SUBALGEBRAS OF FINITE CODIMENSION IN THE ALGEBRA OF ANALYTIC FUNCTIONS ON A RIEMANN SURFACE

BRUCE LUND

Let R be a finite open Riemann surface with boundary Γ . We set $\overline{R} = R \cup \Gamma$ and let A(R) denote the algebra of functions which are continuous on \overline{R} and analytic on R. Suppose A is a uniform algebra contained in A(R). The main result of this paper shows that if A contains a function F which is analytic in a neighborhood of \overline{R} and which maps \overline{R} in a *n*-toone manner (counting multiplicity) onto $\{z: |z| \leq 1\}$, then Ahas finite codimension in A(R).

We say that A is a uniform algebra on \overline{R} if A is a uniformly closed subalgebra of the complex-valued continuous functions on \overline{R} which separates points of \overline{R} and contains the constant functions. If A is contained in A(R), then we say A has finite codimension in A(R)if A(R)/A is a finite dimensional vector space over C. A reference for uniform algebras is Gamelin [2].

Let U be the open unit disk in C. We call F an unimodular function if F is analytic in a neighborhood of \overline{R} and maps \overline{R} onto \overline{U} so that F is *n*-to-one if we count the multiplicity of F where dFvanishes. If T is the unit circle, then F maps Γ onto T. The existence of such a function was first proved by Ahlfors [1]. Later, Royden [4] gave another proof of this result.

1. Main results. Let A be a uniform algebra on \overline{R} which is contained in A(R). If $J = \{f \in A(R): fA(R) \subset A\}$, then J is a closed ideal in A(R) and J is contained in A.

LEMMA. Let $F \in A$ be an unimodular function of order n. If $\zeta_1 \in \overline{R}$ is such that $F^{-1}(F(\zeta_1))$ consists of n distinct points, then there is $G \in J$ such that $G(\zeta_1) \neq 0$.

Proof. Since A separates points on \overline{R} , there is $g \in A$ such that g separates $F^{-1}(F(\zeta_1))$. If $z_1 \in \overline{R}$, let $F^{-}(F(z_1)) = \{z_1, z_2, \dots, z_n\}$ (perhaps with repetitions) and let $f \in A(R)$.

Define $Q(u) = f(z_1)\{u - g(z_2)\}\{u - g(z_3)\}\cdots\{u - g(z_n)\} + f(z_2)\{u - g(z_1)\}\{u - g(z_3)\}\cdots\{u - g(z_n)\} + \cdots + f(z_n)\{u - g(z_1)\}\{u - g(z_2)\}\cdots\{u - g(z_{n-1})\}\$ (cf. [5], p. 290). Then Q(u) is a polynomial in u of the form $Q(u) = \alpha_{n-1}(z_1, \cdots, z_n)u^{n-1} + \alpha_{n-2}(z_1, \cdots, z_n)u^{n-2} + \cdots + \alpha_0(z_1, \cdots, z_n).$ The coefficients α_j are symmetric functions in z_1, \cdots, z_n . Hence, if

BRUCE LUND

 $w = F(z_i)$, then $a_j(w) = \alpha_j(z_i, \dots, z_n)$ for $j = 0, \dots, n-1$ is well-defined on \overline{U} . Using Riemann's removable singularity theorem, it follows that $a_j(w) \in A(U)$ for $j = 0, \dots, n-1$.

Since $a_j(w) \in A(U)$ for each j, there are polynomials $\{p_k^j(w)\}_{k=1}^{\infty}$ such that the p_k^j 's converge uniformly to a_j on \overline{U} . Then $p_k^j(F(z)) \in A$ for each k, and we conclude that $a_j(F(z)) \in A$. Letting $z = z_1$ and setting u = g(z), we obtain $Q(g(z)) = a_{n-1}(F(z))g(z)^{n-1} + a_{n-2}(F(z))g(z)^{n-2} + \cdots + a_0(F(z)) = f(z) \prod_{i=2}^{n} \{g(z) - g(z_i)\} \in A$. Let $G(z) = \prod_{i=2}^{n} \{g(z) - g(z_i)\}$. Then $G(\zeta_1) \neq 0$ and we have shown that $fG \in A$ for any $f \in A(R)$. Therefore, $G \in J$.

THEOREM. Let A be a uniform algebra on \overline{R} which is contained in A(R). If A contains an unimodular function, then A has finite codimension in A(R).

Proof. Suppose $F \in A$ is an unimodular function of order n. Let hull $J = \{z \in \overline{R}: f(z) = 0 \text{ for all } f \in J\}$. If $\zeta \in \Gamma$, then $dF(\zeta) \neq 0$ ([7], p. 367) and consequently $F^{-1}(F(\zeta))$ consists of n distinct points. By the lemma, hull $J \subset R$. It follows that hull J is a finite set. By applying [6], Theorem 1 and [3], Lemma 2.5, we conclude that A(R)/J is finite dimensional. Hence, A has finite codimension in A(R).

Let $R = \{z \in C: 1 < |z| < 2\}$. Again let $J = \{f \in A(R): fA(R) \subset A\}$ where A is a uniform algebra on \overline{R} . Using the same technique we prove the proposition below.

PROPOSITION. Let A be a uniform algebra on \overline{R} which is contained in A(R). If A contains z^n and z^{-m} for some positive integers n and m, then A = A(R).

Proof. Let N be the least common multiple of n and m. Then z^N and $z^{-N} \in A$. Also, z^N is an N-to-one map of \overline{R} onto \overline{R} without branch points. For any $\zeta_1 \in \overline{R}$ there are N distinct points $\{\zeta_1, \zeta_2, \dots, \zeta_N\}$ which satisfy $\zeta_i^N = \zeta_1^N$. Fix $\zeta_1 \in \overline{R}$ and let $g \in A$ separate $\{\zeta_1, \zeta_2, \dots, \zeta_N\}$. Let $f \in A(R)$.

Letting z^{N} take the role of F and using g and f, we form Q(u) just as in the proof of the lemma. The coefficients $a_{j}(w)$ of Q(u) belong to A(R). Hence there are polynomials in w and w^{-1} which converge uniformly to $a_{j}(w)$ on \overline{R} . Since z^{N} and z^{-N} belong to A, it follows that $a_{j}(z^{N})$ is in A.

Consequently, $Q(g(z)) = f(z) \prod_{i=2}^{N} \{g(z) - g(z_i)\} \in A$ for all $f \in A(R)$. Let $G(z) = \prod_{i=2}^{N} \{g(z) - g(z_i)\}$. Then $G \in J$ and $G(\zeta_i) \neq 0$. Therefore, hull $J = \phi$. This implies A = A(R).

2. Question. The theorem of this paper gives an affirmative

496

answer to a special case of the following question. Suppose A is a uniform algebra on \overline{R} and A is contained in A(R). If A contains a nonconstant function which is analytic in a neighborhood of \overline{R} , does it follow that A has finite codimension in A(R)?

References

1. L. V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134.

2. T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.

3. A. Read, A converse of Cauchy's theorem and application to extremal problems, Acta Math., **100** (1958), 1-22.

4. H. L. Royden, The boundary values of analytic and harmonic functions, Math. Z., **78** (1962), 1-24.

5. G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, Mass., 1957.

6. C. M. Stanton, The closed ideals of a function algebra, Trans. Amer. Math. Soc., 154 (1971), 289-300.

7. E. L. Stout, On some algebras of analytic functions on finite open Riemann surfaces, Math. Z., **92** (1966), 366-379.

Received February 22, 1973 and in revised form June 25, 1973.

THE UNIVERSITY OF NEW BRUNSWICK