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A CONNECTED HAUSDORFF SPACE WHICH IS NOT
CONTAINED IN A MAXIMAL CONNECTED SPACE

IvaN BAGGS

An example of a countable connected Hausdorff space
(X, o) is given which has the property that for every topology
; strictly larger than o, where (X, 7) is connected, there
exists a topology 7/, strictly larger than 7, such that (X, 7/) is
connected. There also exists uncountable connected Hausdorff
spaces which have this property.

The purpose of this note is to present an example of a connected
Hausdorff space which cannot be embedded into a maximal connected
space.

1. Preliminaries. R will be used to denote the real line with
the usual topology, z. Let X be a set and let A and B be families
of subsets of X, then A \V B denotes the topology generated by the
subbase P = {C|Ce A or Ce B}.

DEFINITION 1 (see [4]). A connected topological space (X, 7) is
maximal connected if for every topology 7, where 7, is strictly larger
than 7, (X, 7)) is not connected.

REMARK 1. Let X beaset and z,, 2 =1, 2,3, ---, be a sequence
of topologies on X such that (X, r,) is connected for n =1,2, ---.
If ¢ is the topology which is the least upper bound of the sequence
Ta =12 ..., then (X, 7) is not necessarily connected (see problem
5, page 155, [1]).

DEFINITION 2. A topological space (X, 7) is maximal perfect if
(X, 7) has no isolated points and, for every topology 7, strictly larger
than 7, (X, 7,) has an isolated point.

LemMmA 1. If (X, 7) is any topological space without isolated
points, then there exists a topology v, D T such that (X, 7,) s maximal
perfect.

Proof. Let {t.}.., be a linearly ordered family of topologies on
X such that, for each € 4, 7,D 7 and (X, z,) has no isolated points.
Let o be the topology generated by {r.}.... If there exists some
xe X such that {z} € g, then, since {z,},., is linearly ordered, {z} ¢ z,,
for some a. Therefore, (X, o) has no isolated points. It therefore
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follows by Zorn’s lemma that there exists a topology 7,2z such that
(X, 7)) is maximal perfect.

2. Particular maximal perfect topologies on sets of rationals.
In constructing the topological space (X, o) referred to in the title,
we will make use of the fact that the restriction of ¢ to certain
subsets of X is maximal perfect. However, in order to make full
use of this fact, we need to know something about the structure of
the open subsets of these maximal perfect subspaces. Consequently,
we now put a particular maximal perfect topology on a dense sub-
space of the rationals. We will make use of this model in construct-
ing the required topological space.

Let P denote a dense subset of the rationals with the topology
7 inherited from R.

DEFINITION 3. A set GC P is an N-set if G = ¢ or if for each
rxe G and for every b >z, {ye G|z < y < b} has nonempty z-interior.

DEFINITION 4. A collection & of N-sets which is closed under
finite intersections is an N-family.

It follows from Zorn’s lemma that every N-family is contained
in a maximal N-family. For eachxe P,let I, = {ye Plz 2y <z + 1}.
Put B={I,|]ze PLU{0C P|0e7}. Biscontained in an N-family, B,.
Let _# be a maximal N-family containing B,.

If D is a subset of P, then D° denotes the complement of D in
P. Let @ ={Dc P|D° is t-nowhere dense in P}. Then @ is con-
tained in a filter &, where & is maximal with respect to the
properties that, (i) @ & and (ii) if Fe.#, then F is r-dense in P.
Throughout, .#Z and % will be used, respectively, to denote a
maximal family of N-sets and a maximal filter of dense sets con-
structed as outlined above.

LemMMA 2. Let 0 = # V F. Then tCo and (P, 0)1s a maxi-
mal perfect space.

Proof. Since v _# it follows that zco. Let xe P and let
xe FN M, where Fe &% and Me - Since M contains a t-open set
U and FNU is z-dense in U, it follows that N M # {x}. Therefore,
(P, o) is perfect.

Suppose (P, o) is not maximal perfect. Then there exists a
topology v on P such that v is strictly larger than ¢ and (P, v) is
perfect. Let Ve such that Veo. Let z, be an arbitrary fixed
element of V. For every b>ux, {xec Pla, <2< b N V=~g¢. [Otherwise,
for some b >, VN{rePlw,—1<ax<bnlL, ={x), where I, =



A CONNECTED HAUSDORFF SPACE WHICH IS NOT CONTAINED 13

e Pz, <2 <2, + 1}, and {x,} would be an element of v which is
impossible.]

Suppose there exists some b>ux, such that D ={xe Plz,<z<bNV
is 7-nowhere dense in {xre P|x, < x < b}. Then De~ and it follows
from the construction of & that D°ec &#. If y is a fixed element
of D, then (D°U {y})e# and DN (DU {y}) = {y}e~, which is im-
possible. Therefore, for every b > x, {x e P|x, < < b} N V is t-dense
in I P, for some open interval I R. Let {J,};-, be a family of
disjoint 7-open subsets of P whose union is the z-interior of the
r-closure of VN {re Pla > ).

For each positive integer =, there exists an Fe & such that
Vnd,=FndJ, [Suppose there exists some n such that for each
Fe s, Vnd,#= FndJ,. Since & 1is a maximal filter of z-dense
subsets of P and since VN J, is z-dense in J,, this implies that
there exists some F,c.# such that (VN J,) N F, is not z-dense in
J.. Hence, there exists some z-open set L —J, such that L N F, N
(Vnd,)=¢. If xisa fixed element of LN(V NJ,), then (F,U{x})e F
and (F,Uf{2))n LN (VNJ,) = {z}ev, which is impossible.]

Put G = {z} U{U3J.}. G is an N-set. Also, Ge _~. [For, if
Ge¢ _# GNG, is not an N-set for some G,e_~ This implies there
exists some x, € G N G, and some b > x, such that {xe P, <z < b} N
G N G, does not contain a 7-open set. It is clear that =, = x,. It
follows as a consequence of how G was constructed from V, that
C=Vn{zeP|lx,<x<b NG, isa r-nowhere dense subset of P. Also,
Cev. Ce and if yeC, then (C°U{WHNC ={yler. If C is
empty, then, since {zeP|w, <z <ble._~ it follows that Vn

{xePle, <2 < b NG, ={x}evr. A contradiction, therefore, G ¢ _#]

Now, put T =[U={VNnJ}JU{Us: J.}. For each r-open set
UcP, Tis t-dense in U. & is a maximal filter of 7-dense subsets
of P. If Te &, then there exists some F'e. & such that T U F” is
not z-dense in P. By the definition of 7, this implies that F’'N
(V' ndJ,) is not dense in J, for some n. However, this is impossible
since VNnJ, = FnJ, for some Fe &, and & is a filter of z-dense
subsets of P. Therefore Tec . &#. Clearly 2,eGNT and GNTcCV.
Also, G N Teo, since Ge #Z and Te.%. Therefore, GNTCV is
a o-open neighborhood of 2, which, since x, is an arbitrary element
of V, contradicts the assumption that V¢ ¢. Hence, (P, 0) is maximal
perfect and the lemma is established.

3. Example. We now give an example of a countable connected
Hausdorff space (X, ¢) which is not contained in any maximal con-
nected space. The space (X, o) is a modification of a countable
connected Urysohn space which was constructed by P. Roy (see [3]).

Let {E}:=... be a countable, disjoint collection of dense subsets
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of rational numbers indexed by the set of all integers. For each
integer n, let P, = {(z, n)|xec E,}. Let w denote an ideal point.
Let X={w} U {U;>-. P,}. We may consider X as a collection of points
in the plane lying on horizontal lines with integer ordinates together
with the point w. We now construct a neighborhood system for
the points of X.

(a) If n is even, then put a maximal perfect topology &, on
P, exactly as described in § 2.

(b) Let n= 1 be an odd integer and let »p = (x, n)e P,. Then,
for each positive integer m, let

U(p) = {0, n + Ve Po|lo -yl

< —71;} U {(y, n—1)eP,_,

2=yl <=} up) .
m

(¢) Let w =1and » = (x, n)e P,. If x¢(n/2, ), then, for each
positive integer m, define U,(p) as in (b). If 7/2 < < m, then, for
each positive integer m, let U,(p) = {(y,n — Ve P, ||x —y| <
1/m} U {p}.

(d) If p = w, then, for each positive integer m, let U,(p) =
{p} U{(z, »)||n| = 2m} be a neighborhood of p.

It is clear that the neighborhood system described above gen-
erates a topology ¢ on X. X is countable and it is easily seen that
(X, 0) is a Hausdorff space. We state the following lemmas (a slight
modification of Lemmas 1, 2, and 3 of [3]) without proof. However,
it is not difficult to verify that these lemmas also hold for the space
(X, o).

LEMMA 3. Suppose » = (z, n), where n is an even integer. Let
U be a basic open set containing p and let m be an integer.

(i) If pef{(x,n)|n =2 and 7/2 < x < 7}, then (cl,U)N P, + &,
if and only if |m —n| < 1.

(ii) If p = (z, 2), where xc (7/2, &), then (cl,U) N P, # ¢, if and
only iof m =2 or 3.

(iii) wecl, U.

LEMMA 4. Suppose p = (x, n), where n is an odd integer. Let
U be a bastc open set containing p and let m be an integer.

(i) If peflz,n)|n=1 or 3 and 72 < x <7}, then (cl,U)N
P, + ¢, if and only if, |[m —n| < 2.

(ii) If p = (x, 1), where x e (7/2, ), then (cl,U)N P, + ¢, if and
only if, m =1, 0 or —1.

(iii) If p = (=, 3), where x e (7/2, @), then (cl, U)N P, = ¢ if and
only if, m =2, 3,4 or 5.
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(iv) weel, U.

LEMMA 5. Suppose p = w, m is a positive tnteger greater than
1, and n is an integer. Then

(i) e, Up)D Py, if In]| = 2m — 1; and (i) {cl, U.(p)} N P, = ¢,
if [n] <2m — 1.

LemMMA 6. (X, o) is connected.

The proof of Lemma 6 is omitted since it is essentially the same
as that given in [3].

Let v be any topology on X such that v is larger than or equal
to o and (X, 7) is connected. We will now show that there exists
a topology 7' on X such that 7' is strictly larger than v and (X, 7¥)
is connected.

Let I be any open interval in R and, for each integer n, let I, =
{(x, n)e P,|xe I}. For each odd integer =, let U(L,)={xe I|(x, n)e L,
(x,n)ecl, P,,, and (z, n)ecl, P,_;}. Throughout, I will denote an
open interval of the real line with the usual topology. For each
integer n, I, is a subset of X and U(l,) is a subset of I for each
odd integer n.

LemMA 7. If I is any open interval contained in (w/2, 7), then
U(I,) is dense in I for all odd integers m, except for m = 1.

Proof. It follows from condition (c) in the definition of the
neighborhood base for the topology o on X, that for every open
interval Ic(n/2, ), U(l) = ¢. Suppose there exists some interval
Ic(m/2, ) and an odd integer = = 1 such that U(I,) is not dense
in I. We may assume without loss of generality that I = (a, b),
where a and b are irrationals, U(l,) = ¢ and n >1. Put H,=
{pel,|pe¢cl, P,.}. Let H= H,U{U;z: I,}. We will show that H
is both v-open and ~v-closed. Suppose pec H,, then pe¢cl, P,,, so
there exists a 7-open neighborhood, V, of p which consists of p and
a subset of I,_,. Hence Vc H. Clearly, if pel, k=2, ---,n — 1,
there exists a o-open set containing p» and contained in Ujz; L.
Therefore, H is v-open.

If pel,,, then p is not a o-limit point of H and, since o C 7, it
follows that peecl, H. If pel, and p¢ H, then p is a v-limit point
of I,., and, since U(l,) = ¢, » must have a <7-open neighborhood
which consists of p and a subset of I,,,. Hence p¢ecl, H. It follows
from the construction of o, that if pe P, or pe P, then p¢cl, H.
Also, if pe P, for k=2, ---,n — 1, and p¢ H, there exists a g-open
set containing p which does not meet H. Therefore, H is 7-closed.
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This contradicts the assumption that (X, ¥) is connected and the
lemma is established.

We now make use of the preceding lemma to put a topology '
on X such that 7' is strictly larger than v. Let J be a fixed open
interval contained in (7/2, 7). It follows from Lemma 7 that U(J,)
is dense in J for all odd integers, except for n = 1. Let y, be a
fixed element of U(J;) and put ¥ = (¥, 3). Let V be an open neigh-
borhood of y in v. It follows that VN P, and V P, are both
nonempty. Put G = {y} U{V N P}. Clearly G¢v. Put v =7 VG.
We will show (Theorem 1) that (X, 7’) is connected. Throughout the
remainder of this note, G, 7/, J, and y will be reserved for the roles
assigned to them in this paragraph.

LemmA 8. If n s an integer and V C P,, where Ve, then
there exists some interval I < R such that {x | (x, 2n)e V) is dense in I.

Proof. Suppose not. Then there exists some integer n and a
7-open set Vc P,, such that {x|(z, 2n)e V} is not dense in any
subinterval of R. Since P,,€o0 and (P,, o | P,,) is maximal perfect,
it follows that Ve o [otherwise, some point of ¥V would be an isolated
point of ¥']. Put F' = {(z, 2n) € P.. | (x, 2n) ¢ V}. Since {x|(z, 2n)e V}
is not dense in any subinterval of R, it follows from the definition
of the maximal filter & on P,, that Fe &#. If pe V, then FU{p}e &
and (FU{p}))eo. Therefore, (FU{p}))NV = {p} and {p}ec. This
contradiction establishes the lemma.

LeEMMA 9. Suppose m is an integer and V and U are open
subsets of P,,.. If {x|(x, 2n)e V} and {x]|(x, 2n)e U} are both dense
wn some open interval I, then VN U # é.

Proof. Suppose VN U=¢. Since {&|(x,2n)€ V} and {z|(z,2n) € U}
are both dense in I, we may assume that V=L, N F,and U= L, N F,
where F,, F,e & and . is the maximal filter of dense sets used
to construct the neighborhood system of P,,.. If pe V, then F,U
{pfe #. Hence, UU {p} = (F;:N {p}) N L, is a g-open subset of P,,.
However, (UU{p})N V = {p} and {p} € 0. This contradiction establishes
the lemma.

LEMMA 10. Let U be a Y'-open metghborhood of w. If I is
any open interval contained in J, then there exists an integer n = 2

such that I,N U # o.

Proof. Suppose for some 7-open set U containing w, there exists
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an interval IcJ, I = (a, b), where @ and b are irrational numbers,
such that I, N U = ¢, for each integer n = 2. Since every 7'-open set
containing w contains a v-open neighborhood of w, we may assume
that Ue~. Put H=U;=1,. It follows that H is v-open. H is
also v-closed. For, if pe I, p has a c-open neighborhood which
does not meet H, and by assumption, w has a 7v-open neighborhood
which does not meet H. This contradicts the assumption that (X, 7)
is connected and the lemma follows.

COROLLARY. Let IcJ. If U is any 7'-open set containing w,
then there exists a infinite set of positive inmtegers, N, such that
I.N U=+ ¢, for each ne N.

LEMMA 11. Let n be an integer such that n=1. Let V be an
open subset of P,, such that {x | (x, 2n) € V} is dense in an open interval
IcJ. If VcK, where K is an open and closed set in (X, '), then
I.Cc K, for all k > 2n.

Proof. First we will show that I,,,, and I,,., are both contained
in K. Ul,.,) ={xel|lp=(x2n+ 1)€ I,,,, and p is a 7-limit point
of both I, and I,,.,}. It follows from Lemma 7 and the choice of
J, that, since I cJ, U(l,,,,) is dense in I. Let p = (x, 2n + 1), where
x€ U(L,:,). Let U be a 7'-open set containing p (we may, without
loss of generality, assume that Ue?®). Since UN I, #= ¢, it follows
from Lemma 8 that there exists some open interval I’ ¢ I such that
{z|(x, 2n)e U} is dense in I'. Also, {x|(x, 2n)e V} is dense in I
Therefore, by Lemma 9, VN U % ¢. Since Vc K, UN K=+ ¢ and p
is therefore a limit point of K. Since K is Y'-closed, pe K. Therefore,
lp=(,2n+ 1) and x€ U(lsn)} C K.

Put Q ={xel|q=(x,2n + 2)e I,,,, and g€ K}. Since U(L,,.,) is
dense in I, @ is also dense in I. Let ze I,,,,. It will be shown
that z is a ¥'-limit point of K. Let H be a 7'-open set containing z.
We may assume that Hc P,,,,. Again, by Lemma 8, there exists an
interval I’ c I such that {z|(x, 2n + 2)€ H} is dense in I’. Since @
is dense in I, KN I';,,, # ¢. This implies that KN I',,..€ 7' and, by
Lemma 8, we may assume without loss of generality, that KN I+,
is dense in I’,,,,. By Lemma 9, (KN I'y,.,) N H=~ ¢. Therefore, 2 is
a 7'-limit point of K and since K is 7'-closed, z¢ K. Hence, I,,,, C K.

Now, suppose there exists some pe I,,,, such that p¢ K. Then
there exists a 7'-open set L containing p such that LN I,,., = ¢ and
LNV =g¢. Using Lemmas 8 and 9, this can be shown to be impos-
sible. Hence I,,,,c K. It can now be shown by induction that, for
all k > 2n, I, C K.

THEOREM 1. (X, 7') is comnected.
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Proof. Let y be that element of J, where JC (7/2, 7), such
that ¥ =7V G, ye @ and G¢~v. Suppose there exists a set Kc X
such that K is both open and closed in (X, 7'). Assume y¢ K. This
implies that Ke~v. Since (X, 7) is connected, K is not closed in (X, 7),
Therefore, if U is a 7-open neighborhood of %, UN K # ¢. Hence,
UnP.NnK)=¢or UN(P.N K) = ¢. Since G = {y} U(V N P,), where
V is a fixed v-open neighborhood of y, and ¥ is not a %'-limit point
of K, it follows that UN (P,N K) # ¢. By Lemma 8, there exists
a v-open set U, UN (P, N K) such that {x|(x,4)e U} is dense in
an open interval I c.J. Lemma 11 implies, that, for all k > 4, I, c K.
Then, by the corollary following Lemma 10, we K.

Since y ¢ K, ye K° and K° is also open and closed in (X, 7'). Let
H be a 7-open neighborhood of ¥ such that Hc K°. Then HN P, # ¢.
This implies, by Lemma 8, that there exists a ¥'-open set H,c HN
P,N K° such that {x | (x, 2) € H;} is dense in some open interval I’ < J.
Again, it follows from Lemmas 10 and 11 that we K°. This con-
tradicts the fact that KN K° = ¢. Therefore, (X, ¥') is connected.

It is now and immediate consequence of the following theorem
(X, o) cannot be embedded into any maximal connected space.

THEOREM 2. (See [2]). FEwery conmected subspace of a maximal
conmnected space s maximal connected.

REMARK 2. If for each %, E,is an uncountable dense subset of
the irrationals, it follows that one can then construct an uncountable
connected Hausdorff space which cannot be embedded into any maximal
connected space.

Question. What connected Hausdorff spaces have the property
that they cannot be embedded into a maximal connected space?
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