PACIFIC JOURNAL OF MATHEMATICS
Vol. 51, No. 1, 1974

ON FLOW-INVARIANT SETS

G. S. LADDE AND V. LAKSHMIKANTHAM

By employing Lyapunov-like functions and the theory of
differential inequalities some sufficient conditions are given
for flow-invariant and conditionally flow-invariant sets.

1. In a recent paper Redheffer [6] has generalized a remarkable
theorem of Bony [1] and has discussed its relation to a similar result
of Brezis [2]. Results of general nature are also given by Ladde
and Leela [4] which characterize various kinds of flow-invariant sets
from a different point of view. In the present paper, we give theorems
of very general character which offer sufficient conditions for flow-
invariant sets in terms of Lyapunov-like functions and differential
inequalities. These results include as special cases the theorems of
Bony [1], Brezis [2], and Redheffer [6].

2. Let E be a domain in real Euclidean space R" and F— E be
a closed set. For any set A, let 4% 0A denote the interior, boundary
of A respectively. As usual, d(x, A) denotes the distance of a point
x from the set A. We consider the differential system

(1) = f(t, ®), a(t) = 2, t,e R,

where fe C[R* X E, R"], R* being the half real line.
The set F is flow-invariant for f if

x,€ F implies (¢, &, x)e F' for t, <t < T

where [t, T) is the interval of existence of the solution x(t, ¢, x,)
of (1).

Let Ve C'[R* x E, R*] and ye F. Let, for each ¢, S, be the
closed region around a fixed x generated by V{(¢, x — 2) < k, that is,
S, =[2V({, x —2) =< k]. Suppose that FFN S, = @ and y€dS,. Then
the vector Y(t, y) = V.(¢t, v — y) is said to be normal to F at y for
each t.

The function V(¢, v — ) is said to be positive definite with respect
to the set F, if w(¢t, ) = inf,., V(t, x — y) is positive definite with
respect to f.

Let ge C[R* x R*, R], 9(¢t,0) = 0 and the only solution of

(2) u' =gt u), ut)=0,

on t, =t <t + ¢ is identically zero, where ¢ > 0 is some number, for
every t,€ R*. Then we shall say that ¢ is a uniqueness function.
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We shall now prove the following result which offers sufficient
conditions for a closed set F' to be flow-invariant relative to f.

THEOREM 1. Let the following assumptions hold:

(i) for (t,z,y)e Rt X E X F,

(ii) 7@, »)-f@t, y) = 0 whenever the vector Y(t, y) is normal to F
at y for each t;

(iii) V(¢t, x — y) is positive definite with respect to the set F and
g 18 a uniqueness function. Then the closed set F is flow-invariant

for f.

Proof. If the theorem is false, there exists a ¢, > ¢, such that
x(t,)e F but xz(t)¢ F for ¢, <t < t, for some ¢, on which 2(t) exists.
Set ¢ =t,—t,. Thus we have d[z(t), F] >0 for ¢, <t<t, and
d[z(t), F] = 0. Define m(t) = w(t, #(¢)) for ¢, <t <t, and observe

that m(¢) = 0 by (iii). For a fixed t in ¢, <t <, let z = x(t). It
follows, by the definition of w(t, ) and the fact that F is closed,
that there exists a %,€ F such that

m(t) = V(t, © — vo) .

Consider the closed region S, = [2: V(¢, v — 2) < k = m(t)]. It is easily
verified that FFN Sy = @. This shows that by definition that the
vector (¢, ¥,) = V.(t, * — ¥,) is normal to F at y,. For small 2 =0
and for any vy € F, we have

m(t + h) = w(t + h, u(t + k) S V(t + h, ot + k) — y) .

Hence
m(t + h) — m(t) = V(t + h, 2(t + k) — yo) — V¢, 2(t) — ¥,) »
which yields
Drm(t) = Vi, 2(t) — y) + Valt, 2(8) — 90)-f(¢, ©(t)) .
Consequently, using the assumptions (i) and (i), we get
(3) Drm(t) = V'(¢, a(t) — yo) < 9(t, m(t)), & <t<t.
By Theorem 1.4.1 in [5], we then obtain
m(t) < r(t, t, m(t,)), L=t <t,,

where 7(t, t,, w,) is the maximal solution of
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w = g(t, u), u(t) = u, .
Since m(t,)) = 0, the hypothesis (iii) implies that
m) =0 for ¢ =t <t,,

which shows that #(f)e F for ¢, <t < t,. This contradiction proves
the theorem.

The special case V(t, 2) = ||z |* and g(t, w) = o(u), where o is
a uniqueness function of Theorem 1 includes the important result of
Bony [1] as generalized by Redheffer in [6].

For an example of f which does not satisfy either a Lipschitz or
a monotonicity condition but for which there does exist a Lyapunov
function satisfying the uniqueness hypothesis of Theorem 1, see [3,
p. 137].

3. In this section we shall generalize Theorem 1 a little further.
Let HC E be an open set such that F'c H. Then the set H is said
to be conditionally flow-invariant for f with respect to the set F, if

x,e F implies x(t, t, )€ H for t,=t<T,

where [t, T) is the interval of existence of w(t, ¢, x,) of (1). See [5]
for the notion of conditionally invariant sets and their stability
properties. We then have

THEOREM 2. Let the assumptions (i) and (ii) of Theorem 1 hold.
Suppose further that

(a) w(t, x) =inf,., V(¢ ¢ —y), acClR", R], w(, x)=a(t), if
xedH and w(t, x) < a(t), if xcoF,

(b) any solution wu(t, t, u,) of w = g(t, u), w(t) = w, satisfies
ult, t, o) < a(t), for t, =t <<t +e& where ¢ >0 1is some number,
provided u, < a(t,) for every t,c RT. Then the set H s conditionally
Sfow-invariant for f with respect to the set F.

Proof. The proof is almost the same as that of Theorem 1. We
shall only indicate the required changes.

Suppose that the theorem is false. Then there exists a t* > ¢,
such that z,e F, a(t) = «(¢, t, x)€ H for ¢, <t <t* and «(t*)eoH.
This implies that there is a t, ¢, < ¢, < t* such that «(¢,))e dF and
x(t)e H\F for t, <t < t*. By (a), we then have

(4) w(t*, (%)) = a(t*) and  w(t, 2(t)) > a(t) .

Defining m(t) = w(t, x(t)), we proceed as in the proof of Theorem 1
till we arrive at the differential inequality (8). We now choose u, =
a(t,) so that by Theorem 1.4.1 in [5], we get, as before,
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m(t) < 7, b, alt)), L=ttt

By the continuity of the functions involved, the assumption (b) and
the relations (4), we arrive at the contradiction

a(t*) < m(t*) = r(t*, t, a(t)) < a(t™) .

Hence the proof is complete.

Notice that Theorem 2 enlarges the class of useful Lyapunov-
like functions V and offers more flexibility. To see this we give the
following application.

THEOREM 3. Suppose that the following conditions hold:

(i) FcR" is a closed set, VeC'[R* x S(F, 0)\F, R] and
V'(t, © — y) = g(t, V(E, @ — v)) for (¢, x, y)e R x S(F, O\F X F;

(ii) w(, o) =inf,e,V(t, x —y), beC[R"x(0,0], (-1, )],
b(t, d(z, F)) < w (¢, x) for (¢, x)e R* X S(F, o)\F, and w(t, x) — —1 as
d(x, F') — 0 uniformity in t;

(iii) (¢, y)-f(t, y) < 0 whenever the vector (¢, y) is normal to F
at y for each t;

(iv) geC[R* x R, R] and any solution wu(t, t, w,) of
u = g(ty ’N;) ’ u(tl) = U »

satisfies u(t, t, w,) < b(t, 1), t, =t < t, + ¢, € is some positive number,
provided w, < b(t, 1) for every t,€ R* and a fixed 7€ (0, o]. Then
the set S(F', 1)) is conditionally flow-invariant for f with respect to F.

Proof. Since w(t, ) — —1 as d(z, F') — 0 uniformly in ¢,
w(t, x) < b(t, 1)
for each te R*, whenever xcoF. Setting
E=S(F, o\F, H=S8F,7), a) =07,

we see that all the hypotheses of Theorem 2 are verified. Hence
the conclusion follows.

If hypothesis (iv) holds for every 7e (0, o], instead of a fixed 7,
Theorem 8 shows that F is flow-invariant for f, because
limﬂ—»o S(R 77) = F.

4, We can formulate Theorem 1 in such a way as to include
the result of Brezis [2] as generalized by Redheffer in [6].

THEOREM 4. Assume that all the hypotheses of Theorem 1 are
satisfied except that the assumption (i) is replaced by
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(i) lminfLw(t,y+ kit ) = 0 for cach yeF.
h—0

Then the conclusion of Theorem 1 remains valid. Provided that w(¢, x)

possesses the property

(5) w(t, x,) — w(t, x;) < V¢, @, — a,) .

The condition (ii*) is needed only at each y € F' that has a normal
in the sense defined earlier. One can show that the hypothesis (ii*)
together with (5) imply the assumption (i) of Theorem 1. Indeed,
let ¥(t, y) be normal to F at y for each ¢t and let S, be the closed
region around a fixed x generated by V(¢, x — 2) < k so that v(¢, v) =
V.t = —y). Since SN F = ¢, we have

Vit, v — y) = w(t, x) .
In view of the condition (5), this implies, for small % > 0,
Vit, e — o) = VI @ —y — W@, y) + w(t, y + 1f(E, y) .
Hence
(6) 0=Vt o —y—hfit,y) — VI @ —y) + &),
where ¢(h) = w(t, y + hf(t, ¥)). By (iv*), we see that

lim inf £M) _ ¢ |
1m in h

h—0t
Consequently, the inequality (6) assures
0= — V.(t, 2 — y)of(t, v)

which is condition (iv) of Theorem 1.

We could have, following the proof of Theorem 1, directly proved
Theorem 4. The proof crucially depends on the inequality (5). This
we leave to the reader.

As before, the choice V(¢, z) = |[z]| or |[«]|* and g(¢, w) = o(uw)
where p is a uniqueness function includes the result of Brezis [2] as
given in [6]. Unfortunately, the restrictive condition (5) seems to
be unavoidable which makes Theorem 4 less flexible compared to
Theorem 1.

It is possible to formulate results analogous to Theorems 2 and
3 in the spirit of Theorem 4. This we do not undertake to avoid
monotony.
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