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ON FLOW-INVARIANT SETS

G. S. LADDE AND V. LAKSHMIKANTHAM

By employing Lyapunov-like functions and the theory of
differential inequalities some sufficient conditions are given
for flow-invariant and conditionally flow-invariant sets.

1* In a recent paper Redheffer [6] has generalized a remarkable
theorem of Bony [1] and has discussed its relation to a similar result
of Brezis [2]. Results of general nature are also given by Ladde
and Leela [4] which characterize various kinds of flow-invariant sets
from a different point of view. In the present paper, we give theorems
of very general character which offer sufficient conditions for flow-
invariant sets in terms of Lyapunov-like functions and differential
inequalities. These results include as special cases the theorems of
Bony [1], Brezis [2], and Redheffer [6].

2* Let E be a domain in real Euclidean space Rn and FcE be
a closed set. For any set A, let A0, dA denote the interior, boundary
of A respectively. As usual, d(x, A) denotes the distance of a point
x from the set A. We consider the differential system

( 1 ) x'=f(t,x), x(to) = xo, toeR+,

where fe C[R+ x E, Rn], R+ being the half real line.
The set F is flow-invariant for / if

xoeF implies x(t, t0, x0) e F for t0 ^ t < T

where [t0, T) is the interval of existence of the solution x(t9 t0, x0)
of (1).

Let VeCι[R+ x E, R+] and yeF. Let, for each ί, Sk be the
closed region around a fixed x generated by V(t, x — z) <^ k, that is,
Sk = [z: V(t, x - z)^k]. Suppose that F Π S°k = 0 and y e dSk. Then
the vector y(t, y) = Vx(t, x — y) is said to be normal to F at y for
each t.

The function V(t, x — y) is said to be positive definite with respect
to the set F, if w(t, x) = inf^e^ V(t, x — y) is positive definite with
respect to /.

Let geC[R+ x R+, R], g(t, 0 ) Ξ 0 and the only solution of

( 2 ) u' = g(t,u), ^(0=0,

on <! ̂  t < tλ + ε is identically zero, where e > 0 is some number, for

every tίeR+. Then we shall say that g is a uniqueness function.
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We shall now prove the following result which offers sufficient
conditions for a closed set F to be flow-invariant relative to /.

THEOREM 1. Let the following assumptions hold:
( i ) for (ί, x,y)eR+ x E x F,

V(t, x-y) = Vt(t9 x-y)+ VJ& x - y) [f(t, x) - f(t, y)]

^ g(t, V(t, x-y));

(ii) 7(ί, y) f(t, y) ^ 0 whenever the vector 7(ί, y) is normal to F
at y for each t;

(iii) V(tf x — y) is positive definite with respect to the set F and
g is a uniqueness function. Then the closed set F is flow-invariant
forf.

Proof If the theorem is false, there exists a ίL > tQ such that
fic(ί0) e F but x(t) ί F for ίx < t < ί2 for some ί8, on which #(£) exists.
Set 6 = ίa — ίi. Thus we have d[x(t)r F] > 0 for t,<t <t2 and
d[x(tλ)f F] = 0. Define m(t) = w(ί, a?(ί)) for t ^ t <t2 and observe
that m(^) = 0 by (iii). For a fixed ί in t, < t < t2, let a? = α?(ί) It
follows, by the definition of w(t, x) and the fact that F is closed,
that there exists a yoe F such that

m(t) = V(t, x - y0) .

Consider the closed region Sk — [z: V(t, x — z) ^ k — m(t)]. It is easily
verified that Ff)S°k= 0 . This shows that by definition that the
vector y(t, y0) = Vx(t, x — y0) is normal to F at yQ. For small h ^ 0
and for any y e F, we have

m(t + h) = w(t + h, x(t + h)) ^ V(t + Λ, a;(ί + h) - y) .

Hence

m(t + Λ) - m(ί) ^ 7(t + λ, α(ί + h) - y0) - V(t, x(t) - y0),

which yields

D+m(t) ^ Vt(t, x(t) - y0) + V9(t, x(t) - yo)-f(t, x(t)) .

Consequently, using the assumptions (i) and (ii), we get

(3) D+m(t) £ V'(t, x(t) - y0) ^ g(t, m(ί)), t, < t < t2 .

By Theorem 1.4.1 in [5], we then obtain

m(t) ^ r(ί, tlf m(Q) , t ^ t <t2,

where r(ί, tl9 uQ) is the maximal solution of
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u' = g(t, u), u{Q = u0 .

Since m^) = 0, the hypothesis (iii) implies that

m ( t ) = 0 f o r t , £ t <t2,

which shows that x(t) e ί7 for tx < £ < ί2. This contradiction proves
the theorem.

The special case V(t, x) = \\x\\2 and g(t, u) = /o(w), where |0 is
a uniqueness function of Theorem 1 includes the important result of
Bony [1] as generalized by Redheffer in [6].

For an example of / which does not satisfy either a Lipschitz or
a monotonicity condition but for which there does exist a Lyapunov
function satisfying the uniqueness hypothesis of Theorem 1, see [3,
p. 137].

3* In this section we shall generalize Theorem 1 a little further.
Let HaE be an open set such that FaH. Then the set H is said
to be conditionally flow-invariant for / with respect to the set F, if

xQ e F implies x(t9 tQ, x0) e H for t0 <£ t < T,

where [tQ, T) is the interval of existence of x(t, t0, xQ) of (1). See [5]
for the notion of conditionally invariant sets and their stability
properties. We then have

THEOREM 2. Let the assumptions (i) and (ii) of Theorem 1 hold.
Suppose further that

(a) w(t, x) = i n f ^ V(t, x - y), ae C[R+, R], w(t, x) ^ a(t), if
x G dH and w{t, x) < a(t), if xe dF;

(b) any solution u{t, tl9 u0) of vl — g(t, u), u(t^) — u0, satisfies
u(t, tl9 uQ) < a(t), for tt ^ t < tt + ε where ε > 0 is some number,
provided u0 < α(^) for every tλe R+. Then the set H is conditionally
flow-invariant for f with respect to the set F.

Proof The proof is almost the same as that of Theorem 1. We
shall only indicate the required changes.

Suppose that the theorem is false. Then there exists a t* > t
such that xQ e F, x(t) = x(t, ί0, x0) e H for t0 ^ t < t* and x(t*) e dH.
This implies that there is a tl9 ί0 ^ ίx < ί* such that x(tλ) e dF and
x(t)eH\F for tx < t < t*. By (a), we then have

0

(4 ) w(t*9 x{t*)) ^ a(t*) and w(tlf

Defining m(t) = w(t, x(t)), we proceed as in the proof of Theorem 1
till we arrive at the differential inequality (3). We now choose u0 =
a{tx) so that by Theorem 1.4.1 in [5], we get, as before,
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m(t) ^ r(ί, tl9 α(ίθ) » «! ^ t < ί* .

By the continuity of the functions involved, the assumption (b) and
the relations (4), we arrive at the contradiction

α(ί*) ^ m(t*) ^ r(ί*, ίx, αfo)) < α(t*) .

Hence the proof is complete.
Notice that Theorem 2 enlarges the class of useful Lyapunov-

like functions V and offers more flexibility. To see this we give the
following application.

THEOREM 3. Suppose that the following conditions hold:
( i ) Fa Rn is a closed set, Ve (?[B+ x S(F, ρ)\F, B] and

V\t, x-y)£ g(t, V(t, x - y)) for (ί, x, y)eR+x S(F, p)\F x F;
(ii) w{t, x) = infyeF V(t, x-y), be C[R+ x (0, p], ( -1, <*>)],

6(ί, d(x, F)) S w (t, a?) for (t, x)eR+ x S(F, p)\F, α^d w(ί, a?) -> - 1 as
d(a;, J?7) —• 0 uniformity in t;

(iii) τ(ί, y)-f(t, y) ^ 0 whenever the vector y(t, y) is normal to F
at y for each t;

(iv) # G C[i2+ x R, R] and any solution u(t, tl9 uQ) of

u' = g(t, u) , %(«!> = uQ
Q ,

satisfies u(t, tlf u0) < b(t, rj), tt ^ t < ίx + ε, ε is some positive number,
provided u0 < b(tl9 rj) for every tt 6 R+ and a fixed rj € (0, p]. Then
the set S(F, rj) is conditionally flow-invariant for f with respect to F.

Proof. Since w(t, x) —> — 1 as d(x, F)—+0 uniformly in t,

w(t, x) < b(tf V)

for each t e R+, whenever x e dF. Setting

E = S(F,p)\F, H

we see that all the hypotheses of Theorem 2 are verified. Hence
the conclusion follows.

If hypothesis (iv) holds for every ηe (0, p], instead of a fixed η,
Theorem 3 shows that F is flow-invariant for /, because
lim,_0 S(F9 η) = F.

4* We can formulate Theorem 1 in such a way as to include
the result of Brezis [2] as generalized by Redheffer in [6].

THEOREM 4. Assume that all the hypotheses of Theorem 1 are
satisfied except that the assumption (ii) is replaced by
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(ii*) lim inf —w(t, y + hf(t, y)) = 0 for each yeF .
h-+o+ h

Then the conclusion of Theorem 1 remains valid. Provided that w(t, x)
possesses the property

(5) w(t, Xi) — w(t, x2) ^ V(t, xx — x2) .

The condition (ii*) is needed only at each yeF that has a normal
in the sense defined earlier. One can show that the hypothesis (ii*)
together with (5) imply the assumption (ii) of Theorem 1. Indeed,
let Ί(t, y) be normal to F at y for each t and let Sk be the closed
region around a fixed x generated by V(t, x — z) ^ k so that y(t, y) =
Vx(t, x - y). Since SQ

k 0 F = 0, we have

V(t, x - y) = w(t, x) .

In view of the condition (5), this implies, for small h > 0,

V(t, x ~ y ) ^ V(t, x - y - hf(t, y)) + w(t, y + hf(t, y)) .

Hence

( 6 ) 0 ^ V(t, x - y - hf{ty y)) - V(t, x - y) + e(h) ,

where ε(h) = w(t, y + hf(t, y)). By (iv*), we see that

lim inf iίM. = o .

/6-0+ h

Consequently, the inequality (6) assures

0 ^ - Vx(t, x - y)of(t, y)

which is condition (iv) of Theorem 1.
We could have, following the proof of Theorem 1, directly proved

Theorem 4. The proof crucially depends on the inequality (5). This
we leave to the reader.

As before, the choice V(t, x) = \\x\\ or | | # | | 2 and g(t, u) = p(u)
where p is a uniqueness function includes the result of Brezis [2] as
given in [6]. Unfortunately, the restrictive condition (5) seems to
be unavoidable which makes Theorem 4 less flexible compared to
Theorem 1.

It is possible to formulate results analogous to Theorems 2 and
3 in the spirit of Theorem 4. This we do not undertake to avoid
monotony.



220 G. S. LADDE A N D V. LAKSHMIKANTHAM

R E F E R E N C E S

1. Jean-Michel Bony, Principe du Maximum, inegalite Harnack et unicite du probleme
de Cauchy pour les operateurs elliptiques degeneres, Ann. Inst. Fourier, Grenoble, 19
(1967), 277-304.
2. Hains Brezis, On a characterization of flow-invariant sets, Comm. Pure Appl.
Math., 223 (1970), 261-263.
3. G. E. Ladas and V. Lakshmikantham, Differential Equations in Abstract Spaces,
Academic Press, New York, 1972.
4. G. S. Ladde and S. G. Leela, Analysis of invariant sets, Annali de Matematica
Pura ed Applicata, Series IV, XCIV (1972), 283-289.
6. R. M. Redheffer, The theorems of Bony and Brezis on flow-invariant sets, Amer.
Math. Monthly, 79 (1972), 740-747.
5. V. Lakshmikantham and S. G. Leela, Differential and Integral Inequalities:
Theory and Applications, Vol. I, Academic Press, New York, 1969.

Received December 21, 1972.

UNIVERSITY OF RHODE ISLAND




