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SETS WHICH ARE TAME IN ARCS IN E3

RICHARD C. DETMER

Results of McMillan and Cannon may be combined to give
an algebraic condition which is sufficient to show that an arc
topologically embedded in Es is tame in E3. The main theorem
of this paper gives an essentially algebraic condition involving
an arc embedded in Ez and a compact subset of that arc which
is sufficient to show that the arc may be approximated
arbitrarily closely without moving the subset, to obtain a
tame arc.

1* Preliminaries* The usual Euclidean distance function will be
denoted by d. An open neighborhood having radius r about a set S
will by denoted by N(S, r). An r-set will be a set having diameter
less than r.

1.1. DEFINITION. Suppose that X is a compact subset of a finite
complex K which is topologically embedded in E3. Then X is said
to be tame in K iff given r > 0 there is a homeomorphism h: K—+Έ3

such that
(1) d(x, h(x)) < r for each x in K,
(2) h(x) = x for each x in X, and
(3) h(K) is tame.

1.2. DEFINITION. Suppose that X is a compact subset of an arc
A which is topologically embedded in E3. Then X is said to be
untangled iff for each r > 0, there is an s > 0 such that if J is a loop
in E3 — X which bounds (homologically) on an s-set in Ez — X, then
J shrinks (homotopically) on an r-set in E3 — X.

McMillan [3] has noted that an arc is untangled iff it has free
local fundamental groups (1-PLG) at each of its points. He also proved
that an arc which has 1-FLG at each point is tame if each of its
subarcs pierces a disk. Cannon [2, Theorem 3.16] has shown that an
arc which has 1-FLG at each point does pierce a disk. Hence, an arc
which is untangled is tame.

1.3. NOTATION. For the remainder of this paper A will denote
an arc topologically embedded in E3 and X will denote a compact
subset of A which is untangled. The arc A will be assumed to have
a fixed order, compatible with, and inducing, the given topology on A.

1.4. DEFINITION. Let 7 b e a subset of A. An indexed collection
Ci, , Cn of disjoint connected subsets of E3 is said to be ordered
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with respect to Y iff, in the order on A, each point of C{ Π Y precedes
each point of Ci+1 Π Y. (i = 1, , n — 1.)

The lemma below gives a way to separate components of X by
open sets in E* which are, roughly speaking, not much larger than
the components.

1.5. SEPARATION LEMMA. Suppose that s is a positive number.
Then there is a finite cover Cu , Cn of X by connected open subsets
of Es with disjoint, polyhedral closures such that:

(1) Cίf , Cn is ordered with respect to X, and
(2) For each i, there is a component X, of X in C; such that

Ctc:N(Xif8).

Proof. The lemma follows easily from the fact that X is a
compact set.

2* Cellularity lemmas* In this section it is shown that if X
is untangled, then each component K of X can be enclosed in a
polyhedral ball which is "close" to Kand which has boundary missing
X. The proof falls naturally into two cases, depending on whether
or not K is a nondegenerate component of X. The two cases are
handled in 2.1 and 2.4 respectively. These results are referred to as
cellularity lemmas.

2.1. CELLULARITY LEMMA FOR NONDEGENERATE COMPONENTS.

Suppose that e is a positive number and that K is a nondegenerate
component of X. Then there is a polyhedral ball B such that K is
contained in B, Bdi? does not intersect X, and BcN(K, e).

Proof. By the results of McMillan [3] and Cannon [2], K is a
tame arc. Therefore, there is a 3-cell C c N(K, e) which contains
K — Bd K in its interior, which does not intersect A — K, and which
has boundary which is polyhedral modulo K.

In view of Dehn's lemma [5], it suffices to prove the fact stated
below. Indeed, the fact may be used in conjunction with Dehn's lemma
to alter Bd C slightly near K Π Bd C and in N(K, e) so as to miss X.
The adjusted 2-sphere will then bound a ball B satisfying the require-
ments of the lemma.

Fact. Suppose that J is a simple closed curve in Bd C which
separates the endpoints of K from each other in Bd C, and suppose
that / bounds a disk D in Bd C of diameter less than some given
positive number q. Then J bounds a singular disk D' in Ez — X of
diameter less than q.
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The fact is proved as follows. Let r — q — diam D. Choose s > 0
so small that loops which bound on s-sets in E3 — X shrink on r-sets
in E3 - X. Pick a 3-cell T of diameter less than s such that Bd T
separates the endpoints of K in E3 and (Bd T) n (Bd C) is a simple
closed curve in Int D. Let E denote the disk C Π Bd T. Use the
separation lemma 1.5 to cover components of X which intersect
(Bd T) — E by a finite collection of disjoint open sets whose polyhedral
closures miss E U K. Let W be the union of these sets and assume
that Bd W is in general position with respect to Bd T. Because
Cl W does not intersect K U E, Bd E bounds homologically on the s-set
Bd (T — W) — Int E in E3 — X and therefore bounds a singular r-disk
F in E3 - X. The set (D - K) U F, which lies in E3 - X, contains
a singular disk D' of diameter less than q which is bounded by J.
This establishes the fact and completes the proof of the lemma.

If, in the proof of 2.1, C is first partitioned by means of disjoint
spanning disks A and A into three 3-cells — a central 3-cell C3, whose
intersection with K is an arc Kz c Int K, and end cells C1 and C2 whose
intersections with K are the closed components Kλ and K2 of K — iΓ3 —
and Bd C is adjusted only very near (Bd Cλ — A) Π K and (Bd C2 —
A) 0 K in constructing Bd B, then the following is evident.

2.2. ADDENDUM. The ball B in 2.1 may be chosen in such a manner
that it can be partitioned by disjoint spanning disks Dx and D2 into
3-cells Blf B2J and 53(A n B3 = A for i = 1, 2) satisfying

(1) j?3 Π A is a subarc of Int iΓ which spans the cell B3 from A
to A,

(2) the diameter of 2?* is less than e(ΐ = 1, 2), and
(3) Bi Π A lies in an β-arc on A(i — 1, 2) with one endpoint of

this e-arc missing X (unless JB< contains an endpoint of A).
The next lemma is well-known.

2.3. LEMMA. Suppose that J is a simple closed curve in E3 which
bounds an orientable surface T of diameter less than r, and suppose
that L is an arc of diameter less than s which misses J. Then J
bounds a surface of diameter less than r + s in E3 — L and this
surface may be chosen in an arbitrarily small neighborhood of T U L.

2.4. CELLULARITY LEMMA FOR DEGENERATE COMPONENTS. Sup-

pose that s is a positive number and that {p} is a degenerate com-
ponent of X. Then there is a polyhedral 3-cell B such that p lies in B,
Bd B Π X = 0 , and B c N(p, s).

Proof. As a first approximation to the desired 3-cell, let B' =
Cl (N(p, r)) where 0 < r < s/2 and r is so small that Bf intersects no
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component of X with diameter as large as s/4. Choose q > 0 so small
that loops which bound on g-sets in E3 — X shrink on r/2-sets in
E3 - X.

Choose a collection Dl9 —, Dn of small disjoint polyhedral disks
on Bd Br with boundaries missing X and a collection Slf , Sm of
small polyhedral spheres in E3 — X such that X Π Bd Br is contained
in A U U Dn U (Int St Π Bd B') U U (Int Sm n Bd £')• Specifically,
select for each degenerate component [x] of X which lies on Bd B' a
disk Dx c Bd B' with Bd A n X = 0 and so small that diam A < q/2
and A Π A lies on a subarc of A with diameter less than q/2 which
has endpoints in A — X. Select a sphere for each nondegenerate
component of X which intersects Bd Bf using the cellularity lemma
for nondegenerate components, 2.1, with s/4 as the value of β in that
lemma. A finite collection of these disks and spheres satisfies the
conditions above except for the requirement that the disks be disjoint.
Since their boundaries miss X, the disks may be made disjoint by simply
putting their boundaries in general position and cutting them apart.

Application of Lemma 2.3 shows that, for each i, Bd A bounds
on a g-set in E3 — X, and hence shrinks on an r/2-set in E3 — X.
Because of this, if Int A is thrown away and Bd A shrunk, a singular
2-sphere RQ may be produced which intersects X in "fewer" places
than did Bd B' and which is essential in E3 — {p} since it is homotopic
to Bd Bf in E3 — N(p, r/2). If any of the spheres St contains p, the
proof is finished since each Si has diameter less than s. Otherwise,
for each i in turn, choose a point x{ in Int Si — R^ and project
"radially" the part of R^ in Int Si into Si to form a singular sphere
R{. The final result is a singular sphere Rm in E3 — X, essential in
E3 — {v)y and lying in N(p, s). Using a strong form of the sphere
theorem (which is implicit in the original proof in [5] and is stated
explicitly in [6]), there is a nonsingular, polyhedral sphere with the
same properties. Taking B to be the closure of the interior of this
sphere completes the proof.

3. The following theorem is the main result of this paper. It
says that if a compact subset of an arc is untangled, then it is tame
in that arc.

THEOREM 3.1. Suppose that X is a compact subset of an arc A
which is topologically embedded in E3, and that for each positive
number r, there is a positive number s such that if J is a loop in
E3 — X which bounds on an s~set missing X, then J shίnks on an
r-set missing X. Then for each positive number q there is a homeo-
morphism f: A —> E3 such that

(1) f{x) — x for each x in X,
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(2 ) d(x, f(x)) < q for each x in A, and
( 3 ) f(A) is tame.

Proof. The idea of the proof is as follows. Construct a homeo-
morphism h: Ez -» Ez such that the restriction of h to X takes X in
an order preserving fashion into the #-axis. Define f(A) — h~ι(I)
where I is a suitably chosen subinterval of the .τ-axis. Care must be
taken in the construction of h in order that A and f(A) be close
homeomorphically. The details of this process are described below.

It may be assumed that A is locally polyhedral modulo X. Use
the cellularity lemma for nondegenerate components, 2.1, to construct
a collection B[, , B'n of disjoint polyhedral 3-cells with boundaries
in E3 — X, one for each component of X with diameter as large as
#/12. Choose e in that lemma and its addendum, 2.2, less than g/6,
and so small that the collection of cells is ordered with respect to X
(although it need not cover X).

The set Xf — X — \J B\ is a compact subset of A with no com-
ponent having diameter as large as q/12; Xf is untangled. "Small"
3-cells covering X' are now constructed. By an appropriate choice
of s in the separation lemma, 1.5, a cover Clf — ,Cm of X' may be
obtained, the closures of whose elements miss U B\, have diameters
less than g/6, and are ordered with respect to X. A suitable choice
of s also guarantees that each C< intersects at most one of the q/6-
arcs associated (by the Addendum 2.2) with any B], and that d Π A
lies in a q/6-aτc on A.

Each Ci may be changed to a ball, using the two cellularity lemmas
to cover each component of X inside d by a polyhedral ball, picking
a finite subcover of these, and following the methods of Bing [1] to
cut apart and reconnect these balls to form a single ball containing
Xf] Ci in its interior. Retain the notation d for such a polyhedral
ball.

Modify each B]{j = 1, . . . , n) as follows. The set B'ά n C\(A - JSJ)
is contained in (at most) two #/6-arcs Aλ and A2 on A, and the inter-
section of each of these with J5J lies in a g/6-cell (by the addendum).
If At intersects X — Bo, then A{ Π (X — B3) is contained in some of
the (Vs. Connect these (Vs to the g/6-cells using disjoint g/6-cells,
so that the result is two 5g/6-cells, each of which intersects one of
Ax or A2 and no other point of A — B'ό.

L e t Blf , Bn, Bn+lf , Bk be the modified ΰ/s 0* = 1, , n)
plus the C/s not used in the modifications. Assume that the indices
are arranged so that this collection is ordered with respect to X.

Figure 1 illustrates the situation at this point of the proof.
The purpose in constructing Blf , Bn so carefully is to make

it possible to change A homeomorphically by moving only points of
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FIGURE 1

A which are near small components of X and near the endpoints of
large components of X. Define a homeomorphism / ' on A to move
some subarcs of the g/6-arcs associated with Bl9 , Bn into the 5g/6-
cells at the "ends" of these "large" balls, and to move some subarcs
of the g/6-arcs associated with Bn+U •••, Bk into these balls; do this
so that f'(A) intersects each Bd Bά in at most two points (and only
one point if Bj (contains an endpoint of A.)

The first approximation hx to the homeomorphism h taking X into
the α -axis is defined to take /'(A) — U Bζ into the β-axis, to take each
Bi to a small neighborhood of an arc on the #-axis, and to take each
component of X with diameter as large as g/12 into the α -axis, every-
thing with order preserved. Subsequent approximations to h will be
the identity outside the images under hγ of the 5#/β-cells associated
with Blf •••, Bn and of Bn+1, ••-, BhJ and this will ensure that con-
clusion (2) of the theorem is true.

Approximations to h are now obtained sequentially. At the second
stage of the construction, a new collection of balls is chosen, inside
the fiast, closer to X, and separating the components of X with
diameters as large as g/24. A homeomorphism h2 of E3 onto itself is
obtained which is the identity on each of the /^-images of the com-
ponents of X which have diameter as large as q/12. This homeo-
morphism maps /^-images of the new balls to neighborhoods of arcs
on the x-axis, and h^ also sends components of X with diameter as
large as g/24 into the α -axis, preserving order of cells.

Continue in this manner, choosing the balls so small that the
sequence hlt hjιu hzhjιly of homeomorphisms converges to a homeo-
morphism h. Let I be the smallest subarc of the cc-axis which
contains h(f'(A)) Π (α-axis). The arc h~ι{I) differs from f\A) only in
the end cells of Bl9 , Bn and in Bn+1, , Bk and so a homeomorphism
f:A-+E3 may be defined so that f(A) = h~\I) and d(x, f(x)) <q for
each x in A. The homeomorphism / may also be chosen to fix points
of X since the restriction of h to X is a homeomorphism of X into the
α -axis. This completes the proof of the theorem.

There is also a relative version of 3.1:

THEOREM 3.2. Suppose that X is a compact subset of an arc A
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which is topologically embedded in E3 and that X is untangled.
Suppose that g: A—»[0, ©o) is a continuous function so that g~ι(0) Γ)
X = 0. Then there is a homeomorphism f:A—*E3 such that

(1) f(x) = x for each x in X,
(2 ) d(x, f(x)) < g(x) for each x in A, and
(3) f(A) is locally tame modulo the set g~ι(0).

Proof. The proof is almost exactly the same as for 3.1, except
for beginning with an approximation to A which is locally polyhedral
modulo X U g~ι(0) and which is homeomorphically within g of A. This
new arc is then modified on subarcs close to X in the same way as
in the proof of 3.1.

4* Theorem 3.1 may be combined with a characterization of
subsets of arcs due to R. L. Moore [4, Theorem 135] to yield a
characterization of subsets of tame arcs in E3. Moore's theorem is
proved for a space satisfying his axioms 0-5 and E3 does not satisfy
axiom 4. However the proof is not difficult in this case.

THEOREM (R. L. Moore) 4.1. In order that the compact point set
M in E3 be a subset of an arc it is necessary and sufficient that every
closed and connected subset of M be either a degenerate point set or
an arc t such that no point of t, except for its endpoints is a limit
point of M — t.

4.2. CHARACTERIZATION OP SUBSETS OF TAME ARCS IN E3. Sup-

pose that X is a compact subset of E3. Then X is a subset of a tame
arc in E3 if and only if each component of X is a point or an arc t such
that no point of t, except possibly for an endpoint, is a limit point of
X — t, and for each positive number r, there is a positive number s
such that each loop which bounds on a s-set in E3 — X shrinks on an
r-set in E3 - X.

Proof. Sufficiency follows from 3.1 and 4.1. Necessity is obvi-
ous.
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