SETS WHICH ARE TAME IN ARCS IN E^{3}

Richard C. Detmer

Abstract

Results of McMillan and Cannon may be combined to give an algebraic condition which is sufficient to show that an arc topologically embedded in E^{3} is tame in E^{3}. The main theorem of this paper gives an essentially algebraic condition involving an arc embedded in E^{3} and a compact subset of that arc which is sufficient to show that the arc may be approximated arbitrarily closely without moving the subset, to obtain a tame arc.

1. Preliminaries. The usual Euclidean distance function will be denoted by d. An open neighborhood having radius r about a set S will by denoted by $N(S, r)$. An r-set will be a set having diameter less than r.
1.1. Definition. Suppose that X is a compact subset of a finite complex K which is topologically embedded in E^{3}. Then X is said to be tame in K iff given $r>0$ there is a homeomorphism $h: K \rightarrow E^{3}$ such that
(1) $d(x, h(x))<r$ for each x in K,
(2) $h(x)=x$ for each x in X, and
(3) $h(K)$ is tame.
1.2. Definition. Suppose that X is a compact subset of an arc A which is topologically embedded in E^{3}. Then X is said to be untangled iff for each $r>0$, there is an $s>0$ such that if J is a loop in $E^{3}-X$ which bounds (homologically) on an s-set in $E^{3}-X$, then J shrinks (homotopically) on an r-set in $E^{3}-X$.

McMillan [3] has noted that an arc is untangled iff it has free local fundamental groups (1-FLG) at each of its points. He also proved that an arc which has 1-FLG at each point is tame if each of its subarcs pierces a disk. Cannon [2, Theorem 3.16] has shown that an arc which has 1-FLG at each point does pierce a disk. Hence, an arc which is untangled is tame.
1.3. Notation. For the remainder of this paper A will denote an arc topologically embedded in E^{3} and X will denote a compact subset of A which is untangled. The arc A will be assumed to have a fixed order, compatible with, and inducing, the given topology on A.
1.4. Definition. Let Y be a subset of A. An indexed collection C_{1}, \cdots, C_{n} of disjoint connected subsets of E^{3} is said to be ordered
with respect to Y iff, in the order on A, each point of $C_{i} \cap Y$ precedes each point of $C_{i+1} \cap Y . \quad(i=1, \cdots, n-1$.

The lemma below gives a way to separate components of X by open sets in E^{3} which are, roughly speaking, not much larger than the components.
1.5. Separation Lemma. Suppose that s is a positive number. Then there is a finite cover C_{1}, \cdots, C_{n} of X by connected open subsets of E^{3} with disjoint, polyhedral closures such that:
(1) C_{1}, \cdots, C_{n} is ordered with respect to X, and
(2) For each i, there is a component X_{i} of X in C_{i} such that $C_{i} \subset N\left(X_{i}, s\right)$.

Proof. The lemma follows easily from the fact that X is a compact set.
2. Cellularity lemmas. In this section it is shown that if X is untangled, then each component K of X can be enclosed in a polyhedral ball which is "close" to K and which has boundary missing X. The proof falls naturally into two cases, depending on whether or not K is a nondegenerate component of X. The two cases are handled in 2.1 and 2.4 respectively. These results are referred to as cellularity lemmas.
2.1. Cellularity Lemma for Nondegenerate Components. Suppose that e is a positive number and that K is a nondegenerate component of X. Then there is a polyhedral ball B such that K is contained in $B, \operatorname{Bd} B$ does not intersect X, and $B \subset N(K, e)$.

Proof. By the results of McMillan [3] and Cannon [2], K is a tame arc. Therefore, there is a 3 -cell $C \subset N(K, e)$ which contains $K-\operatorname{Bd} K$ in its interior, which does not intersect $A-K$, and which has boundary which is polyhedral modulo K.

In view of Dehn's lemma [5], it suffices to prove the fact stated below. Indeed, the fact may be used in conjunction with Dehn's lemma to alter $\mathrm{Bd} C$ slightly near $K \cap \mathrm{Bd} C$ and in $N(K, e)$ so as to miss X. The adjusted 2 -sphere will then bound a ball B satisfying the requirements of the lemma.

Fact. Suppose that J is a simple closed curve in $\operatorname{Bd} C$ which separates the endpoints of K from each other in $B d C$, and suppose that J bounds a disk D in $\mathrm{Bd} C$ of diameter less than some given positive number q. Then J bounds a singular disk D^{\prime} in $E^{3}-X$ of diameter less than q.

The fact is proved as follows. Let $r=q-\operatorname{diam} D$. Choose $s>0$ so small that loops which bound on s-sets in $E^{3}-X$ shrink on r-sets in $E^{3}-X$. Pick a 3-cell T of diameter less than s such that Bd T separates the endpoints of K in E^{3} and $(\mathrm{Bd} T) \cap(\mathrm{Bd} C)$ is a simple closed curve in Int D. Let E denote the disk $C \cap B d T$. Use the separation lemma 1.5 to cover components of X which intersect ($\mathrm{Bd} T$) $-E$ by a finite collection of disjoint open sets whose polyhedral closures miss $E \cup K$. Let W be the union of these sets and assume that $\mathrm{Bd} W$ is in general position with respect to $\mathrm{Bd} T$. Because $\mathrm{Cl} W$ does not intersect $K \cup E, \mathrm{Bd} E$ bounds homologically on the s-set $\mathrm{Bd}(T-W)-\operatorname{Int} E$ in $E^{3}-X$ and therefore bounds a singular r-disk F in $E^{3}-X$. The set $(D-K) \cup F$, which lies in $E^{3}-X$, contains a singular disk D^{\prime} of diameter less than q which is bounded by J. This establishes the fact and completes the proof of the lemma.

If, in the proof of $2.1, C$ is first partitioned by means of disjoint spanning disks D_{1} and D_{2} into three 3-cells - a central 3-cell C_{3}, whose intersection with K is an arc $K_{3} \subset \operatorname{Int} K$, and end cells C_{1} and C_{2} whose intersections with K are the closed components K_{1} and K_{2} of $K-K_{3}$ and $\mathrm{Bd} C$ is adjusted only very near $\left(\mathrm{Bd} C_{1}-D_{1}\right) \cap K$ and $\left(\mathrm{Bd} C_{2}-\right.$ D_{2}) $\cap K$ in constructing $\mathrm{Bd} B$, then the following is evident.
2.2. Addendum. The ball B in 2.1 may be chosen in such a manner that it can be partitioned by disjoint spanning disks D_{1} and D_{2} into 3-cells B_{1}, B_{2}, and $B_{3}\left(B_{i} \cap B_{3}=D_{i}\right.$ for $\left.i=1,2\right)$ satisfying
(1) $B_{3} \cap A$ is a subarc of Int K which spans the cell B_{3} from D_{1} to D_{2},
(2) the diameter of B_{i} is less than $e(i=1,2)$, and
(3) $B_{i} \cap A$ lies in an e-arc on $A(i=1$, 2) with one endpoint of this e-arc missing X (unless B_{i} contains an endpoint of A).

The next lemma is well-known.
2.3. Lemma. Suppose that J is a simple closed curve in E^{3} which bounds an orientable surface T of diameter less than r, and suppose that L is an arc of diameter less than s which misses J. Then J bounds a surface of diameter less than $r+s$ in $E^{3}-L$ and this surface may be chosen in an arbitrarily small neighborhood of $T \cup L$.
2.4. Cellularity Lemma for Degenerate Components. Suppose that s is a positive number and that $\{p\}$ is a degenerate component of X. Then there is a polyhedral 3-cell B such that p lies in B, $\operatorname{Bd} B \cap X=\varnothing$, and $B \subset N(p, s)$.

Proof. As a first approximation to the desired 3-cell, let $B^{\prime}=$ $\mathrm{Cl}(N(p, r))$ where $0<r<s / 2$ and r is so small that B^{\prime} intersects no
component of X with diameter as large as $s / 4$. Choose $q>0$ so small that loops which bound on q-sets in $E^{3}-X$ shrink on $r / 2$-sets in $E^{3}-X$.

Choose a collection D_{1}, \cdots, D_{n} of small disjoint polyhedral disks on $\mathrm{Bd} B^{\prime}$ with boundaries missing X and a collection S_{1}, \cdots, S_{m} of small polyhedral spheres in $E^{3}-X$ such that $X \cap \operatorname{Bd} B^{\prime}$ is contained in $D_{1} \cup \cdots \cup D_{n} \cup\left(\operatorname{Int} S_{1} \cap \operatorname{Bd} B^{\prime}\right) \cup \cdots \cup\left(\operatorname{Int} S_{m} \cap \mathrm{Bd} B^{\prime}\right)$. Specifically, select for each degenerate component $\{x\}$ of X which lies on $\mathrm{Bd} B^{\prime}$ a disk $D_{x} \subset \operatorname{Bd} B^{\prime}$ with $\operatorname{Bd} D_{x} \cap X=\varnothing$ and so small that diam $D_{x}<q / 2$ and $D_{x} \cap A$ lies on a subarc of A with diameter less than $q / 2$ which has endpoints in $A-X$. Select a sphere for each nondegenerate component of X which intersects $\mathrm{Bd} B^{\prime}$ using the cellularity lemma for nondegenerate components, 2.1, with $s / 4$ as the value of e in that lemma. A finite collection of these disks and spheres satisfies the conditions above except for the requirement that the disks be disjoint. Since their boundaries miss X, the disks may be made disjoint by simply putting their boundaries in general position and cutting them apart.

Application of Lemma 2.3 shows that, for each $i, \operatorname{Bd} D_{i}$ bounds on a q-set in $E^{3}-X$, and hence shrinks on an $r / 2$-set in $E^{3}-X$. Because of this, if Int D_{i} is thrown away and $\mathrm{Bd} D_{i}$ shrunk, a singular 2-sphere R_{0} may be produced which intersects X in "fewer" places than did $\mathrm{Bd} B^{\prime}$ and which is essential in $E^{3}-\{p\}$ since it is homotopic to $\mathrm{Bd} B^{\prime}$ in $E^{3}-N(p, r / 2)$. If any of the spheres S_{i} contains p, the proof is finished since each S_{i} has diameter less than s. Otherwise, for each i in turn, choose a point x_{i} in $\operatorname{Int} S_{i}-R_{i-1}$ and project "radially" the part of R_{i-1} in $\operatorname{Int} S_{i}$ into S_{i} to form a singular sphere R_{i}. The final result is a singular sphere R_{m} in $E^{3}-X$, essential in $E^{3}-\{p\}$, and lying in $N(p, s)$. Using a strong form of the sphere theorem (which is implicit in the original proof in [5] and is stated explicitly in [6]), there is a nonsingular, polyhedral sphere with the same properties. Taking B to be the closure of the interior of this sphere completes the proof.
3. The following theorem is the main result of this paper. It says that if a compact subset of an arc is untangled, then it is tame in that arc.

Theorem 3.1. Suppose that X is a compact subset of an arc A which is topologically embedded in E^{3}, and that for each positive number r, there is a positive number s such that if J is a loop in $E^{3}-X$ which bounds on an s-set missing X, then J shinks on an r-set missing X. Then for each positive number q there is a homeomorphism $f: A \rightarrow E^{3}$ such that
(1) $f(x)=x$ for each x in X,
(2) $d(x, f(x))<q$ for each x in A, and
(3) $f(A)$ is tame.

Proof. The idea of the proof is as follows. Construct a homeomorphism $h: E^{3} \rightarrow E^{3}$ such that the restriction of h to X takes X in an order preserving fashion into the x-axis. Define $f(A)=h^{-1}(I)$ where I is a suitably chosen subinterval of the x-axis. Care must be taken in the construction of h in order that A and $f(A)$ be close homeomorphically. The details of this process are described below.

It may be assumed that A is locally polyhedral modulo X. Use the cellularity lemma for nondegenerate components, 2.1 , to construct a collection $B_{1}^{\prime}, \cdots, B_{n}^{\prime}$ of disjoint polyhedral 3 -cells with boundaries in $E^{3}-X$, one for each component of X with diameter as large as $q / 12$. Choose e in that lemma and its addendum, 2.2, less than $q / 6$, and so small that the collection of cells is ordered with respect to X (although it need not cover X).

The set $X^{\prime}=X-\bigcup B_{i}^{\prime}$ is a compact subset of A with no component having diameter as large as $q / 12 ; X^{\prime}$ is untangled. "Small" 3 -cells covering X^{\prime} are now constructed. By an appropriate choice of s in the separation lemma, 1.5, a cover C_{1}, \cdots, C_{m} of X^{\prime} may be obtained, the closures of whose elements miss $\cup B_{i}^{\prime}$, have diameters less than $q / 6$, and are ordered with respect to X. A suitable choice of s also guarantees that each C_{i} intersects at most one of the $q / 6$ arcs associated (by the Addendum 2.2) with any B_{j}^{\prime}, and that $C_{i} \cap A$ lies in a $q / 6$-arc on A.

Each C_{i} may be changed to a ball, using the two cellularity lemmas to cover each component of X inside C_{i} by a polyhedral ball, picking a finite subcover of these, and following the methods of Bing [1] to cut apart and reconnect these balls to form a single ball containing $X \cap C_{i}$ in its interior. Retain the notation C_{i} for such a polyhedral ball.

Modify each $B_{j}^{\prime}(j=1, \cdots, n)$ as follows. The set $B_{j}^{\prime} \cap C l\left(A-B_{j}^{\prime}\right)$ is contained in (at most) two $q / 6-\operatorname{arcs} A_{1}$ and A_{2} on A, and the intersection of each of these with B_{j}^{\prime} lies in a $q / 6$-cell (by the addendum). If A_{i} intersects $X-B_{j}$, then $A_{i} \cap\left(X-B_{j}\right)$ is contained in some of the C_{i} 's. Connect these C_{i} 's to the $q / 6$-cells using disjoint $q / 6$-cells, so that the result is two $5 q / 6$-cells, each of which intersects one of A_{1} or A_{2} and no other point of $A-B_{j}^{\prime}$.

Let $B_{1}, \cdots, B_{n}, B_{n+1}, \cdots, B_{k}$ be the modified B_{j} 's $(j=1, \cdots, n)$ plus the C_{j} 's not used in the modifications. Assume that the indices are arranged so that this collection is ordered with respect to X.

Figure 1 illustrates the situation at this point of the proof.
The purpose in constructing B_{1}, \cdots, B_{n} so carefully is to make it possible to change A homeomorphically by moving only points of

Figure 1
A which are near small components of X and near the endpoints of large components of X. Define a homeomorphism f^{\prime} on A to move some subarcs of the $q / 6$-arcs associated with B_{1}, \cdots, B_{n} into the $5 q / 6$ cells at the "ends" of these "large" balls, and to move some subarcs of the $q / 6-\operatorname{arcs}$ associated with B_{n+1}, \cdots, B_{k} into these balls; do this so that $f^{\prime}(A)$ intersects each $\operatorname{Bd} B_{j}$ in at most two points (and only one point if B_{j} (contains an endpoint of A.)

The first approximation h_{1} to the homeomorphism h taking X into the x-axis is defined to take $f^{\prime}(A)-\bigcup B_{i}$ into the x-axis, to take each B_{i} to a small neighborhood of an arc on the x-axis, and to take each component of X with diameter as large as $q / 12$ into the x-axis, everything with order preserved. Subsequent approximations to h will be the identity outside the images under h_{1} of the $5 q / 6$-cells associated with B_{1}, \cdots, B_{n} and of B_{n+1}, \cdots, B_{k}, and this will ensure that conclusion (2) of the theorem is true.

Approximations to h are now obtained sequentially. At the second stage of the construction, a new collection of balls is chosen, inside the fiast, closer to X, and separating the components of X with diameters as large as $q / 24$. A homeomorphism h_{2} of E^{3} onto itself is obtained which is the identity on each of the h_{1}-images of the components of X which have diameter as large as $q / 12$. This homeomorphism maps h_{1}-images of the new balls to neighborhoods of arcs on the x-axis, and $h_{2} h_{1}$ also sends components of X with diameter as large as $q / 24$ into the x-axis, preserving order of cells.

Continue in this manner, choosing the balls so small that the sequence $h_{1}, h_{2} h_{1}, h_{3} h_{2} h_{1}, \cdots$ of homeomorphisms converges to a homeomorphism h. Let I be the smallest subarc of the x-axis which contains $h\left(f^{\prime}(A)\right) \cap(x$-axis $)$. The arc $h^{-1}(I)$ differs from $f^{\prime}(A)$ only in the end cells of B_{1}, \cdots, B_{n} and in B_{n+1}, \cdots, B_{k} and so a homeomorphism $f: A \rightarrow E^{3}$ may be defined so that $f(A)=h^{-1}(I)$ and $d(x, f(x))<q$ for each x in A. The homeomorphism f may also be chosen to fix points of X since the restriction of h to X is a homeomorphism of X into the x-axis. This completes the proof of the theorem.

There is also a relative version of 3.1:
Theorem 3.2. Suppose that X is a compact subset of an arc A
which is topologically embedded in E^{3} and that X is untangled. Suppose that $g: A \rightarrow[0, \infty)$ is a continuous function so that $g^{-1}(0) \cap$ $X=\varnothing$. Then there is a homeomorphism $f: A \rightarrow E^{3}$ such that
(1) $f(x)=x$ for each x in X,
(2) $d(x, f(x))<g(x)$ for each x in A, and
(3) $f(A)$ is locally tame modulo the set $g^{-1}(0)$.

Proof. The proof is almost exactly the same as for 3.1, except for beginning with an approximation to A which is locally polyhedral modulo $X \cup g^{-1}(0)$ and which is homeomorphically within g of A. This new are is then modified on subarcs close to X in the same way as in the proof of 3.1.
4. Theorem 3.1 may be combined with a characterization of subsets of arcs due to R. L. Moore [4, Theorem 135] to yield a characterization of subsets of tame arcs in E^{3}. Moore's theorem is proved for a space satisfying his axioms $0-5$ and E^{3} does not satisfy axiom 4. However the proof is not difficult in this case.

Theorem (R. L. Moore) 4.1. In order that the compact point set M in E^{3} be a subset of an arc it is necessary and sufficient that every closed and connected subset of M be either a degenerate point set or an arc t such that no point of t, except for its endpoints is a limit point of $M-t$.
4.2. Characterization of Subsets of Tame Arcs in E^{3}. Suppose that X is a compact subset of E^{3}. Then X is a subset of a tame arc in E^{3} if and only if each component of X is a point or an arc t such that no point of t, except possibly for an endpoint, is a limit point of $X-t$, and for each positive number r, there is a positive number s such that each loop which bounds on a s-set in $E^{3}-X$ shrinks on an r-set in $E^{3}-X$.

Proof. Sufficiency follows from 3.1 and 4.1. Necessity is obvious.

References

1. R. H. Bing, Tame Cantor sets in E', Pacific J. Math., 11 (1961), 435-446.
2. J. W. Cannon, ULC properties in neighborhoods of embedded surfaces and curves in E^{3}, Canad. J. Math., 25 (1973), 31-73.
3. D. R. McMillan, Local properties of the embedding of a graph in a three-manifold, Canad. J. Math., 18 (1966), 517-528.
4. R. L. Moore, Foundations of Point Set Theory, rev. ed., Amer. Math. Soc. Colloq. Pub., vol. 13, Amer. Math. Soc., 1962.
5. C. D. Papakyriakopolous, On Dehn's lemma and the asphericity of knots, Ann. of

Math., (2) 66 (1957), 1-26.
6. J. H. C. Whitehead, On 2-spheres in 3-manifolds, Bull. Amer. Math. Soc., 64 (1958), 161-166.

Received December 12, 1972. This paper formed part of the author's doctoral thesis at the University of Wisconsin, Madison, under the direction of Professor J. W. Cannon.

University of Tennessee at Chattanooga

