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WHITEHEAD GROUPS OF TWISTED FREE
ASSOCIATIVE ALGEBRAS

KOO-GUAN CHOO

Let R be an associative ring with identity and X a set of
noncommuting variables {xχheΛ Let R{X} be the free associa-
tive algebra on X over R. Then S. Gersten has shown that
if KίR-^^Rlt] is an isomorphism, where R[t] is the polyno-
mial extension of R, then KXR -> K^X) is an isomorphism.

The purpose of this paper is to extend the result of
Gersten to twisted free associative algebras.

Let R be an associative ring with identity and X a set of non-
commuting variables {xλ}χGA and α = {aλ}λeΛ a set of automorphisms aλ

of R. The α-twisted free associative algebra on X over R, denoted
by Ra{X), is defined as follows:

Additively, Ra{X) = R{X} so that its elements are finite linear
combinations of words w(xλ) in xλ with coefficients in R.

If w(xx) = xλι xλ}c is a word in xλ, we denote the automorphism
ah aλk by w{aλ).

Multiplication in Ra{X} is given by:

(rw(xχ))(r'w'(xλ)) = rw(aλy
ι{r')w{xλ)w\xλ) ,

for any rw(xλ), r'w\xλ) e Ra{X}.
In particular, if X = {t} and α = {a}, then Ra{X) is just the a-

twisted polynomial ring i?α[ί].
We shall consider Ra{X) as an i?-ring with augmentation εx:

Ra{X} -> R defined by ex(xλ) = 0 for each x̂  e X Denoted by KJta{X}
the cokernel of the homomorphism i*: KXR—> K^J^X} induced by the
inclusion i: R-*Ra{X). Note that the augmentation ex induces a
homomorphism εx*\ K1Ra{X}—> KXR which splits i*.

Let TΓ(X) be the set of all the words w(xλ) in xλ. For each w(xλ)
in W(X), let βw be the automorphism w(aλ), hβw the homomorphism of
Rβw[t] into i2α{X} defined by hβw(t) = w(xλ) and Λ ŵ the homomorphism
of KJΪβv[t\ into KJRa{X] induced by hβw. Then our main result is:

THEOREM 1. The group K^J^X) is generated by the homomorphίc
images of K^β^t] under hβw and w(xλ) runs over W(X).

As a consequence, we have:

THEOREM 2. {Twisted Case of Gersten's Theorem). If KJct-*
K1Rβw[t] is an isomorphism for each βw, then KJt-^ KJEt^X] is an
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isomorphism.

Now, let A be an invertible matrix over Ra{X}. By Higman's
trick (cf. [4]), we can make A equivalent in KJla{X} to

B = BQ + BLx, + + Bnxn ,

where xl9 , α?» are distinct elements of X and Bt(i — 0, 1, , n) are
m x m matrices over iϋ for some integer m. By applying the homo-
morphism εz* to 5, we deduce that Bo is invertible. Hence A can be
made equivalent in KJt^X] to

where N = JB0-\B and ΛΓ, = ̂ ^ ( i = 1, , n).
The inverse of this matrix N can be written explicitly in the ring

of formal power series. Since this inverse exists in Ra{X}> all but a
finite number of the power series coefficients are zero. That is, if

M - MQ + M&i + + Mnxn + Σ Mi,ύxixj +

is a matrix over i£Q{X}, where all Mi9 Mifj, are matrices over J?,
such that MN = iVM = /, then there is an integer K > 0 such that
Miιti2,...,ik ~ 0 for all k > K, where ίly i2, , ik run over 1, , n
respectively. From NM = I, we get, by equating coefficients of
monomials in the x% the following relations:

Mo - I;

M<= -Ni (i = l, •••,**);

Miti = Ntθf{Ni) (i, i = 1, •• ,w);

Λfίl><2f...,4i - (-lyΛΓ^Γ,1^) ( « *T

( ί i , ^ 2 , •••, ΐ * = 1 , •••, ̂ )

Hence, for all k > K,

( 2 ) Nt&iNJ ( « < J W 4 ) - 0 .

Let us call a matrix P over R β-twisted nilpotent (β is any auto-
morphism of R) if there exists an integer k > 0 such that

Pβ~\P) - β-^-^F) = 0 .

Hence, it follows from (2) that each N{(i = 1, , n) in (1) is α'r

twisted nilpotent.
Our next lemma is the key to the main result:
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LEMMA 3. The matrix N in (1) is a product of matrices of the
form I + Pw(xlf •••,&„), where P is an w(alf , an)-twisted nilpotent
matrix over R. (w(xlf •••,»«) denotes a word in xlf , xn.)

Proof. Recall from (1) and (2) that each Ntf = 1, , n) in (1)
is αvtwisted nilpotent. Consider

/ + Q = (/ - NχXj . . . ( / - Nnxn)N .

Then Q is of the form Σ ; QjSy, where Sj is a monomial of degree at
least two in the xlf , xn. In fact, if sy = xhxi2 xit(l ^ 2), then

( 3 ) Qό = ± Nt&XNJ « αςLJTO

Hence, for k > K/2,

Qiβ'KQi) fl-'^ίQy) = 0 ,

for each i, where /9 is an automorphism obtained by replacing the xt

in Sj by α< respectively. That is, Qy is Sy(αlf , αΛ)-twisted nilpotent
for each j . Now, consider

/ + Q' = Π (/ - &«,)(/ + Q)

Then Qr is of the form Xσ Qσ2/σ? where each yσ is a monomial of degree
at least four in the xlf -, xn and for I ^ 4, Q̂  is of the form as given
on the right hand side of (3). Thus, for k > K/£,

QΌTWO) 7-(fc-1}(Q'α) - 0 ,

for each σ, where 7 is an automorphism obtained by replacing the xt

in yσ by at respectively. That is, QΌ is yσ(alf , αv)-twisted nilpotent
for each σ.

Left multiplying / + Qr by Πα (/ — Qσ2/σ)τ and repeating the above
argument, we will finally arrive, after a finite steps (because of the
finite bound K and condition (2)), at the conclusion that

where P is an w(alf , <xw)-twisted nilpotent matrix over R and
w(xlf , xn) is a word in ^, , xn.

This completes the proof.

The above discussions are modifications of those given in [3] and
([1], p. 647) for (untwisted) free associative algebras; and the following
result is already contained in the above proof (also cf. [2]).
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LEMMA 4. For any automorphism β of R, KJRβ[t\ is generated by
the elements of the form I + Pt, where P is an β-twisted nilpotent
matrix over R.

Proof of Theorem 1. It follows immediately from Lemmas 3 and 4.
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