker (tr). Clearly {s, ¢} is a basis, and we have 1=1¢ +
ot = s + 2t. Since 0(s’) = (0s)* = s* we have s® = u.1 for some uek,
and % is a unit by [5, Lemma 3]. Similarly, o fixes ¢ — ¢*, so that
t*?=1t— x.1 for some xek. Now solving 2.1 =1t — t* = (s + t)t for
st we find st = 2xs + (4o — 1)¢; on the other hand, given an expression
st = bs + ct(b, ce k), computing the trace of each side shows that
¢ = —u. Therefore, st = 20s — ut and w + 42 = 1, and we are done.

Now define A(k) ={ack|3bek, (a + 2b)c Uk)} and Bk)=
{aek|Icek, (& + 4¢) e Uk)}. Clearly A(k) = B(k); if a + 2b is a unit
s0 is (@ + 2b)* = a® + 4(a + b)b. As a corollary of the theorem we have

COROLLARY 4. The following are equivalent:
(i) Quzk) = Qu(k), i.e., every free quadratic extension of k admits
a normal basis.

2 The rule A1— ker (tr) is a homomorphism Q(k) — Pic (k), and Q(k)/Qr(k) is embedded
in this way as a subgroup, usually quite a small one, of the Picard group. See [5,
Theorem 4] for the precise statement.
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(ii) A(k) = B(k).

Proof. (i) is equivalent to R(k) = .Z#(k), i.e., to the property that
every element (u, a, ) of .7 (k) be equivalent to one of the form
W', 1, 2'). It is immediate from the definition of equivalence (~) in
.7 (k) than this is in turn equivalent to (ii).

This arithmetic criterion allows us to list various examples:

(1) If2e Uk), orif 2 is in every maximal ideal of k (e.g. if k has
characteristic two), then Qy(k) = Q(k). Proof: When 2¢ U(k), the
equation © + 2b = 1 can always be solved for b; hence A(k) =k and,
a fortiori, A(k) = B(k). If 2 is in every maximal ideal, the three
conditions o 4+ 4ce U(k) for some ¢, a + 2be U(k) for some b, a € U(k)
are all equivalent, by Nakayama’s lemma. Thus A(k) = U(k) = B(k).

(2) Consequently, when k is local, we have Q, (k) = Qz(k) = Q(k),
since 2 is either a unit or in the unique maximal ideal. (The same
is true for semilocal %k, see [1, Theorem 4.2.c].)

(3) Let k={(z,y)eZ x Z|x =ymodn} where 2 < n = 2mod 4.
Then (1, n + 1) is in B(k) but not in A(k), so that & has free quadratic
extensions without normal basis. Note that % is connected. This
example, with » = 6, was found (in a different form) by N. Pullman.

A more shocking example is:

(4) Let k& be the ring of integers in Q(1/D) where D is square-
free and —1> D =3mod4. Then 2 + VD is in B(k) but not in A(k).
Moreover, since U(k) = {1}, R(k) = 0. This shows that 0 = Q, (k) #
Qr(k).

(5) If k is quadratically closed (every element is a square) then
Qypk) = Qz(k). For, suppose ac B(k): a* + 4¢ = we U(k). Choose b
so that v = —¢, then % = (a + 2b)(e — 2b), hence a + 2be U(k) and
a € Ak).

REMARK. If 2e U(k), quadratic closure of k& implies Q(k) =
Uk)/ Uk = 0. If 2¢ U(k), 0 = Qz(k) is possible even if k is quadrati-
cally closed; for example, k = Z/2Z. Can this happen with 2 outside
some maximal ideal?

(6) Presumably, by a similar argument, Qy;(k) = Q(k) whenever
k is von-Neumann regular. (Of course the only case of interest is
when k& is not Noetherian and 2 is a zero-divisor lying outside at least
one maximal ideal, for if 2 is in every maximal ideal we have the
result by Example (1); if 2 is not a zero-divisor it is a unit, and again
we have Example (1); and if & is Noetherian it is a finite direct product
of fields, and the result follows because @, Qr, and Qy; evidently
commute with finite direct products.)

The above results favor bases {s, t} with tr(s) =0,tr(¢) =1. A
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different view of the gap between Q,; and Q; is obtained by completing
1 to a basis, as follows:

LEMMA 5. If A is a free quadratic extension of k then 1€ A can
be completed to a k-basis {1, d} for A, and writing d* = b, + b.d in this
basis yields b, — 2d € U(A), b, = —N(d) and b, = tr(d). (Here N(d) =
(od)d, and tr(d) = od + d as above.)

Proof. k-1 is a free k-direct summand of A by [1, Lemma 1.6].
Let M be a complement: A = k-1@ M. Then A is free if and only
if M is free since M = A%(A). This says that A is free if and only
if 1 extends to a basis. Invertibility of b, — 2d follows from k-separa-
bility of A4, since A = k[X]/(f(X)) where f(X) = X* — (b, + bX) and
2d — b, is the derivative at X = d of f(X). Finally if b = tr(d) then
Nd)=(b—d)yd = —b, + (b — b)d gives the rest.

PROPOSITION 6. Let A be a free quadratic extension of k and for
each basts of the form {1,d} use the lemma to define x,; y,€k by
(tr(d) — 2d)(z;, + yod) = 1. Then the following are equivalent:

(i) A admits a normal basis.

(ii) A admits a basis {1, d} with tr(d) invertible.

(iii) A admits a basts {1, d} with z, € A(k).

Proof. (i) =(i). If A=Fkwko(w)we have seen that tr(w) is
invertible. {1, w} generate A as k-module since any element aw + b(ow)
can be written as b(tr w)-1 + (a — b)w. It follows that {1, w} is a basis,
either by checking independence directly using invertibility of tr(w),
or by the general fact that any generating set of » elements for a
free (or even just projective) module of rank % is a basis.

(ii) = (iii)). The relation (tr(d) — 2d)(z, + y.d) =1 in A =k Pkd
implies tr(d)x, — 2y;b, = 1 in k. If tr(d) is invertible we can divide
this latter equation by it to see that x, is in A(k).

(iii) = (i). Choose bek so that v =2z, + 2be U(k). Put z=
—(ysby + bb) e k (where d* = b, + b,d) and put w =2 + vde A. Using
od =b,—d and 2z + vb, = bz, — 2y,b, =1 we find w + cw =1. Now
put v = v, @ = —uz, and 8=« + u (in k). Then Bw + a(ow) =
alw + ow) + uw = a + uz + d = d. Consequently {w, ow} generate 4
as k-module, and therefore form a basis, as before.

2. Comparison with Harrison. In this section we recall (fol-
lowing [2]) the definition of the Harrison cohomology group H*(k, II)
and prove directly that it is naturally isomorphic to RE(k). As in §1,
k is any commutative ring and I7 is the group of order two.

Let II' denote the direct product of 7 copies of I7 and let kII¢
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denote its group-ring. We will construct homomorphisms

Uy -2 v -~ vy

omit (as is traditional) the verification that d’d' =0, and define
H*(k, IT) = ker d*/Im d'.

First put 4,(2) = (1, 2), 4.(2) = (2, 2), and 4,(2) = (2, 1) for ze1l,
and extend 4,(¢ = 0, 1, 2) to maps kIl — kII* by linearity. Then, for
any wxe¢ UKI), da = [[2, (4x)™. Similarly for (z, 2,)cI* define
4z, 2) =(1, 2,, %), 4(2, ) = (2, 24, 25), 43(21, 25) = (24, 2, 25) ANA 4y(2y, 25)
= (2, 2, 1), and extend 4,¢=0,1,28) to maps KkII*— kII* by
linearity. Then, for any a e U(kIT?), d*x = TI'_, (4:x)™". For any 7 use
¢ to denote the augmentation on kI7%, that is, the ring homomorphism
kIl — k given by ¢(3, a,0) = 3, a, (both sums over ¢ € I7). Some addi-
tional notation: Z(k, IT) = ker d* = group of cocycles; B(k, II) = Im d' =
group of coboundaries; and NG = ker (¢: G — U(k)) = subgroup of
normalized elements of G (i.e., elements of augmentation 1), for any
subgroup G of U(kIl’) (for example, NZ(k, II) = normalized cocycles,
NB(k, II) = normalized coboundaries).

ProPOSITION 7. Let ¢t = a, + a,0€ U(kr), (a, a,€k). Then:

(i) d'e= () — 2@, 1) + 21, o) + z(o, 1) — x(0, 6) where x =
a,a,/e(ty), and

(i) e(d') = e(p).

Proof. (i) follows from (i). By definition we have d'¢t = (a,(1, 1) +
a (1, o))a(l, 1) + a0, D)@, 1) + a0, 0)). Letting = = b, + bo
we have e(¢™) = (e(w)™", a.b, + a,b, =1, a,b, + a,b, =0, and d'p =
(3(1, 1) + a,a,(1, 0) + a,a.(o, 1) + a(o, 0))(b,(1, 1) + b,(o, 0)). Multiply-
ing this out gives d'¢t = ¢,(1, 1) + ¢x(1, 0) + ¢5(0, 1) + ¢,(o, 0) where
¢, = atb, + aib,, ¢, = ¢; = a,a,(b, + b,) = x and ¢, = a2b, + a’b,. Since
azb, + azb, = (a,b, + a,b,)(a, + a,) — a,a,(b, + b,) = () — x and a2b,+a2b, =
(a, + a,)(ab, + a,b) — a,a,(b, + b,) = —=x, the proof is complete.

ProposiTION 8. Let v = a,(1, 1) + a1, 0) + a,(0, 1) + a,(o, 0) e
U(kn®). Then:

(i) v1s a cocycle = a,, = @, = — 0y, and

(ii) v is a coboundary <= v is a cocycle and 3a,, a,ck such that
a, + a,0 € Ukrn), a, = a.a,/(a, + a,) and a, = a, + a, — a,.

Proof. (ii) is immediate from (i) and part (i) of Proposition 7.
For (i), d*(v) is by definition A/B where A 1is the product of
(a11(17 17 1) + alﬂ(ly 1’ 0) + aal(ly 07 1) + aﬂa(ly G; 0')) and (an(l’ 19 1) +
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a.,(1, 0, 0) + a,(0,1,1) + a,(0, 0, 6)) and B is the product of (a,(1,1,1) +
a1, 1, o) + a,(o, 0,1) + a,(0, 0,0)) and (a,1,1,1)+ a,Q1,0 1)+
a.(0, 1, 1) + a,(o, g, 1)). Multiplying this out, we see that if a, =
a, = —a,, then each coefficient in A equals the corresponding co-
efficient in B, so that v is a cocycle.

The converse is the key point; the proof that follows is implicit
in [2]. Let p, (resp. p,) be the k-algebra homomorphism kn*— kx*
induced by the map (z, ) — (z, 1) (resp. (x, y) — (1, y)) from 7* to =7,
let 6, (resp. 8,) be the k-algebra homomorphism kz®— kz* induced by
the map (x, y, 2) — (¢, 1) (resp. (x, y, z)— (1, 2)) from =* to =z*, let
e: kn* — k be the augmentation and let j: k — kz* be the inclusion.

LEMMA 9. With notation as above, we have the following equal-
ities of maps kn®— kn*:

(p if =123

814’-;: . . .
1.76 f 1=0,
a7 8 1201
je of 1=3.

Proof. Let v =a,(1,1) + a,@1, 0) + a,(a, 1) + a,(0o, 0) € kn®, then
0.4,(v) = d\(an(1, 1, 1) + ay, (1, 1, 0) + a.(o, 0, 1) + a,(0, 0, 0)) = au(l, 1)+
a,(1,1) + a,(0,1) + a,(0,1) = p(v) and  0,4(v) = d:(an(l, 1,1) +
a,(1, 1, 0) + a,(1, 0, 1) + a,(1, 0, 0)) = (@, + a, + @ + )1, 1) = je(v),
ete.

We can now finish the proof of Proposition 8. If v is a cocycle
we have A = B where as above A = 4,(v)4,(v) and B = 4,(v)4,(v).
Hence 0,(4) = 6,(B) and 0,(A) = 0,(B). Using the lemma to compute
we find 0,(4) = (8,4,(»))(0,4:(v)) = je()p,(v), 0(B) = (6. 4:(1))(9.4(v)) =
(0. ) 0:(4) = (0:4,(»)) (0:4:(v)) = (P (V)), 0:(B) = (8,4, (»)) (8:45(v)) =
2,(v)(Je(v)). Since vy is invertible, p,(v) and p,(v) are also invertible,
hence 0,(A) = 0,(B) yields je(v) = p,(v) and 0,(A) = 6,(B) yields je(v) =
p,(v). But this means that the three elements ¢(v)(1, 1), (a,, + a,) (1,1) +
(@0 + a5)(o, 1) and (a, + a,)(Q, 1) + (a, + a,)(1, 0) of kx* are equal.
Hence a,, + a,, = 0 = a,, + a,,, and we are done.

ProposiTiON 10. If v = a,(1, 1) + a1, 0) + a,(o, 1) + a,(0, 0)
18 a cocycle, a,/e(v) ts in k,.

Proof. We need 1 — (4a,/e(v)) € U(k), for which it suffices to show
e(v) — 4a, € U(k). Since v is a cocycle, ¢(v) — 4a, = a,, — 3a,. Let
v =b,(1,1) + b,@1, 0) + b,(0, 1) + b,(0, g). Then, using 1 =a,b, +
Aoby + Wby + Agoby, = a4y + 3a,b, and 0 = a,b, + @by + a,b, +
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@010, = 011y, + ay,by, — 2a,,b,,, we have (a,, — 3a,,)(b,, — 3b,,) =1— 3(2a,,b,,—
a,b, — a,b,) = 1.

PROPOSITION 11. If €k, then v =(1— x)(1, 1) + 2(1, 0) + (o, 1) —
x(o, 0) is a unit in kn*, and therefore is in Z(k, 7).

Proof. Let v = (1 — 32)1, 1) — «(1, 0) — x(0, 1) + z(c, 6), then
w = (1 — 42) (1, 1), which is a unit since xzck,, hence v is a unit
too.

The preceeding propositions show that the rules a(a,(1,1) +
a1, 0) + a.(0, 1) + a.(0, 0)) = a,/(a, + a,) and v(x) = (1 — 2)(1, 1) +
x(1, o) + x(0, 1) — x(0, 6) define maps Z(k, 7) —k, and k, — Z(k, 7)
respectively. Note that av is the identity, while (va)y = v/e(v).

PROPOSITION 12. v and «a are homomorphisms.

Proof. The computation for v is routine. For «, we need (a,c, +
04:Ci0 + ApiCor + @osCar) [ ER)E(L) = (@1, /E(VY)) + (c10 /(1)) — (4a,C:0/E(V)e(L1)).
Putting the right-hand side over the common denominator e(v)e() and
using 5(#) = Cy + Cyy 6())) = Gy + Qs Ay = — gy € = —C4 O compute
the resulting numerator, we arrive at the left-hand side.

COROLLARY 13. «a and v are inverse isomorphisms, k, = NZ(k, 7).
Proof. Im v <& NZ(k, ) and Yo is the identity on NZ(k, 7).
PropoSITION 14. If x e+ (k,), v(x) € NB(k, 7).

Proof. If x = b(1 — b), (1 — 2b) e U(k), put ¢, = —b/(1 — 2b) and
¢, =1 —0b)/1—2b). Then (¢, +¢0o)b+ (1—0bdo)=1, so £=>b+
(1 — boec UkI), and d'pt = vx.

ProrosiTION 15. If v = a,(1, 1) + a,(1, 0) + a.(0, 1) + a,l(o, o) is
a coboundary then a(v) € r(k.).

Proof. Choose ¢ = (a, + a,0)€ U(knr) so that d'¢t=y. Then
a(y) = a,,/e = a,a,/e* where ¢ =e(#t) =¢(v). Now a,a,/e® = (a,/e)(1 — (a,/¢)),
so we have only to check that 1 — (2a,/¢) € U(k), or equivalently that
€ — 2a, = a, — a, is a unit. Mimicking the proof of Proposition 10, let
(b, + b,0) = ¢, then (a, — a)(b, — b)) = 1.

COROLLARY 16. « and v restrict to inverse isomorphisms (k) =
NB(k, 7), and they induce inverse isomorphisms R(k) = Hk, 7).
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Proof. The first statement follows from Propositions 13, 14, and 15.
For the second we need, in addition to the definitions, the fact that
Z(k, 7)/B(k, ) = NZ(k, 7)/NB(k, 7). This follows because units of %
are always coboundaries: d'w = u(1, 1) for any € U(k), so that any
cocycle y represents the same element of H?*k, ) as the normalized
cocycle v/e(v).

It is worth noting that the proof of Proposition 14 provides an
isomorphism between k, and the group of normalized units of kx:

COROLLARY 17. NMx) = (1 — ) + 20 defines a homomorphism
Nk, — Ulkrm), and the resulting sequence

€

0 — ky—s (k) —— U(k) —— 1

18 split exact.

Proof. The argument which proves Proposition 14 shows that \
maps k, to U(km). It is obviously a homomorphism, and the exactness
is easily checked.

By definition, d° is the trivial map U(k) — U(kr), so that H'(k, n) =
ker d'/Im d° = ker d*. The resulting exact sequence can be normalized
(i.e., restricted to the augmentation 1 part) to yield the bottom row
of a commutative diagram

0 (k) oy, —— R(F) 0

Ll oo

0— NH'(k, ) — NU(kw) —> NZ(k, 7) = Quz(k) — 0

in which the rows are exact and the verticals are all isomorphisms.
In fact NH'(k, ) = H'(k, 7) because d' commutes with ¢ by Propo-
sition 7 (ii), so we have proved:

COROLLARY 18. \ induces an isomorphism I(k) — H'(k, ), and in

particular k is connected <= the inclusion of ™ in km is an isomorphism
T — H'(k, 7).

Lifting the description k, = NU(kx) of normalized units to arbitrary
ones yields the following criterion, whose proof is left as an easy
exercise:

COROLLARY 19. Let p = (a + bo)ekr, then pe Ukkrn) =
a’ — b e Uk).
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Finally, it should be pointed out that Ba: HY ,7)— R — Qy; is
the isomorphism of [2], [4]. Thus the cocycle (¢(v)—2)(1, 1) + (1, o) +
x(g, 1) — x(g, 0) corresponds to the quadratic extension A = kw @ kw’,
described by

w = (e(v)—x)w — zw'
ww = gw + zw = ww
W)y = —zw + (e(v)—x)w’

w = ow, w=ow .

Note that (w +w’)/e(v) = 1 in A, and consequently tr(w) = e(v). Thus
the fact, noted in proving Corollary 16, that every cohomology class
can be represented by a normalized cocycle, corresponds precisely to
the fact (used in proving the converse part of Theorem 3) that any
normal basis {w, ow} can be replaced by one with tr(w) = 1.
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