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ON THE EIGENVALUES OF A SECOND
ORDER ELLIPTIC OPERATOR IN AN

UNBOUNDED DOMAIN

DENTON HEWGILL

Let E be an open set in Rn which satisfies the "narrowness
at infinity" condition:

meas (E Π {x € Rn: a ̂  | x | < a + 1}) ̂  const (a + 1)^ ,

for all a > 0 and some β > 0. It is known that a uniformly
strongly elliptic self-adjoint partial differential operator, on
such a set E, has a discrete spectrum of eigenvalues {λj}.
This paper is concerned with the growth rate of the function

N(λ) - Σ 1.

The main result of the paper is to give an upper bound for
N(λ). This upper bound will be a function of the β from the
"narrowness" condition.

An unbounded open set E in Euclidean π-space Rn is said to be
quasi-bounded if the points x e E with | x | large are near the bound-
ary BE:

lim dist (x, dE) = 0 .
a;->co,a;e E

Let T be the L2(£r)-realization of the uniformly strongly elliptic
second order partial differential operator a(x, D) with zero Dirichlet
boundary conditions:

<φ, -D) = - Σ aa(x)Da , Da - (d/dxj"! - (d/dxn)
a* ,

I a I = I a, I + + | an \,

ao(x, ξ) ̂  const | ξ \2m , xeRn , ξeRn

where ao(x, ζ) is the principle part of a(x, ζ); the coefficients aa(x)
are infinitely differentiable bounded real functions in Rn; a(x, D) is
formally self-adjoint;

Π {/ G L2(E): a(x, D)f e L2(E)}

Tf=a(x,D)f, fe^(T),

where Ho

ι(E) is the standard Sobolev space. If E is quasi-bounded
and satisfies some additional smoothness conditions, that it is known,
Clark [4] and Adams [1], that T has a compact resolvent, and thus
a discrete spectrum, consisting of eigenvalues X3 satisfying
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0 < λ r ^ λ 2 ^ Xj • °° a s j

Define the "trace function" by

N(X) = Σ 1

For a(x, D) equal to the Laplacian, the asymptotic nature of N(X)
was discussed by: Weyl for E a bounded set; Clark [5] for E an
unbounded set with finite volume; Clark and Hewgill [6] for E with
an infinite volume.

In this paper we consider domains which satisfy a /9-condition:

meas(Ef) {x:a <^x <a + 1}) ^ C(a + ΐ)~β, a ^ 0 ,

where β and C are positive constants. The main result we shall
prove is theorem. If 4& > β"1 when dim E = 2, and 2k > β"1 when
dim E = 3, then

N(X) ^ const Xik, X > 0 .

This theorem will generalize, to an elliptic operator, some of the
results stated in Hewgill [8] and Rozenbljum [11].

The method we shall use is to construct a fundamental singularity
of a special type which will estimate the Green's function for the
problem. Then, we prove that some iterate of the Green's function
is a Hilbert-Schmidt kernel, from which our upper bound on N(X)
will follow.

1* The fundamental singularity and the Green's function* We
take as a starting point Garding's paper [7], which constructs a
fundamental singularity for T in an unbounded domain. We remark
here that Garding's construction of the Green's function and his
estimates for it will not work in an unbounded domain. Garding's
results to be used are summarized in the following theorem:

THEOREM 1.1. Let the coefficients of the uniformly strongly el-
liptic operator a(x, D) be infinitely differentiate functions in Rn.
Then, there exists a function Γ(τ, z, x), the fundamental singularity

for a(x, D), such that the following conditions hold:

Γ(τ, z, x) = O ( l ) τ % ( φ - z))(l + | τ(x - z) \N)~' >

where eo(y) = \ y |2~w~ε for n ^ 2;

(a(x, D) + τ2)Γ(r, z, x) = 0 , x Φ z

τ~Xa(x, D) + τ*)Γf{x) = f{x)

where
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Γf(x) - j Γ(τ, z, x)f(z)dz , fe C?{R«) .

In these formulas N > 0 and 1 > ε > 0 are arbitrary, and the estimate
0(1), for large τ, is uniform in Rn x Rn.

In the case where a(x, D) is the Laplace operator, Brownell [3]
has shown that the fundamental singularity has exponential decay
in Rn.

Next, we need a Green's function GR(τ, z, x) for the bounded cut
off domain ER = {xe E: \x | < R}. Krzyzaήski [9] shows:

THEOREM 1.2. For τ sufficiently large and positive, there exists
a Green's function GR(τ, z, x), which is continuous in c\ER x c\ER

when x Φ z;

GRf(x) = ( GR(τ, z, x)f(z)dz , fe C?{ER) ,
JER

has continuous second derivatives in ER;

(a(x, D) + τ2)GRf(x) = f(x) , fe C?{ER)

and GRf(x) = 0 for x in the boundary of ER.

LEMMA 1.3. If dimi? is 2 or 3, then the function Γf(x), defined
for feC™(Rn) by Theorem 1.1, tends to zero as 1^1—^+°°.

Proof. By Theorem 1.1,

Γ(τ, z, x) = O(l)τn\ φ - z) rn~ε(l + I φ - z) l2^)"1 ,

for arbitrary N and 0 < ε < 1. If fe Cϊ(Rn), then

I Γf{x) I ̂  j sup 2(1 + I φ - z) \N)-ι\ \ O(l)r | φ - «) | 2 — ε

(l + \τ(x-zy\Γ\f(z)\dz,

by use of the elementary inequality (a + δ)2 ̂  2α2 + 2δ2.
Since | f(z) \ is bounded, the above integral is independent of x

by translation, and is convergent if N is chosen larger than n + 1
with dimi? equal to 2 or 3. Since / has bounded support, the func-
tion Γf(x) —> 0 as I x I —• co.

LEMMA 1.4. ΓΛe fundamental solution Γ(τ, z, x) is nonnegative
in Rn x Rn.

Proof Assume Γ(τ, z0, x0) is negative for some x0 and z0 with
α;0 Φ z0. Then, there is a function /, which is nonnegative and has



470 DENTON HEWGILL

small support, such that Γf(x0) < 0. Let ε = Γf(xQ)/2. By Lemma
1.3, we have a sphere K such that | Γf(x) | ^ ε in Rn — K. Also

[-a(x, D) - τ*]Γf(x) = -τ2/(x) ^ 0 ,

by Theorem 1.1. Thus the Hopf theorem implies that Γf(x) ^ — ε
in all of Rn, which is a contradiction and so the lemma is proved.

LEMMA 1.5. The Green's function for the cut off domain EB,
given in Theorem 1.2, satisfies the inequality

0 ^ GR(τ, z, x) ̂  Γ(τ, z, x), x,zeER.

Proof. The proof follows directly from a version of the maximum
theorem given in Krzyzaήski [9, p. 436], by considering the function

V(τ, z, x) = Γ(τ, z, x) - GΛ(τ, z, x) ,

and using the properties of Γ and GB proved in Lemmas 1.1, 1.2,
1.3, and 1.4.

The next task is to discuss the Green's function for the whole
domain E and show its relation to the fundamental singularity Γ.

THEOREM 1.6. The operator T, which is defined on the open
domain E satisfying the β-condition, is a closed linear operator; the
spectrum o(T) is discrete and has no finite limit points) the resolv-
ent operator Rλ(T) = (λl— Γ)"1 is completely continuous; there is a
complete set of eigenfunctions {%} such that Tu3 =

Proof. Since the /3-condition on E implies that E is quasi-bounded,
this is a special case of Clark's result [4, Theorem 5] for a uniformly
strongly elliptic operator.

THEOREM 1.7. For n = 2 and 3 the resolvent Rλ(T) has a L2(E)
Carleman kernel G(λ, z, x), called the Green's function for T on the
domain E, such that

{XI - TΓf{x) = -Gf{x) = - ϊ G(λ, z, x)f(z)dz , fe L2(E)
JE

(λ — a(x, D))G(X, z, x) = 0 , for x Φ z;

and ψ( )G(X, z, ) e S&(T) for ψ an infinitely differentiable function
which is zero in a neighborhood of z and equal to 1 in a boundary
strip.

The above theorem is proved in Maurin [10, p. 244].
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LEMMA 1.8. Let the set A have a compact closure in E, and
fe C~(A). Then, Gf = GBf if R is sufficiently large, where G is the
Green's operator for E and GB is the Green's operator for the cut
off domain ER.

Proof From Theorems 1.2 and 1.7 we have, for R sufficiently
large,

(a(x9 D) + τ*)GRf{x) = f(x), GRf e Hi(EB),

and

(cφ, D) + τ2)Gf(x) = f(x) , λ - - τ 2 , Gfe Hl(E) .

Now we extend GRf by zero so that it is in Hl{E) and subtract the
above equations to get

(a(x, D) + τ2)[Gf(x) - GRf(x)\ = 0 ,

with Gf - GRfeHl{E). Thus the function Gf - GRf is eigenfunc-
tion corresponding to the eigenvalue — τ2, however, — τ2 is not in the
spectrum of the self-adjoint operator T therefore Gf ~ GRf.

We finish this section with the following lemma.

LEMMA 1.9. The Green's function G(X, z, x) is continuous for
x φ z and satisfies the inequality

G(—τ\ zy x) ̂  Γ(τ, z, x) , x Φ z, for τ sufficiently large .

Proof. Since the Green's function G(λ, z, x) satisfies the equation
(λ — a{x, D))G(λ, z, x) = 0 if x Φ z, the continuity of G follows from
a local regularity theorem for elliptic equations (see Agmon [2, Theo-
rem 6.3]).

Now assume that there are two different points ξ, rj in E such
that

G(-τ\ξ,η)>Γ(τ, ξ,η).

Since both G and Γ are continuous there are two disjoint neighbor-
hoods Z7and V oΐ ξ and η respectively such that the same inequality
holds. Let / b e a positive C~(U) function. Then, Gf(x) and Γf(x)
satisfy the inequality

Gf(x)> Γf(x), xeV,

but Lemma 1.8 shows Gf(x) = GRf(x) if R is sufficiently large, there-
fore

GRf(x) > Γf(x) , x e V, R large .
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However, this contradicts Lemma 1.5, and hence our theorem is proved.

2* The Hilbert>Schmidt properties of the Green's function*
In this section we make essential use of the /5-condition to show that
some iterate of the Green's function is a Hilbert-Schmidt kernel.

LEMMA 2.1. If a ^ 0, 7 < β, τ > τ0, and N is sufficiently large

(N > max {2n, 2{a + β)(β - 7)"1}),

then

| * | + 1Γ*(1 + I φ - y) \NΓdx <K(\y\ + 1)—',

where K = K(a, β, 7, r0, N) but is independent of y.

Proof. Set B(y, δ) equal to the ball of radius δ about y in Rn,
B(y) = B(y, δ) f] E, and B\y) = E - B(y). Further set δ equal to
(I y I + 1) raised to the power 2(α + β)/N.

Consider first the integral in (1) taken over the set B'{y). To
this integral we apply the inequality (a + δ)2 ̂  2α2 + 2δ2 to get

(2) t (\x\ + l)-(l + \τ(χ-y)\")-*dx
JB'(y)

^2(1 + | τδ f'2)-1 \ (1 + I φ - y) ̂ T'dx .

The integral on the right hand side of (2) is independent of y by
translation, and is convergent in Rn if N > 2n. Thus the left hand
side of (2) is bounded by a constant times (1 + | τδ \Niΐyι

y which is in
turn bounded by a constant times (| y \ + l)~α~^, after we substitute
the value of δ which depends on y.

Next, we consider the remaining part, over B(y), of the integral
in (1). Then

(3) ( Qxl + ir^l + lφ^y)^)-^
JBiy)

^ ( (\x\ + l)~adx ^ ( m a x {l,\y\- δ})~ameasB(y) .
J ( )JB(y)

From the /3-condition on E,

meas (E n {x: a ^ | x \ < a 4- 1}) ̂  C(l + a)~β,

we have

measB(y) ^ const(\y\ + 1)-'[(|y | + l)- (^-^(|y \ + 1)««

which is less than a constant times (| y | + l)~*r if N > 2(a + β)(β — 7) - 1 .



EIGENVALUES OF A SECOND ORDER ELLIPTIC OPERATOR 473

If we now insert this estimate for meas B(y) into the left hand side
of (3), then (3) is bounded by a constant times (| y | + l)~α"~r. The
combined estimates for (2) and (3) complete the proof of inequality (1).

LEMMA 2.2. If 7 < β, τ > τ0, and N sufficiently is large, then
there is an ε0 and a K such that

(4) \Λ\x-y H I + I φ - y) \NΓdy £K(\y\ + 1)^

where 0 < ε < ε0, ε0 = eo(β, 7), and K = K(β, 7, τOf N).

Proof. Set B(y) = £(#, 1) n E, where β(j/, 1) is the ball center
at y and radius equal to 1.

The integral on the left hand side of (4), integrated only over
the set B(y), is bounded by

(5) { I x - y\~*dy ^ ( m e a s B { y ) ) l ~ ^ m \ \ \ x - y f ^ ' d

if we apply the Schwarz inequality m times to the left side of (5).
From the /S-condition on E, we have

meas B{y) ^ const (| y \ + 1)""* .

Now pick ra so large that β{l — 2"m) > 7, then pick ε0 so small that
2mε0 < m. The choice of e0 makes the integral on the right hand side
of (5) convergent for ε < ε0, and leads to the estimate of a constant
times (\y\ + l)~r for (5).

To estimate the integral in (4) over B\y) — E — B(y), we use
Lemma 2.1 with a — 0 to get the estimate of a constant times
(I y I + l)~r. This completes the proof of inequality (4).

Let G{i)(X, z, x) be the iterates of the Green's function on E,
which was constructed in Theorem 1.7, these iterates are defined by

G(ΐ)(λ, z, x) = G(G{i^(Xf z, x)); G(1)(λ, z, x) = G(λ, z, x) .

LEMMA 2.3. // 7 < β, τ > τQ9 and N is sufficiently large, then
the iterate G(2)(λ, y, x) satisfies

( 6 ) IG ( 2 ) (-τ 2 , y,x)\£ M(l + \φ - y)Γ)"1 for d imE = 3

( 7 ) | (?<2>(-τ2, y,x)\£ Af(l + I φ - y) \NΓ(\ * I + lΓ r / 2(l VI + i r / 2

/or dim E = 2, where M is independent of x and y.

Proof. From Lemma 1.9 and the triangle inequality, we have



474 DENTON HEWGILL

( 8 ) I G<2>(- τ\ y,x)\£ M(l + \ φ - y) Γ

x ( I φ - z) |»— | φ - y) |2-"-ε(l + I φ - z) I*'2)"1

JE

x (1 + I τ(z - x) {"Ύ'dz .

If we apply the Schwarz inequality, then the integral in (8) can be
estimated by

( 9) j ί I τ(x - z) \*-^(l + I τ(χ - z) \N)~ιdzγ

times exactly the same integral with x replaced by y. If in expression
(9), N > n, 2n + 2ε — 4 < n (i.e., n = 2 or n — 3), and E is replaced
by Rn, then the expression is seen to be bounded by a constant,
which is independent of x. This completes the proof of inequality
(6). The estimate for expression (9) can be improved in the case
n = 2. Lemma 2.2 implies, if ε is sufficiently small, that (9) is bo-
unded by const (| x \ + l)~rl\ Combining all estimates, we have in-
equality (7) when dim E = 2.

THEOREM 2.4. // T < /S, τ > τ0, and N sufficiently large, then

[[ G{2k)(-τ\ x, yfdxdy ^ MΣ i~4kr> dim E = 29

JJE i=l

and

[[ G{2k)(-τ\ x, yfdxdy ^ MΣ i~2kγ, dim E - 3 ,

where k is a positive integer, and M is a constant.

Proof. We will only consider the case dim E = 3—the other case
is similar.

We can show using induction, the triangle inequality, Lemma 2.3,
and Lemma 2.1 that

G(2fc)(-τ2, x, y) ^ const (| x \ + l ) " ^ " 1 ^ ^ + | τ(x - y) ψfι-k}~'

for k a positive integer (k = 1 is Lemma 2.3).
If we square both sides of the above inequality, integrate over

E, and apply Lemma 2.1, then

( G{2k){-τ\ x, yfdx ^ const (17/1 + l )-^- 1 * .
JE

Integrating again over Ey we have

f ( G{2k)(-τ\ x, yfdxdy ^ c o n s t Σ ( (\y\ + l)-{2k

JEJE *=0 J ^



EIGENVALUES OF A SECOND ORDER ELLIPTIC OPERATOR 475

where Et = {x e E: i ^ | x | < i + 1}. This expression is in turn

^ const Σ (t + iYm~1)r meas {Ex) ̂  Λf Σ (t + 1)-*',

since meas (2£,) <£ const (i + 1)~̂  by the /3-condition. This completes
the theorem.

COROLLARY 2.5. TΛe iterate G{2k){—τ2, x, y) is a Hilbert-Schmidt
kernel, in L2(E) for τ > τ0, provided 4& > β~x w case dim E — 2, ami
2& > /3"1 m case dim E = 3, where β is given by the β-condition.

Proof. Pick Ί < β but sufficiently close, and apply Theorem 2.4.

3* The eigenvalues of the problem*

THEOREM 3.1. Let λy be the set of eigenvalues, given in Theorem
1.6, for T on the set E. Then the series

converges for dim E = 2 if Ak > β~\ and for dim £/ = 3 if 2k > β~\

Proof Let % be the orthonormal set of eigenfunctions, given
by Theorem 1.6, corresponding to the eigenvalues λ,-. If λ < 0 is not
in the spectrum of T, then it follows from Tu3- — X3'U3 that Gv,ά —
(Xj + r 2 )" 1 ^ where λ = — τ2. Thus for the 2k iterate of G we have
G{2k)Uj — (Xj •+ z2)~2kUj. However, from Corollary 2.5 we have that
the kernel G{2k)(-τ2, x, y) of G{2k) is Hilbert-Schmidt for d im^ = 2 if
ίk > β~\ and for dim E = 3 if 2k > β~\ It follows from Agmon
[2, Theorem 12.18] that the Hilbert-Schmidt double norm

Σ (λi + τT4k < - .

But since all the eigenvalues of T are positive, we have our desired
result.

COROLLARY 3.2. // k satisfies the conditions of Theorem 3.1,
then the function N(X) = X^ .^x 1 satisfies

X~4kN(X) S constant .

Proof. Since the sequence {Xj4k} is nonincreasing and X λ74fc <
oo, by Theorem 3.1, we have λj4fc = OO'-1)- Hence λ, ^ Mjll4k for
some M > 0, and therefore
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this shows that X~4kN(X) ̂  const, as asserted.
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