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CLASSES OF CIRCULANTS OVER THE £-ADIC
AND RATIONAL INTEGERS

DENNIS A. GARBANATI

Let G = {g°, g, g2, , g9'1} be a finite abelian group of
order q where q is a prime. Let Zp and Z denote the p-adic
and rational integers respectively. A circulant for G over
Zp (or Z) is a g-square matrix A of the form A = 2?=o ^iP(9*)
where α* e Zp (or Z) and P is the left regular representation
of G, i.e., P(flf*) is a g-square permutation matrix and P{gigj) =
Pig^Pigt). Let ikf and L be symmetric unimodular circulants
for G over Zp (or Z). The circulants ikf and L are said to
be in the same G-class if there exists a circulant A for G
over Zp (or Z, respectively) such that M— AτLA where τ

denotes transposition. The central object of this paper is:
(i) to give computable criteria for determining whether or
not two circulants for G over Zp are in the same G-class,
(ii) to give a computable upper bound (which seems to be
frequently equal to 1) for the number of G-classes among
the positive definite symmetric unimodular circulants, and
(iii) to introduce a group matrix concept (called G-genus)
corresponding to the concept of genus.

This paper advances the work done by M. Newman, 0. Taussky,
E. C. Thompson, and the author in [3, 4, 5, 7, 8, 9, 13, 14]. The
methods in (i) and (iii) involve generalizing a result of 0. Taussky
[13] and then applying a local theorem from [4]. The methods in
(ii) involve a slight elaboration of the methods found in D. Davis'
thesis [1].

2* Notation* Let q be an odd prime. Let F be a field whose
characteristic does not divide 2q. Let ζ be a primitive gth root of
1, i.e., a g-order generator of the roots of xq — 1 e F[x\. Let K = F(ζ)
and k — F{ζ + ζ"1). Let N(-) = Nκjk( ) be the norm function from
K into k. Let S( ) = SKIF( ) be the trace function from K into F.
Let ^(K/F) denote the Galois group of K over F. Let G be a group
of order q9 that is,

G = {l = g\ g,g\ •• ,^-1}

where g generates G. Let R' be a ring in F.

DEFINITION. A g-square matrix A is called a circulant for G
over Rr (or simply a circulant) if A has the form A = Σf̂ o1 ̂ iP{ΰι)
where α̂  e iϋ' and P is the left regular representation of G. Thus
the (i, i) entry of P(#fe) is 1 if 0V"""1 = gι~ι and zero if 0V""1 φ gι~ι.
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436 D. A. GARBANATI

The term circulant in this paper shall always refer to a circulant for
G and hence shall always be a g-square matrix.

Let
H = {t = χ°, χ, χ\ - ^ Γ 1 }

be the character group on G, i.e., the homomorphisms of G into K
where χ' is the principal character and χ generates H. We may
assume χ(g) = ζ.

If A = ΣlZldiPίg1) is a circulant, for 0 <̂  j ^ q - 1 define

(1) V(A)=g^¥).

By § 2 of [3], there is a matrix U such that for any circulant A over
Rr we have

(2) UAU-^ diag(...,λ^(A), . . .)

where λz;(A) is the j + lth entry.
Let τ denote transposition.

3* Preliminary material* We start with a generalization of 0.
Taussky's result [13]. Although it might look unnecessarily abstract,
Lemma 1 has the advantage of being able to produce both the local
theorem (Theorem 1) and 0. Taussky's global theorem (Theorem 5).
In anticipation of Lemma 1, note that if R' is a ring in F with 1
and M is a matrix over Rr then M is unimodular if the determinant
of M is a unit in R'.

LEMMA 1. Let Rr be a ring in F with 1 such that R'/qR' is a
field whose characteristic is not 2. Let R = Rf + Rfζ + + ϋϊ'ζ'7""1,
a ring in K. Let U' and U be the groups of units of Rr and R
respectively. Suppose [K: F] — q — 1. Let M and L be unimodular
(not necessarily symmetric) circulants over Rr. Then the following
are equivalent:

( i ) There exists a circulant A over Rf such that M — A7LA.
(ii) λr(ML-χ) G Rn and \iML~1) e N(R).
(iii) Xr{ML~ι) e Un and X^ML'1) e N(U).

Proof. ( i ) = * ( i i ) By Lemma 5 of [3] and (2), \r{ML~ι) =
\,(M)/\V(L) = λ r(Aτ)λ r(A) = [λr(A)]2G Rf\ Since [K: F] = q - 1 we
see by Lemma 4 of [3] that [K:k] = 2. Hence again by Lemma 5
of [3] and by (2), Xχ{ML~ι) = Xχ(M)/Xχ(L) = Xχ(Aτ)Xχ(A) = N(Xχ(A)).
Since Xχ(A) e R the result follows.

( i i ) - ( i ) By (2)

) = Xr(M)/Xχ,(L) = α = a2
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where aeR', and

~1) = Xχ(M)/Xχ(L) = 6 = N(β)

where βeR. From [K:k] = 2 it follows that N(β) = βσ(β) where
σ: ζ -» ζ"1 G &(K/F). Since L is unimodular, ML"1 = Σ U c ^ ' ) where
o<e JB'. From [K:F\ = q -1 and (4) of [3], it follows that

Σ
i=0

Since L is unimodular, aeR'. Since jS(ζ*) = —1 for 1 5Ξ -i <Ξ # — 1,
S(δ) e i?'. Also q e R' because 1 e R'. Let c and d be elements of R'.
Write C Ξ ί if there exists an ee R' such that c — d = ge. Then
0 = a2 + S(N(β)). Since βeR, write /3 = δ0 + δtζ + + ft.-.C4"1

where 6<6i2'. Then

0 s α2 + S[(δ0 + 6,ζ + ••• + b^ζ'-ybo + δxζ-1 + δ2ζ"2 + + δ^^)]

Ξ α 2 + (q - l)(bl + bt+ ••• + bU) + S ( Σ 6*&iC*

= « 2 - (65 + + b U ) - Σ bib} = a 2 - ( b 0 + b ι + ••• + δ a _ x ) 2

But we also have for any k, 0 ^ k ^ q — 1,

S(Z(^-fe)^) = S[ζ~k(b0 + δ,ζ + + δ,-^9"1)]

{3 ) = S(bQζ-k + δ.ζ1-* + + δ^ζ'- 1 -*)

Ξ - ( 6 0 + ••• + δg_i)

Therefore, [S(Z(^-fc)/S)]2 = (60 + - + 6g_02 and hence 0 = a2 - [S(X(g-k)β)]2.
Since R'lqR' is a field, we see, using (3), that a = 0 if and only if
S(X(g"k)β) = 0 for all k, 0 £ k ^ g - 1. If for all fe, 0 ^ fc ^ g - 1, we
have a = 0 and S(X(g~k)β) = 0 then let λχ, = a and λχ = /S. Suppose
for all k, 0 ^ ft ^ g - 1, we have α ί 0 and S(X(g-k)β) =£ 0. Then
since R'lqR' is a field of characteristic not equal to 2 it follows by
(3) that either (i) 0 = a - S(X(g~k)β) for all ft, 0 ^ k ^ g - 1, or (ii)
0 = a + S(X(g-k)β) for all ft, 0 g ft ^ g - 1. If (i) holds, let λ r = -a
and λ7 = /3. If (ii) holds, let λz, = α: and λχ = β. For K i ^ g - 1
let (7<: ζ -> ζ* e 5?(K/F). For 1 ^ i ^ g - 1 let λχ ί = ^(λ χ ) . By Lemma
2 of [3], the g relations

t = 0

define a g-square circulant A over ί 7 such that A = Σί=o UkP{gk) where
λχ/(A) = λz, and \(A) = λχ. By choosing λ r and λχ as above ak£Rr

for all ft. Then for any l ^ ί ^ g — l w e have, using Lemma 5 of [3],
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that λz,(M)/ML) = °&) = °JLN<β)) = Nfriβ) = N(σt\z(A))) = N(Xχi(A)) =
Xχi(Aτ)Xχi(A). Also by Lemma 5 of [3], λχ,(ikf)/λχ,(L) = a2 = [λχ,(A)]2 =
Xχ,(AJ)Xχ,{A). Therefore, by (2) we have M = ATLA.

It remains to show that (ii) => (iii). Since Xχ,{ML~ι) = α:2 and
λ^ikflΓ1) = i\Γ(/3) where aeB' and /5 e R we have that det ML~ι =
o^Nκ/F(N(β)). Since M and L are unimodular, det ML""1 is a unit in
i?', and hence /9 is a unit in R. We shall show NκlF(N{β)) e R\ Then
α; will be a unit in R'. The irreducible polynomial of ζ over i*7 is
a ff-i + + a; + 1. Therefore, each element of R can be written
uniquely in the form a& + α2ζ + + α ^ ζ * " 1 where at e R\ Therefore,
Nκ,F(N(β)) = αxζ 4- + aq^ζq~ι e F where ê  e R'. Since this expres-
sion is unique and since it is invariant under each τ e &(K/F) it
follows that aί = α2 = = αff_lβ Hence Nκ{F(N(β)) e R'.

Now let us expand our considerations to discuss group matrices
for an arbitrary abelian group G of order n. Let o denote the
ring of integers of a local field F. A group matrix A for G over o
is an ^-square matrix of the form A = ^geoUgPiQ) where ageo and
P is the left regular representation of G so that using the elements
of G to index the rows and columns of P(g) it follows that the (k, h)
entry of P(g) is 1 if gh — k and zero if gh Φ k. As in [3], for each
character 1 on G, we define Xχ(A) = ^g&G

LEMMA 2. Let G be an arbitrary abelian group of order n. Let
F be a local field whose characteristic does not divide 2n. Suppose
n is a unit in o of F. Let M and L be symmetric unimodular
group matrices for G over o, the ring of integers of F. Then there
exists a group matrix A over o such that M = A7 LA if and only if
X7(ML~ι) is the square of a unit in o for each X of order 1 or 2.

Proof. (=>) Since M and L are unimodular Xχ(ML~ι) = Xχ(M)/Xχ(L)
is a unit in o for each X of order 1 of 2. The result now follows
from Theorem 1 of [3].

(<=) Let {X*} be an independent set of characters. (See defini-
tion in §2 of [3].) If the order of %* is 1 or 2 and XχχML~') =
Xχ£M)/XχXL) = eft* where αz + is a unit in o, let λχ# = aχ,. Suppose the
order of X*isd>2. Let K=F(ζd) and k = F(ζd + ζd~

1) UK=k thenby
Lemma 6 of [3] we can assume that the ώ-order independent characters
occur in independent inverse pairs (X*, X*~ι) no two of which have a
character in common. For the pair (%*, Z*"1) let λχ, = X*£M)IXχ£L)
and λzΓi = 1. Now suppose [K:k[ = 2. Then, from 32:6a of [10],
K is a quadratic unramified extension of k. So, since M and L are
unimodular, it follows from 63:16 of [10] that \χ£M)/Xχ£L) e Nκlk(U)
where U is the group of units of the local field K. Suppose
Xx£M)IXχ£L) = Nκlk{aχ,) where az, e U. Then let λχ# = aχ*. Now use
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Lemma 2 of [3] along with the fact that n is a unit in F and that
λχ, is a unit in F(ζd + ζd~

ι) where d is the order of X* to define a
group matrix A over o. Proceed as in the proof of Theorem 1 of [3]
to show that M = ATLA.

4* Local theory* Let the notation be that described in §2
with the following additions. Let p denote an arbitrary prime. Let
Qp be the 39-adic numbers. Let the F of § 2 be Qp. Let O be the
ring of integers of K. Let Rf — Zp denote the p-adic integers and
U' the group of units of Zp. If F is a field let F denote the multi-
plicative group F\{0}.

LEMMA 3. If p = q then O = Zp + Zpζ + + Z ^ " 2 .

Proof. Let £ be the spot on Qp and 5̂ the spot on K. Let | |φ
the normalized valuation on K. Let Π = ζ — 1. Since if = Q^ +
Qpζ + - + Q^~ 2 it follows that K = Qp + Q /̂7 + + QP/7g~2. So
if α e O then α = α0 + α ^ + . . . + aq^2Π

q~~2 where α̂  e Qp. By Lemma
2(ii) of [4], K is a totally ramified extension of Qp of degree g — 1
and Π is a prime in K. Hence if α̂  e Qp then | ct̂  |φ = p-c{q-1] where
c = o r d ^ . Therefore, ifO^j <i^q-2 and aif a3- e Qp then | a^ |¥ ^
I αj /P* |φ By the Principle of Domination for any a5 e Qp where 0 <£
j ^ g - 2 we have

1 ^ I a | 9 = max {| ^77* |,: 0 ^ i £ q - 2} ^ | α i77y |, = v-*«-»s

where e = ordp a3-. Hence c ^ 0 and so | α̂  1̂  ̂  1.

THEOREM 1. Lei M and L be symmetric unimodular q-square
circulants over Zp. Then there exists a q-square circulant A over Zp

such that M= AΎLA if and only if Xχ,{ML-1) e U'\

Proof. (=>) Since M and L are unimodular, xχ,(M)/Xχ,(L) e Ur.
Now use Theorem 1 of [4].

(<=) By Theorem 1 of [4] there exists a circulant B over Qp such
that M= BΎLB. Hence by Theorem 1 of [3], Xχ{ML~ι) = Xχ(M)/Xχ(L) e
N(K). Since M and L are unimodular, by 32:3 of [10], Xχ{ML~ι) =
Xx(M)/Xχ(L)e N(U) where U is the group of units in O of K.

If p ~ q the conclusion follows from Lemma 2(ii) of [4] and
Lemmas 1 and 3 where F = Qp, Rf = Zp and R = D. If p Φ q use
Lemma 2 with F = Qp and o = Zp.

COROLLARY 1.1. Let M and L be symmetric unimodular circu-
lants over Zp. There exists a circulant B over Qp such that M = BTLB
if and only if there exists a circulant A over Zp such that M = A1 LA.
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Proof. (=>) By Theorem 1 of [4], Xχ,(MIΓι) £ Q\. Hence
\χ{ML~ι) e Ur\ The result now follows by Theorem 1.

THEOREM 2. Let {εl9 ε2} or {εl9 ε2, ε3, ε4} be representative of the 2
(if p Φ 2) or 4 (if p = 2) square classes, U'jU'2, of units of Zp. For
a given symmetric unimodular circulant M over Zp there exists a
unique e< such that M — AΊ(eiI)A for some circulant A over Zp (where
I is the identity matrix).

Proof. Pick the ε< which is in the same square class as Xχ,(M)
and use Theorem 1.

DEFINITION. Let S denote the set of symmetric unimodular cir-
culants over Zp. Let My Le S. We say M is G-congruent to L if
there exists a circulant A over Zp such that M — AΎLA. The equiva-
lence relation of G-congruence partitions S into equivalence classes
called G-classes of S.

COROLLARY 2.1. If p Φ 2 there are two G-classes of S. If p = 2
there are four G-classes of S.

DEFINITION. Let M be a symmetric unimodular circulant over Zp.
Define the discriminant of M, denoted dM, to be the square class of
the determinant of M, i.e., dM = (det M)/U'2.

THEOREM 3. Let M and L be symmetric unimodular circulants
over Zp. Then M and L are G-congruent if and only if dM — dL.

Proof. Use Theorem 2 and the fact that q is odd.

5* Global theory• Let the notation be that of § 2 except that
now F — Q, the rationale, and Rf = Z the rational integers. Let R
denote the ring of algebraic integers of K and U its group of units.

DEFINITION. Let G be an arbitrary abelian group. Let G1 denote
the group of all symmetric unimodular group matrices for G over Z.
Let G2 denote the subgroup of Gt consisting of all the positive definite
group matrices. Let M, LeGx. Consider the following two equiva-
lence relations on Gx.

(i ) We say M and L are G-congruent if there exists a group
matrix A over Z such that M = ATLA. The equivalence relation of
G-congruence partitions G1 into subsets which we call G-classes. A
typical G-class is denoted as follows

els M — {L e Gx \ M and L are G-congruent} .
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Let n1(G)9 respectively n2(G), denote the number of subsets into which
G-congruence partitions Glf respectively G2.

(ii) We say M and L are in the same inertia class if ML is
positive definite. We denote an inertia class as follows

int M = {LeG1\M and L are in the same inertia class} .

Let i(G) denote the number of inertia classes into which G1 is
partitioned.

PROPOSITION. Let M and L be symmetric unimodular group
matrices over Z. The following are equivalent9.

( i ) ML is positive definite.
(ii) Xχ(M)Xχ(L) > 0 for each 1.
(iii) ML"1 is positive definite.
(iv) There exists a group matrix A^ over the reals such that

M = AILA^.
(v) There exists a group matrix A over Q such that M = ATLA.

Proof. It is clear from §2 of [3], (i) <=> (ii) <=> (iii). To show
(iii) <=̂  (iv) use Corollary 1.2 of [3]. That (v)=*(iv) is immediate. If
(iv) holds then ML~ι is positive definite. Now apply Corollary 2.1 of
[4] to get (v).

THEOREM 4. Let M and L be symmetric unimodular group
matrices over Z. If els M = els L then int M = int L. Furthermore,
given any two inertia classes the number of G-classes lying inside
each of them is the same.

Proof. The first assertion is immediate. To establish the second
assertion let int M be an arbitrary inertia class. Let G\ denote the
group of all squares in Gλ. Consider G2jG\ which is a subgroup of
GJGl and (int M)jG\ which is a subset of GJGl By Theorem 4 and
Corollary 1 of [5] it suffices to show there is a one-to-one correspondence
between the cosets of (intM)/Gl and the cosets of G2\G\. Let
GJGl = {Mfi\, , MsGt}, where M, e G2 (1 ^ i ^ s). Let

τ: GJGl > (int M)/G\

via

for 1 ^ i ^ s. It is easy to show that r is one-to-one. To show r
is onto let L e int M. Show MMβl = LG\ for some i. Since M~γL e G2

we have that MrγL e M4Gl for some i. Therefore, M~ιLG\ = Mfil and
hence MM{Gl = MiM^LGl) = LGl
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COROLLARY 4.1. Let G be an arbitrary abelian group. Then
i(G)n2(G) = njfi). (A formula for n^G) can be found in [5].)

Let us once again restrict our discussion to g-square circulants.
Even in this restricted setting the converse of the first assertion of
Theorem 4 does not hold. The example at the end of this paper
shows that int M = int L does not necessarily imply that els M = els L.

The following question is central. If M and L are symmetric
unimodular circulants then when does there exist a circulant A such
that M = AτLA, i.e., when is it that clsikf = clsL? If ML~ι is not
positive definite (i.e., int ikf^intL) (and this is easily checked by
computation) then els M Φ els L. So we may assume ML"1 is positive
definite. The question thus reduces itself to the following question.
When is a positive definite circulant G-congruent to the identity
matrix /? (Since G is abelian M = ATLA if and only if ML'1 = ATA.)
Conversely, if criteria can be produced which will establish when two
indefinite circulants are G-congruent then the question of whether or
not two positive definite circulants are G-congruent can be answered.
For if M and L are positive definite circulants and N is an arbitrary
indefinite circulant then NM and NL are indefinite and NM and NL
are G-congruent if and only if M and L are G-congruent. This inter-
dependence of the definite and indefinite case (also see Theorem 4) is
the most striking way (as far as the author can see to date) in which
the theory of G-classes differs from the ordinary theory of classes of
quadratic forms as found in say O'Meara's book [10]. In the ordinary
theory of classes of quadratic forms if M and L are symmetric uni-
modular indefinite matrices over Z, computable criteria exist for
determining whether or not there exists a matrix A over Z such
that M= ATLA [12, Theorem 4 and 5, pp. 92-93]. Whereas if M
and L are positive definite the situation is quite different and the
theory is by no means as definitive.

As an aid to answering the above-mentioned central question we
shall give a proof of 0. Taussky's result [13] using Lemma 1.

THEOREM 5. Let M and L be symmetric unimodular q-square
circulants over Z. Let V denote the group of units in the ring of
algebraic integers of k. The following are equivalent:

( i ) There exists a circulant A over Z such that M — A1 LA,
(ii) XUML-1) = 1 and Xχ{ML~ι) e N(R).
(iii) Xr{ML~l) = 1 and Xχ(ML^)e N(U).
(iv) Xχ,(ML-1) = 1 and Xχ{ML~ι)e V\

Proof. From Lemma 1 and 7-5-4 of [15] it follows that (i)<=>(ϋ)<^
(iii). The equivalence (iii) =̂> (iv) follows from Lemma 10.11 on page
119 of [11].
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According to tradition E. C. Dade has shown that for all primes
q < 100 except for q = 29 every positive definite symmetric unimodular
^-square circulant over Z is in the same G-class. Since this result is
not in the literature we will prove Theorem 6 which most likely
repeats much of what he did.

Let k = Q(ζ + ζ"1), the maximal real subfield of Q(ζ) where ζ is
a primitive qth root of 1. Let V denote the group of units in the
ring of algebraic integers of k. Let V2 denote the group obtained
by squaring all the elements in V. Let T be the group of totally
positive units in V. Let vlf -—,vp denote the cyclotomic units, i.e.,

Vl = - 1 and vt = (ζ* - ζ-')/(ζ - Γ1) for i = 2, 3, , p where p =
(q - l)/2. (See page 7 of D. Davis' thesis [1].) Let W denote the
subgroup of V generated by the cyclotomic units. Consider the Galois
group &(k/Q) = {σl9 ---,σp} where p = (q - l)/2. If ae k let

where p{p3{cc)l\σj(a)\) is in the jϊh. position and where | | denotes the
ordinary absolute value function and p: {1, — 1} —> GF(2) via ^(1) = 0
and ρ( — 1) = 1. Let Mq be the matrix of cyclotomic signatures [1,
p. 8] i.e., the p-square matrix whose ίth row is τ(Vi). Consider the
vector space [1, p. 10]

GF(2)5?(k/Q) = (flA + + apσp | α< = 0 or 1} .

Let

via

sgn(α) = Σ Pi<*Aa)/\ σd(a) \)σό .
J = l

The map sgn is a homomorphism from the multiplicative group V into
the additive group of GF(2)^(k/Q) [1, Lemma 2.4, p. 10]. The kernel
of sgn is Γ. Thus V/T as a multiplicative group is isomorphic to the
additive group sgn V. Now thinking of sgn V as a vector space over
GF{2) we see that (V: T) = 2a where a is the dimension of sgn V.

THEOREM 6. Let G be a group of prime order q. Then n2(G)
divides 2^s where s denotes the rank of Mq and p — (q — l)/2.

Proof. Let b be the dimension of sgn W. Then b ^ a where a
is the dimension of sgn V. Thus by Theorem 2.6 on page 11 of [1]
2s = 2b ^ 2a = (V: T). Since (V: V2) - 2P [1, Theorem 2.3, p.9] we
have that (Γ: V2) - (F: F2)/(F: T) ^ 2P~S. Let M and L be elements
of G2. If λz(Af) and λχ(L) are in the same coset of T/V2 then by
Theorem 5 there exists a circulant A over Z such that M = AΊLA.
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Hence n2{G) ^ (T:V2) ^ 2P~S. By Theorem 6 of [5], n2(G) divides 2P~8.
The tables in the back of D. Davis' thesis [1] inform us that for

all primes q < 100 except q ~ 29 the rank of Mq is p. In fact, the
tables reveal that for all but 24 of the 156 primes q < 1000 the
rank of Mq is p. By Theorem 6 if q is not one of the exceptional 24
primes, n2(G) = 1. The example at the end of the paper shows that
in the case q = 29 we have that n2(G) ^ 2.

THEOREM 7. Let q be an odd prime. Let the order of G be q.
Ifp = (q — l)/2 is prime and if 2 is a primitive root mod p then
n2(G) = 1.

Proof. Use Theorem 3.5 of [1, p. 32] and Theorem 6.

THEOREM 8. Let q be an odd prime ^ 7. Let the order of G be
q. If p = (q — l)/2 is a prime and p = 3 mod 8 and if (p — l)/2 is
prime then n2(G) — 1.

Proof. Use Corollary 3. 5.1 of [1, p. 33] and Theorem 6.

6* The G-genus*

DEFINITION. Let M and L be symmetric unimodular group
matrices over Z. We say M and L are in the same G-genus if for
each prime p there exists a group matrix Ap over Zp such that M =
AP

TLAP and there exists a group matrix A^ over the reals such that
M = A^LA...

THEOREM 9. Let M and L be symmetric unimodular circulants
over Z. Then M and L are in the same G-genus if and only if M
and L are in the same inertia class.

Proof. (==>) This is immediate.
(<=) This follows from Theorem 1.

Thus the class number question as translated into the group
matrix setting (i.e., how many G-classes lie in a G-genus) because of
Theorem 4 can be resolved for g-square circulants if n2(G) can be
computed.

7* An example* The following example will show that if G is
a group of order 29 then n2(G) ^ 2.

Let p be a prime integer. Let A = Z/pnZ where n ^ 1. Let
<Pn\ An -* Aπ_! via φn(x + pnZ) = x + pn~ιZ. The inverse limit
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Zv = lim (An, φ%)

, + pZ, Xz + p2Z, •••)£]! An\ φn(xn + p Z)
w = l

= ».-i + P*"1^ for w ^ 2}

is the ring of p-adic integers [12, p. 23] where addition and multipli-
cation are coordinate wise. Let Qp denote the p-adic numbers, i.e., the
quotient field of Zp [12, p. 26]. Let An denote the multiplicative
subgroup of An.

From now on p shall denote the prime 59. Since the order of An

is pn~\p — 1) it follows from the corollary on page 53 of [6] that
there exists a unique multiplicative subgroup of An of order 29.
Denote this subgroup by Wn. Let φn restricted to Wn be denoted
by φ'%.

PROPOSITION. For n iΞ> 2 the map φ'n is an isomorphism from
the multiplicative group Wn onto the multiplicative group Wn^. The
inverse limit W^ — lim( Wn, Ψr

n) is the multiplicative group of all the

29th roots of 1 in Zp.

Proof. Let o( ) denote "the order of." Since o(An) = pn~ι(p - 1),
by the Fundamental Theorem of Finite Abelian Groups we can express
An as the following internal direct product, An = Wn x Bn where
o(Bn) = 2pn~\ Likewise An_, = Wn-X x Bn_, where o(Bn^) = 2pn~2.
We want to show that Φn(Wn) S Wn^. The map ψn is a multiplicative
homomorphism of An onto An_x. Suppose zeWn and <Pn(z) = x-y
where xe PΓn_ι and ye Bn_,. Since z29 = 1 and x29 = 1, we get y2Q = 1.
Therefore, o{y) divides 29. But o(y) divides oiB^). Hence o(y) = 1.
Similarly φn{Bn) g 5%_1. Since <P maps An onto ^4%_!, the above results
establish that <P'n(Wn) = TΓ^. Also if a;eZ p then x29 = 1 if and only
if ^ G T 7 T O .

Now to construct a number ue Zp which among other things is
not a square in Qp. First note that 3 + pZ Φ 1 + pZ, but (3 + pZ)29 =
1 + pZ. By the preceding proposition there exists one and only one
a = (xί + vZ, •) e W^ such that a?x + pZ= 3 + pZ. For ΐ = 2, 3, , 14
let

( 4) u< = (α* - α'-1)/(α' - α:"1) .

Let

u = (u2u3u5u7u8u9unuls)(u^u10u12y .

For j = 1, , 14, let ω, = α J + α"5". If i is even (2 ^ i ^ 14), then
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( 5) Ui = ω1 + ω3 + ω5 + + ω{_, .

If ί is odd (2 ^ i £ 14), then

( 6 ) M{ = 1 + ω2 + ω4 + ω6 + + ω^ .

Hence for 2 ^ ί ^ 14, t^e Z p . To show tt is not a square in Qp it
suffices to show w = u2u3uδu7u8u9unu13 is not a square in Qp. Using
(4), (5), and (6) one can deduce that w = (y, + pZ, •) is a unit in Zp.
By Theorem 3 on page 34 of [12], w is a square in Qp if and only
if yι + pZ is a square in Alβ Calculation using (5) and (6) will show
that yγ + pZ — 33 + p ^ . Let (-^) denote the Legendre symbol. Since
(33/59) = — 1 , it follows that 33 + pZ is not a square in A1 and hence
u is not a square in Qp.

Let ζ be the following complex number ζ = β2τi/29. Let K = Q(ζ)
and ft = Q(ζ + ζ"1). For i = 2, 3, , 14, let

v4 = (ζ* - ζ-')/(C - C-1)

and let

Let Q(a) be the smallest field in Qp containing Q and a. Let 9(x) =
1 + x + x2 + + a;28. Then both Q(ζ) and Q(a) are splitting fields
of φ(x) over Q. By the corollary and Theorem 5.J. on page 184 of
[6] there is an isomorphism σ from Q(ζ) onto Q(a) fixing Q such
that tf(ζ) = a. Now T eft [1, p. 7]. If v were a square in k then
σ (v) = u would be a square in Q(a) S Q ^ a contradiction. Hence v is
not a square in ft. Furthermore, it can be shown that v is a totally
positive unit in the ring of algebraic integers of ft. This can be done
directly or by using the more rapid methods of Chapter II of [1].

For j = 1, 2, , 14, let yό = xj + x29'3'. If i is even (2 ^ i ^ 14),
let

If i is odd (2 ^ ί ^ 14), let

Vi(α ) = 1 + y2 + y*

T h e n Vi(ζ) = Vi a n d ^ ( 1 ) = i. L e t

Then v(ζ) = v and v(l) = 1 mod 29.
If α(α) G Z[α;] and if b(x) = a(x) + tφ(x) where ί e Z then α(ζ) = δ(ζ)

but 6(1) = α(l) + 29ί. Hence there exists m(«) e Z[x] of degree at
most 28 such that m(ζ) = v and yet 0 ^ m(l) ^ 28. Since v(ζ) -
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m(ζ) = 0, we see by using the corollary on page 269 of [2] that
v(x) — m{x) = c{x)φ{x) where c(x) e Z[x]. Since v(l) = 1 mod 29 and
φ(l) = 29 we get ra(l) = 1. If m(x) = m0 + m ^ + + m28x

28 then
let I f = Σ<=o "rriiPiQ1)' This ikf is a positive definite, symmetric, uni-
modular, 29-square circulant over Z such that λχ(ikf) is not the square
of a unit and hence by Theorem 5, M and I are not G-congruent.
Thus n2(G) ^ 2.
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