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A NEW CLASS OF INFINITE SPHERE PACKINGS

DAVID W. BOYD

The packings considered in this paper are packings of a
unit sphere in iV-dimensional Euclidean space by an infinite
number of unequal spheres. More specifically, we are inter-
ested in complete packings, those which exhaust the volume
of the packed sphere.

The oscillatory or Apollonian packing in two dimensions is well
known and is described for example in [13]. Recently we investigated
the three dimensional osculatory packing of a sphere [4] However,
the results of that paper indicate that, for N > 3, ΛΓ-dimensional
osculatory packings are irregular and not invariant under inversion
as is the case for N = 2 and 3. In this paper we introduce a class
of packings which we call discrete packings, and produce some ex-
amples. This class is analogous to the class of lattice packings which
appear in the theory of packings of equal spheres.

We shall use the systems of polyspherical coordinates developed
in [4]. Section 2 contains a description of these as well as the proofs
of some additional results needed here. The idea of the separation
Δ{X, Y) between two spheres X and Y will again play an important
role.

In § 3 we consider inversively generated configurations obviously
generalizing the construction used in [4]. That is, we begin with
a 'cluster' of (N + 2) disjoint spheres and by successive inversions
replace the spheres one at a time with new spheres in such a way
that the separations between the spheres in the new cluster are the
same as for the initial cluster. In terms of polyspherical coordinates
the necessary inversions are represented by matrices which preserve
a certain indefinite quadratic form. Repetition of the process leads
to a configuration of spheres in EN which may or may not be a
packing, depending on the initial cluster.

In § 4 we give sufficient conditions under which an inversively
generated configuration is a packing. The conditions force the separa-
tions between the spheres in the configuration to lie in a discrete
subset of the rational numbers, hence the name 'discrete packing'.
In addition to the two and three dimensional osculatory packings, we
give examples of discrete packings for dimensions 2, 3, 4, 5, and 9.
We do not know yet whether such packings exist in all dimensions.
The examples we have found are given in § 6.

The packings described in § 4 are not in general osculatory; that
is, the largest possible sphere is not generated at each step. However,
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they are if-osculatory, a natural generalization of oscillatory, which
we introduce in § 5. We prove in that section that Z-osculatory
packings are complete and that they have exponents strictly less than
N. We then prove that all inversively generated configurations which
are infinite packings are in fact if-osculatory.

In § 6, we give thirteen examples of discrete packings and discuss
their exponents and cross sections. The cross sections arise when one
chooses two of the spheres in the cluster to have zero curvature.
The centers of the spheres in the cross section form a lattice in EN_λ

which is invariant under a group generated by N reflections. Since
Coxeter [6] has determined all such groups, it would appear that
there is a possibility of classifying all discrete packings but that is
not attempted here.

We gratefully acknowledge a letter from Professor J. B. Wilker
in which he pointed out that the matrices Bt of [4] represent inver-
sions. He also proposed a study of the groups generated by these
inversions.

2* Polyspherical coordinates* We shall use the word sphere to
mean an iV-sphere or ΛΓ-ball. If f, ae EN and r Φ 0 we write

S(a, r) = {£: | | - a | < r) if r > 0

= {f: | | - a\ > -r} if r < 0 .

Thus we specifically allow spheres with negative radius. The curvature
ε(X) of a sphere X is the reciprocal of its radius. We consider a
half-space to be a sphere with zero curvature. If hεEN and n is a
unit vector in EN we write Π (δ, n) = {ξ (f — b) n < 0}, and consider
Π (b, Ίk) to be the limit as r —> oo of S(b - rn, r). If X = S(α, r),
^ = : S(b, s) and d = | a — b \, then the separation A(X, Y) between X
and Y is defined by Δ(X, Y) = (d2 - r2 - s2)/2rs, and by the limit of
this expression if r or s is infinite. By inversion in a sphere X, we
mean inversion in its boundary. The quantity Δ(X, Y) is invariant
under inversions.

Given any N + 2 spheres Xl9 •••, XN+2, let A denote the matrix
(Δ(Xi9 Xj)). We call A a separation matrix. If Δ is nonsingular then,
as shown in [4], these spheres can be used as a basis for a system
of polyspherical coordinates as follows: For any sphere Y we let
c(Y) = (A(Yf Xλ)f •••, A(Y, XN+2))T. The polyspherical coordinates of
Y with respect to Xl9 •••, XN+2 are defined by a(Y) = A~ιc{Y). Let
et be the curvature of X{ and ε = (elf , eN+2)

τ. Then the curvature
of Y satisfies

(1)

The vector ε satisfies the generalized Descartes formula:
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( 2 ) eτJ^e = 0 .

For any two spheres Y and Z we have

( 3 ) A{Y9 Z) = c{Y)TA~lc{Z) = a(Y)τAa(Z) = a(Y)τc(Z) .

The Cartesian equations of Y are easily obtained from α( Y) and the
Cartesian equations for Xl9 , X^+2 as shown in [4].

The next result, needed in § 6, was mentioned in [4] but not
proved. It is a generalization of a result of Mauldon [12] for the
case A(Xif Xj) = — 7 for i Φ j, where 7 is a constant.

LEMMA 2.1. Suppose that Xlf — ,XN+2 are spheres for which
A = (A(Xif Xj)) is nonsingular. Then A has one positive and N + 1
negative eigenvalues.

Conversely, let A = (J ί y) 6e α symmetric matrix with diagonal
entries all equal to — 1 , <mc£ having one positive and N + 1 negative
eigenvalues. Then there are real nontrivial solutions ε = (εL, , ε#+2)
of (2), αmZ /or α^^/ such solution there are spheres Xl9 , XN+2 with

A(Xi9

Proof. As in the proof of Lemma 1 of [4], if X=S(c9 r), let u(X) =
r-\l/2,1 c |2 - r2, - c l f , - c * ) Γ and v(X) = r^d c |2 - r2,1/2, c19 - , c^f.
If r = oo, define ^(X) and v(X) by the limits of these expressions.
Clearly A(X9 Y) = u{X)τv{Y) so - A = AB7\ where A has rows u(X,)Γ

and ΰ has rows v(Xj)τ. If the columns of A are the (N + 2)-vectors
#i, •• , # i V + 2 then the columns of B are — x2, —xhx3f -—9xN+2. The
representation yτAy = —yτA{Byτ)τ shows that A has signature

Conversely, if A has signature ( + , —, •••, —) then (2) has non-
trivial solutions in the span of the first two eigenvectors of A~\ We
shall show that A has a factorization as — ABT where A has columns
(l/2)ε, x2f , xN+2 and B has columns —x2f -(l/2)ε, x3, , xN+2. The
fact that the diagonal elements of A are all — 1 then shows that the
rows of A are of the form u(X) for real spheres X. Note that
there is a nonsingular P so that

( 4 ) -A = PDPT,

where D = diag ( - 1 , 1 , , 1). Write y1 - (1/2)P~^, and y2 - -a2Dy19

where a = l/\y1\. Then one can choose yz, •••, yN+2, vectors whose
first component vanishes such that y2f , yN+2 are mutually orthogonal.
Then yl9 y3, , yN+2 will be orthogonal, and D = (y,y2 yN+2)
{ — yl —yΐvϊ ••• VN+IY Combining this with (4) completes the proof,
taking x{ = Pyi.
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LEMMA 2.2. Let A be a nonsingular separation matrix for which
Ai3 ^ 1 if i Φ j . Then there are disjoint spheres Xl9 , XN+2 such
that A(Xif Xd) = Ai3 for all i and j . Furthermore, Xx can be chosen
with εx < 0 and such that its center lies in the interior of the convex
hull of the centers of X2f , XN+2

Proof. We seek a vector ε with εί < 0 and s* > 0 for i > 1 which
satisfies (2). We shall further require that if /c = Δ~ιε then κt > 0
for all i. This ensures that the center of Xt is in the convex hull of
the centers of Xlf ••-, XN+2*, for, if Z3 is a half-space orthogonal to
all Xi except X3 and Xx and if Z3 contains the center of X3, then
by (l),

( 5) 0 = ε(Z3) = κAZh Xd + fc3A(Z3, -Σy) .

Equation (5) shows that the signs of A(Zά, XJ and A{Zh X3) are opposite
and thus the centers of X1 and X3 both lie in Z3. This being true
for all j proves our claim.

We thus now seek K with all /̂  > 0 so that /cτΔ/c = 0. Since
A + 21 has entries all exceeding 1, the Perron-Frobenius theorem [10,
p. 49] shows that A has an eigenvalue p ^ N, and a corresponding
positive eigenvector ξ. Let fc = ξ + ae1 where eγ is the usual unit
vector and a is to be chosen. A direct computation shows that there
is a positive a which makes κτΔtt = 0, and that for i = 2, , N + 2,

( 6 ) 0 < - ε, = a - pξ, < a < aAH + pξ, = e< .

(βi < 0 since κτε = 0.) The inequalities (6) and Δ(Xif X3)^l for i=^j"
imply that X{ and X, are disjoint for i Φ j .

LEMMA 2.3. Let A satisfy the conditions of Lemma 2.2, and
let A"1 = (qi3). Then qu < 0 for all i and q%- ^ quq33 for all i and j .

There are real spheres Yl9 •••, YN+2 such that Δ(Xif Y3) = 0 for
j Φ i and Δ{Yh X^ > 0 for all i.

Proof. Let A[i) be the ίth principal minor of A. If A has eigen-
values λj. > 0 > λ2 ^ ^ λ^+2, and A(i) has eigenvalues vx ̂  v2 ̂  Ξ>
yiV+1, then it is known [10, p. 76] that X1 ̂  vx ^ λ2 ^ ^ y^+1 ̂  1^2.
Now z/(ί) + 2J is a positive matrix with an eigenvalue exceeding JV + 1
so vt ^ N - 1 > 0. Hence g« = det A{i)jάet A = v1 v^+ΛΓ1 ^-2 < 0.
The required sphere Yi has coordinates c(Yi) = eV(~fe)1/2

Given any i Φ j let k be different from both i and i Then Ŷ
and Y3 are orthogonal to Xk and hence must intersect or at least
touch each other. Thus \A(Yif Y3)\ ̂  1. But qi3 = eWιes =

h Y3){-q33)
ιί\ hence q% ̂  q^33.
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In terms of the biorthogonal spheres Y{ obtained in Lemma 2.3,
the ith coordinate of a sphere X is given by a{(X) = ( — qu)

ll2A(X9 Y^.
The vector ic = Δ~ιε used in Lemma 2.2 satisfies fc{ = ( — ?«)1/2ε(Yi).
We will write Ω = (A(Yiy Yj)) so that Ωi5 = fc/(-fe)1/2(-^i)1/2. Accord-
ing to the proof of Lemma 2.3, Ω{j = —cos Θ, where θ is the angle
between the outward normals to Yi and Yj at a point of intersection
or contact. There is of course a simple relation between Ω"1 = {pi5)
and Δ which is given by

( 7 ) Δi3 = Pijl{-Vu)ι'\-Vώlβ •

3* Inversively generated configurations* In this section we
describe a process for generating configurations of spheres depending
on a fixed separation matrix Δ. In the next section we will give
conditions on under which such a configuration is a packing. The
process is a generalization of the process defined in [4] when A = J — 2 I,
J being the matrix with all entries equal to 1.

From now on we consider only those A which satisfy the conditions
of Lemma 2.2. We call a disjoint collection of spheres Xl9 •••, XN+2

a cluster if (Δ(Xi9 Xj)) = Δi5. Clusters exist by Lemma 2.2. A solution
ε of (2) clearly corresponds to a cluster if and only if either all ε,
are nonnegative, or else one εi9 say εk is negetive and \εk\ < εt for
i Φ k. In fact, any two clusters are inversively equivalent. This is
easily seen by inverting the cluster into a standard configuration in
which Xx and X2 are parallel half-spaces at distance 1 apart (if A12 = 1)
or else concentric spheres with ε(Xj) = — 1, and ε(X2) the smaller of
the two possible values (if A12 > 1). Then the curvatures and the
distances between the centers of the other spheres are uniquely
determined.

The sphere generating process is as follows: We begin with a
cluster Xl9 •••, XN+2 Let Yl9 •••, YN+2 be the orthogonal spheres as
in Lemma 2.3. Inversion in Yά maps the cluster XIf ---,XN+2 into
a new cluster Xβ), , XN+JU), where X,{j) = X{ if iΦj since
Δ(Xif Yj) = 0. From the (N + 2) inversions in Yl9 , YN+2 we obtain
N + 2 new clusters. We repeat this procedure with the new clusters
obtaining (N + 2)2 clusters Xx(i9 j), , XN+i(ί, j). Proceeding in this
way, at the mth stage we will have (N + 2)m clusters which we can
index by a parameter a — (ίl9 , im) where each ik takes values in the
set {1, 2, , N + 2} and m = 1, 2, . We include a single vector a
with no components when m = 0. We denote by G the collection of
all such a, and by &(Δ) the collection of all spheres Xi(a), aeG, i =
1, •••, N + 2. We call &(Δ) an inversively generated configuration.

LEMMA 3.1. Let A~ι = (qiS), and let Bά he the matrix with i th
column equal to et if iΦj and jth. column equal to —βj — Σ»vy {^QjilQn)ei*
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For a = (ίlf '->,im)eG, let B{a) = Bh, , Bim. Then α(XXα)) is the
jih column of B{a), c{Xj{a)) is the jth column of ΔB{a), and s{Xό{a))
is the jth entry in eτB(a); A{Xi(a)y Xj(β)) is the (i, ;?)th entry of
B{a)τ B{β).

Proof. See Lemma 2 of [4].

4* Discrete packings. We now turn to the question of deter-
mining conditions on A under which an inversively generated configu-
ration &(Δ) is a packing, i.e., a collection of disjoint spheres. To do
this, we will impose conditions on Δ which will ensure that, for any
X, Ye 5f(Δ), the separation Δ(X, Y) lies in a discrete subset of the
reals which does not include the open interval ] —1, 1[. Auxiliary
arguments can then be used to show that, in fact, either X - Y or
Δ(Xf Y) ^ 1 for all X9 Ye

LEMMA 4.1. Suppose that A~~] = (qi3) satisfies the following
conditions:

( a ) 2qij/qii is an integer for all i and j,
(b) there is a real number M and integers cζ such that

2/(-qii) = ciM for i = 1, , N + 2 ,

( c ) I Δij + kM\ Ξ> 1 for all integers k and i, j e {1, , N + 2}.
Then I Δ(X, Y) | ^ 1 for all X, Ye

Proof. This depends on the formula

(8) ΔB< = Δ -

where E{ is a matrix with all entries equal to 0 except for a 1 in the
(i, i)th position. For real numbers α, 6, M let us write a = δ(mod M)
if (a - b)/M is an integer. Then (8) and (b) imply that ΔBt ==
Λ(mod M), and by induction using (a), that B(a)τΔB(β) = J(mod M).
By Lemma 3.1,

( 9)

for some integer k{j. Thus the lemma follows by (c).

COROLLARY 4.2. If Δ has odd integer entries and Δ"1 satisfies
condition (a) of Lemma 4.1, then it satisfies (b) and (c) with M— 2.

Proof. Writing (8) as {-2lqi%)Ei = ΔBi - A, we see that (-2/ff«)
is an integer, and computing modulo 2 we have

(10) (-2/q^E, = JB< -J = kJ(mod 2)
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for some integer k. The left member of (10) has at most one nonzero
entry while the right member has all entries equal. Thus — 2jqu =
0(mod2).

LEMMA 4.3. If Δ~ι satisfies the conditions of Lemma 4.1, then
the entries of B{ are restricted to the set {0, ± 1 , ±2, ±3, ±4}. Each
of the matrices BiBj is of order 2, 3, 4, 6 or oo (the crystallographic
restriction, cf [8, p. 122]).

Proof. By (a), —2qij/qii and —2qji/qjj are integer, and by Lemma
2.3, since qi3 = qόi, we have 0 ̂  (2qij/-qii)(2qji/-qjj) ^ 4 for any if j .
This restricts the entries of £>, as stated. By Lemma 2.3, BJij
represents a rotation through an angle 2Θ, where

The restriction on cos θ just proved implies BiBj is of order 2, 3, 4, 6
or oo.

THEOREM 4.4. Let Δ he a separation matrix satisfying the con-
ditions of Lemma 4.2. Suppose in addition that one of the following
two conditions is satisfied for each i = 1, , N + 2:

(d ) there are at least two entries in row i of Δ which equal 1, or
(e) there is one entry in row i of Δ equal to 1 and also

Δij<M-\ for all j = 1, -, N + 2 .

Then &(Δ) is a packing.

Proof. We will assume that gf (J) is not a packing and obtain
a contradiction. As in the proof of Theorem 5 of [4], by choosing
a minimal counterexample, we may assume that there are two clusters
(X,) = (-Xi(α)) and (W,) = (XM) such that X1 g Wj and each Xk, k Φ 1
is either equal to a Wm or disjoint from them all, and reciprocally
for the Wk, k Φ j . If (d) holds then two of the Xk, say X2 and X3

touch Xi in two distinct points. However, Xι is inside W3 and has at
most one point of contact with the boundary of Wj, while X2 and X3

are outside of W3 , & contradiction.
If (e) holds, then say Δ12 = 1 so X1 and X2 are tangent. This

point of tangency lies on the boundary of Wj, since Xγ is inside Wj
and X2 is outside. Thus Δ(Wh X1) = - 1 and Δ{Wjy X2) = 1. From (9),
Δ{Wj, Xk) = Jifc(mod M), so in particular - 1 = Δ(Wjf X,) = 4Λ(mod M).
This implies j = 1, by (e). For k φ 1 we thus have 1 ̂  Δ( W19 Xk) = Δlk

so that Δ( Wly Xk) — Δlk + dkM, where the dk are nonnegative integers
with dγ = d2 = 0. We now invert in a sphere centred at the point
of contact of Xlf X2 and Wι so that these become half-spaces. Since
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Xk for k > 1 is disjoint from Xγ and W19 and since Xγ gi WΊ we have
A(XU Xk) > A(Wlf Xk). But Aik = A(Xh Xk) = 4 ^ , X,) - Aίk + dkMf

which is a contradiction.

DEFINITION 4.1. We shall call a packing which satisfies the con-
ditions of Lemma 4.1 a discrete packing. (Theorem 4.4 shows such
packings exist.)

5* i£-osculatory packings* In this section we introduce a class
of packings which we call Z-osculatory packings, and observe that
these are complete and that there is an upper bound on the exponents
of such packings which is strictly less that N. The proofs follow
those of [2] so are not given in great detail. Next we show that
if &(A) is an infinite packing, then it is iΓ-osculatory. The proof is
similar to the proof of Theorem 9 of [4].

We recall from [1] that a complete packing of an open set U in
EN is a packing ^ — {Sn} of U by spheres Sn such that U\\J Sn has
measure zero. If U has finite measure, the exponent of <Sf is defined
by e(^f U) = infit'.Σri < oo}, where rn is the radius of Sn. We
define Rn = U\(SΓ U U SΓ), and for each δ > 0, write U(δ) =
{xe U: dist (x, dϋ) ^ 3}. If | U(δ) \ is the measure of U(δ) it is easily
seen [2, p. 362] that | U(δ) \ —> 0 as δ —> 0 + . For most sets of interest,
e.g., if tf is a sphere, | U(δ)\ = O(δ) as δ^ 0 + .

DEFINITION 5.1. Let £7 be an open set of finite measure and
c^ = {S%} be a packing of [7. Then ^ is said to be K-osculatory if
there are real numbers Kr >̂ K^ 1, and an integer m such that for
n^πij and # e Rn1 either dist (x, Sx U USW) ̂  -SLTW+1 or dist (a?, dU) ̂

THEOREM 5.1. Lei C7 δβ an open subset of EN with finite measure.
Suppose I U{δ)\ = O(δr) as δ—»0+ /or some constant 0 < 7 ̂  1. /f
^ is a K-osculatory packing of U, then ^ is complete and

(11) e(£f, C7) ̂  max (/9, JSΓ - T) ,

where β is the unique root of the following, with N — 1 < β < N:

h [j Jx - j x - N ~

If 1/8 = (K+ 1)¥ - KN + 1, then

(12) N-Ns<β<N-s.

Proof. As in Lemma 1 of [2] we see that
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(13) ωN Σ r? ̂  I Rn \ < ωN Σ «r» + Krn+1)
N - τN

k) + \ U(K'rn+1) |

Also, if r(ϋJ%) is the inradius of Rn [1], we have rn+1 ^ r(ϋ?%) ^ K'rn+1.
Using this fact together with (13), the arguments of [2] suffice to
prove the completeness of ^ and (11). The estimates (12) are proved
as in [2, p. 361].

The proof of Theorem 5.4 will involve a subdivision of EN into
certain polyhedral sets:

DEFINITION 5.2. Let X{ = S(qif r*), i = 1, , N + 1 be disjoint
spheres with finite radii. The cell P = P(Xi, , XN+ι) is defined in
the following way: If all r< > 0, then P is the convex hull of
«i, * - , Gtf+1; if one r< < 0 (so r, > 0 for j Φ Ϊ), then P is the closure
of the set difference K\H, where K is the polyhedral cone with
vertex at a{ generated by alf •••, a{_ly ai+lj •••, aN+1, and H is the
convex hull of αlf •• ,α i V + 1 . We call al9 •• ,α Λ Γ + 1 the vertices of P
and X1? , X^+1 the corners of P.

LEMMA 5.2. Lei X̂  = S(ai9 r{), ί = 1, , N + 1 be disjoint spheres,
and let X be a sphere with radius r > 0 which intersects (or touches)
each of Xl9 .. , XN+ι. Then P(Xlf , X^+1) c U {S~(α,, r, + r): ί -
1, . . . , JV+ 1} = Γ.

Proof. We treat only the case in which all radii are positive. The
proof is by induction on N. We first note that T is star like with respect
to the center of X. We next show that T contains the boundary of
P and this will complete the proof since a starlike set containing the
boundary of a bounded convex set must contain the whole set. Let
Z be a plane face of P, say the face through al9 , aN. Let X' be
the perpendicular projection of X onto Z, and let X[ = X{ Π Z for
i = ly . . . 9 JV. Then X' intersects X/ since X/ is also the projection of
Xi onto Z, and thus by induction, P(X/, , X̂ r) c U ί^fe, rt + r):ί =
1, >--,N)czT. Thus all faces of P are in Γ so that P c Γ , The
proof when one r{ < 0 uses similar ideas and we refer the reader to
Lemma 8 of [4].

LEMMA 5.3. Let X = S(a, r), Y = S(b, s) be disjoint spheres with
r > 0 and with A{X, Y) = c ̂  1.

( a ) If s > 0, then S(a, cr) intersects or touches Y.

(b) If s < 0, ί/iew S(α, (c + (c2 — l)1/2)r) intersects or touches Y.

Proof. A simple exercise.

THEOREM 5.4. Lei A be a separation matrix for which &{A) is
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an infinite packing. Let K be the largest entry in A. Let U be the
unit sphere S(alf 1) and let X1 = S(au — 1) be its exterior. Suppose
Xi = S(aif rt), i = 1, •••, N + 2 have separation matrix Δ, and ĝ  lies
in the interior of the convex hull of a2f , aN+2 possible by Lemma
2.2). Then ^{A)\{X^ is a K-osculatory packing of U.

Proof. Let S* = Xi+1 for i = 1, , N + 1. We shall show that
there is a sequence of spheres {Sn}, Sn e 5f(A) so that {Sn} is l£-osculatory
with K! = K + (K2 - 1)1/2. Then Sn is complete hence is all of gf (J).
We select Sn inductively for n ^ N + 2 and at the same time sub-
divide U by cells so that we can verify the conditions of Definition
5.1 using Lemmas 5.3 and 5.4.

To begin with, let P{ be the cell P(Xlf , Xif , XN+2), where
the symbol Λ means omit Xt. Then ^ c P i U U PN+% since αL is in
the interior of P1 by assumption. With each P^ is associated a unique
next sphere ^r(P<) = Xt(i)e &(Δ). Let SN+2 be the ~/f~(P<) with
largest radius, say rN+2. Using Lemma 5.4, for each i there is a
sphere of radius KrN+2, or K'rN+2 concentric with ^V(P^ which inter-
sects the corners of P ί β Thus Lemma 5.3 guarantees the conditions
of Definition 5.1 for xeRnPi, and hence for xeRn since Bna\J Pi9

(where here n — N + 2). Now, if SN+2 = ^4^{P^, we replace P4 by
iV + 1 cells, each having one corner SN+2 and the remaining corners
being N of the corners of P4. This is done for each ΐ for which
SN+2 = ^A^(Pi). We renumber the new cells Pl9 •••, P w . These may
overlap but they still cover EN. Furthermore, the corners of each
Pk are of the form X^i), •• ,-XJ (ΐ), -—,XN+2{i) for some j and i.
Thus there is a unique tyΓ(Pk) e ^{Δ) defined for each k.

The induction now proceeds in an obvious way except at some
point we might find that each Λ^{P^ is among the Sn already chosen.
However, this would imply that &(Δ) is finite contrary to our
assumption.

6* Examples* In this section we exhibit and investigate thirteen
Δ for which &(Δ) is a packing. These are discrete packings satisfying
the conditions of Lemma 4.1 and Theorem 4.4. Briefly, we seek sym-
metric matrices A which satisfy the following conditions, where Δ~ι —

(ft/):
( i ) Δu= - 1 for i = l, . . . , # + 2 ,
(ii) Δtj ^ 1 if i Φ j ,
(iii) A has one positive and N + 1 negative eigenvalues,
(iv) 2qij/qii is an integer (of absolute value <̂  4) for all i, j ,
(v) there is a real M(^ 2) and integers ĉ  such that 2/(—qu) =

ct ilί for all i.
(vi) I Λ i + kMI ^ 1 for all integers k, and i, j e {1, , N + 2}.
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It should be noted that there are at most a finite number of such A
for each N. For if Ω is the matrix with entries (fo/(—Qu)1/2(—QJJY12,
then we know from the results of § 4 that AΩ2

i3 e {0, 1, 2, 3, 4}. But Δ
is uniquely constructible from Ω by (7).

Possibly the simplest Δ to search for are circulants. We shall
write A = circ (α0, , αm_x) for the m x m circulant with first row
&o, , αm_i We recall that 4̂ has the eigenvectors x0, , #m_i, where
% is the vector (1, ωk, •••, ω{m~1)k)τ, and α> = exp(2τr£/m), which cor-
respond to the eigenvalues Xk = a0 + axω

k + . . . + am^Mm^l)k. If A
is symmetric we must have a{ = am^ for all i. If Δ is a circulant
then the diagonal entries qi{ of Δ~γ are all equal to — c say, so Ω =
c"1//"1. Thus the entries of β are restricted to the set {0, ±1/2, ±1}
by (iv).

In addition to circulants, we use matrices of the following block
form:

(14) A = I f aJ-

where A and B are circulants and Jmxn has all entries equal to 1.
For these, we need the following:

LEMMA 6.1. Let A be an m x m circulant with eigenvalues
λ0, , λm_! and eigenvectors x0, , &V-i Let B be an n x n circulant
with eigenvalues μ0, •••, μn_x and eigenvectors y0, •••, yn-i Let A be
as in (14). Then Δ has eigenvalues p, σ, Xlf , λm_1? μlf , μn_γ

where p > σ are given by

(15) p, σ =—(λo + #,) ± — ((λo - μ0)
2 + 4α2mπ)1/2 .

Proof. Since Jmxnyk = 0 for fc = 1, , n — 1 and J , x m % = 0 for
A: = 1, , m — 1, the vectors (xl, 0)τ and (0, ^/[)Γ a r ^ eigenvectors for
corresponding to \, , λw_! and JM̂  , jwΛ_lβ Furthermore, {axτ

0, yl)τ

is an eigenvector of Δ if α satisfies mαα2 + α:(λ0 — /̂ 0) — na = 0, which
gives rise to the two eigenvalues given in (15).

List of examples. We begin by listing the examples we have
found so far. The reader should check that the conditions (i) to (vi)
and the conditions of Theorem 4.4 are satisfied. We will discuss the
examples in more detail later. Both A~ι and Ω are given in case one
is not a multiple of the other. We abbreviate a = 1/21/2 and β = 31/2/2.

N= 2.

J = c i r c ( - 1 , 1,1,1), A^ = 1-Ω,
(2.1) 4

Ω = c i r c ( - l , 1, 1, 1) , Af = 8 .
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(2.2)

(2.3)

(2.4)
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A = circ ί — 1, 1, —, 1 j , Δ~

β = c i rc(- l , l , i-, l ) , M = i

Δ = circ ( -1 , 1, 2, 1) , Δ~ι = —
o

Ω = c i r c ( - l , 1, 0, 1) , ikΓ = 6 .

= circ(-l, 1, -- ί , l ) ,

= circ ( - 1 , 2 , 1, 2 ) ,

(2.5)

Δ =

(2.6)

4

AΓ= 8

"circ ( - 1 , 1) J 2 X 2 Ί _ j Γ c i r c (-4, 0) /2 X 2

J 2 X 2 c i r c ( - l , 3)J 8 [ J 2 X 2 c i r c ( - l ,

circ (-1,0) J 2 X 2

J2 X 2 circ (-1,1).
Λf = 4 .

= 3.

(3.1)

= circ = (-1,1, 1,1,1), Δ~ι = ±Ω ,
ό

(3.2)

Γcirc(-1,1,1) J 3 X 2

I / 2 X 3 circ (-1,3) 4
"circ (-2,0,0) JSχ2

J2 X 3 circ (-1,0)

β = | - c i r c (-1,0,0) ^ 3 X 2 M = 4 >

aJ2x3 circ ( — 1, 0)_

zί =
J 2

J3 X 2

circ (-1,5).

(3.3)
3J2

_circ(-6, - 3 , -3) circ (-2, -1)

circ(-l, -I - i ) /3/3χ2

/SJ2x3 c i r c ( - l , -:

:

= 2 .
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(4.1)

N= 5.

Δ =

(5.1)

c i r c ( - l , 1, 1, 1) Jix3

J3χ4 circ ( - 1 , 3, 3).

JTcirc(-4, -2, -2, -2) 2/4x3

4 L 2 J 3 X 4 circ (-2, - 1 , - 1 )

c i r c ( - l , - J , -A, -A.) α/ 4 x 3

«̂ sx4 circ(—1, — J, — J)_
Λf = 2

(5.2)

J =

Ω =

c i r c ( - l , 1, 1, 1, 1) J 5 X 2

J 2 x 6 circ (-1,3)

circ(-l, 0, 0, 0, 0) y 5 x 2

4J 2 x 5 c i r c ( - l , -

2 , ikf = 4 .

iV = 9.

"c i rc(- l , 3, 1, 1, 3) J 5 x 6

J 6 X 6 c i r c ( - l , 1, 1, 1, 1, 1).

(9.1) _ χ _ Γ c i r c ( - l , - i , 0 , 0 , - i ) AJ5X6

1 7" r*iτ*/^ ^ "ί i — •=• -3- •
L 2«^6X5 C1IC ^ X, 2> 2f 2> 2> \

M=2 .

Discussion of the examples. The examples (2.1) to (2.5) are all
possible 4 x 4 circulants satisfying conditions (i) to (vi), constructed
by starting with Ω. The examples (2.6), (3.2), (3.3), (5.1), and (5.2) are
all possible matrices of the form (14) in which A and B have the
form bJ — (6 + 1)1, with b an integer. We have eliminated those
trivially equivalent to a circulant (by renumbering rows and columns).
All of (2.1) to (2.5) can be put into form (14) by interchange of rows
2 and 3 and columns 2 and 3. The example (9.1) is the only example
which is of the block form (14) where A = circ( —1, 3, 1, 1, 3) and
B — J — 21. The reason for this choice of A is that it is the only
circulant of the form circ ( — 1, 6, 1, , 1, b) with 6 ^ 3 which has all
eigenvalues negative except for λ0.

Note that it is possible to have A Φ A' and yet &{A) = & (//'). In
this case we say that A and A' are equivalent and write A ~ Δf. We
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can often settle the question of equivalence by looking at the set of
real numbers {Δ(X9 Y): X, Ye &{A)} and using (9). In this way we
find that no two of (2.1) through (2.6) are equivalent, and that
ΔZΛ 90 J32. It fact Δ3Λ ~ z/3 3, and we believe also that ΔδΛ ~ Δ5Λ.

Cross sections: If we have a packing in which two spheres, say
Xl9 X2, are tangent, then we may invert so these become half-spaces
and the spheres in tne packing which touch both X1 and X2 become
equal spheres all orthogonal to a plane half way between Xx and X2.
The cross section of these spheres with this plane produces a packing
(possibly empty) of EN_X by equal spheres. This is effective for
studying gf(J) if two rows of all off-diagonal entries equal to 1.
More generally, if we only have Δi3- = 1 for a single (ί, j), say (i9 j) =
(N + 1, N + 2), then choosing XN+1 and XN+2 as half-spaces, we see
that Xl9 , XN become spheres whose curvatures can be chosen to be
6i == Δ(Xi9 XN+1) + Δ(Xi9 XN+2). The biorthogonal spheres Yl9 , YN

become half-spaces orthogonal to XN+1 and XN+2 and thus the matrices
Bl9 •••, BN represent reflections in hyper planes. The matrix Ω tells
us the dihedral angles between those planes. Taking any cross section
parallel to XN+1 and XN+2 we obtain N spheres X{ from the Xif and
N planes Y{ from the Yif i = 1, , N. The images of the X[ under
the group generated by the reflections in the Y form a packing of
EN_λ by spheres of at most N different sizes. These are of course
cross sections of the spheres Xk(a)9 where k and the components of
a are in {1, 2, ••, N}.

By using a similar device we can often check that ^(Δ) is infinite.
For &(Δ) is infinite if and only if the group Γ(Δ) generated by
Blt •••, BN+2 is infinite, since the columns of an element of Γ(Δ) con-
sist of coordinates of spheres in Sf(^). An examination of Ω will
often reveal infinite subgroups of Γ{Δ). For example, if Ωi3 = 1 for
some i9 j , then BiB5 is of infinite order. This is the case for our
examples with N = 2. In the other examples Ω contains a 3 x 3 sub-
matrix with off-diagonal entries all ±1/2 hence Γ(Δ) contains an
infinite subgroup generated by the three corresponding Biy (see Table
11 of [12, p. 142]).

In the examples with N = 3, making ε1 = ε2 = 0, the cross section
of the packings (3.1) and (3.3) is the closest packing of circles. The
cross section of (3.2) is the packing with circles centered at the points
of a square lattice. In example (4.1), taking ε5 = ε6 = 0, the cross
section half way between X5 and X6 is a packing of E3 by equal
spheres centered at the points of the body-centered cubic lattice. This
is not the densest packing which has centers at the points of the
face-centered cubic lattice. For (5.1) and (5.2), take ελ = e2 = 0. It is
easily seen from Δ that the lattice of centers of the cross section is
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such that the points closest to (0, 0, 0, 0) are the 24 vertices of the
24-cell, which is known to give the densest packing. For example
(9.1) the cross section is the densest lattice packing of E8.

Exponents. Since the exponent of &(Δ) is unchanged by an
inversion which leaves one of the spheres with negative curvature, it
is reasonable to speak of the exponent of &(A), which we denote by
e{Δ). Example (2.1) is the ordinary two dimensional osculatory pack-
ing discussed in [3], [9], [13], for example. The exponent S of this
packing is known to satisfy [3]:

1. 300197 < S < 1. 314534 .

In this packing, if one takes Xlf X2, X3 to have positive curvature
then they enclose a curvilinear triangle T. If one lets X4 be the
smaller disk touching these three, then the removal of X4 from T
leaves four curvilinear triangles, suggesting an iterative procedure.
The packing (2.6) is quite similar to this. Again one can take Xl9 X29

and X3 to enclose T but now X4 touches only Xγ and X2. However,
the three disks X4, Xi(l), X2(2) are mutually tangent and the removal
of these from T leaves seven new triangles. The methods of [3]
should now be applicable to give rigorous bounds on the exponent of
this packing.

The packing (3.1) is the three dimensional osculatory packing to
which [4] was devoted. We described in [5] an algorithm for generat-
ing the coordinates of the spheres in this packing without duplication.
By counting the number of spheres W(K) of curvature K for each
K ^ 300 in the 'Soddy packing' of the unit sphere, which begins with
spheres of curvatures ( —1, 2, 2, 3, 3), all mutually tangent, we obtained
the heuristic result:

(15) e(z/3.i) - 2. 42009 .

The packing (3.2) is quite similar. We again can start with curvatures
(-1, 2, 2, 3, 3), but now the four spheres X4, Xδ, X4(4), X5(5) all have
curvature 3 and their centers are at the vertices of a square. Using
a similar algorithm to that of [5] we generated the 667062 spheres
of curvature ^ 400 for this packing, obtaining the estimate:

(16) e(ΛBΛ) - 2. 44445 .

This is not very different from (15) but we believe in fact that e(J3.2)
is strictly greater than e(J3Λ). Of course, the estimates (15) and (16)
are not rigorous. The only rigorous estimates available for exponents
other than S are those given by Theorem 5.1 combined with Theorem
5.4, which gives upper bounds, and the lower bound (N — 1) + .03
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of Larman [11]. The value of K given in Theorem 5.4 can often be
improved by simple arguments. For example, we can show that (3.2)
and (5.2) are 2-osculatory, but for reasons of space we will not expand
on this here.
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