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FIXED POINT SETS OF POLYHEDRA

HELGA SCHIRMER

It is shown that every closed nonempty subset of a poly-
hedron can be the fixed point set of a suitable self-map if
the polyhedron satisfies a certain connectedness condition.
Hence the same is true for all compact triangulable manifolds
with or without boundary. The proof uses existing results
on deformations of polyhedra with a minimum number of
fixed points if the dimension of the polyhedron is at least
two, and on self-maps of dendrites with given fixed point
sets if the dimension of the polyhedron is one.

1* The ploblerru The following problem has been investigated
by H. Robbins, L. E. Ward, Jr., and the author in recent years:
If X is a topologίcal space and A a closed subset of X, when does
there exist a continuous self-mapping of X with A as its fixed point
set! Several cases are known where A need not satisfy any restric-
tions apart from the obvious one that it must be nonempty if X
has the fixed point property.

L. E. Ward, Jr. [7] suggested the term £icomplete invariance
property" if a space has the property that each of its nonempty
closed subspaces can be the fixed point set of a self-map. Spaces
known to have the complete invariance property include the %-cells
[2], dendrites [4] and compact manifolds without boundary [6]. L. E.
Ward, Jr. [7] extended this list with several other spaces, among
them arcwise connected subspaces of locally smooth dendroids and
a certain class of Peano continua. He also found an interesting
example which shows that a tree need not have the complete invari-
ance property, and hence that a generalization of existing results to
nonmetric spaces presents difficulties.

It is the purpose of the present paper to show that all polyhedra
which satisfy a certain connectedness condition have the complete
invariance property. More precisely, they have to be of type W (as
defined in §2) if their dimension is greater than one (Theorem 3.1),
and to be connected if their dimension is one (Theorem 3.2). It
follows easily that all compact manifolds with or without boundary
possess the complete invariance property (Corollary 3.3). The proof
of Theorem 3.1 leans heavily on the construction of deformations of
polyhedra with a minimum number of fixed points, which is now
easily accessible in the recent book by R. F. Brown [1].

I wish to thank Professor L. E. Ward, Jr. for private communi-
cations of some of his results.
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2* Proximity maps. The proof of Theorem 3.1 below uses
a proximity map of a polyhedron with exactly one given fixed point.
The existence of such a map is established in this paragraph.

We denote by | K\ the polyhedron which is the realization of the
finite simplicial complex K, by | σ | an open simplex of \K\ and by
\σ\ its closure. The carrier \fc(x)\ of a point xe\K\ is the unique
simplex for which x e \ fc(x) |, the (open) star | st o | of a simplex con-
sists of all simplexes of \K\ which have \σ\ as a face. Let the
open neighborhood V(x) of a point xe\K\ consist of all simplexes
I cr I of \K\ for which \κ(x)\Γi\σ\ Φ 0. Then \ st tc(x) \ Q V(x) for
all x e IK |. A map f\\K\-+\K\ is called a proximity map if f(x) e
V(x) for all xe \K\. A proximity map is always a deformation (i.e.,
it is homotopic to the identity), as can be seen from the following
lemma.

LEMMA 2.1. Let \K\ be a polyhedron, I the unit interval, and

N={(x,y)e\K\ x |JBΓ| | \fc(x) | n \*(v) I Φ 0}

Then there exists a map h: N x I —> | JSΓ| such that
(1) h(x, y,0) = x and h(x, y, 1) = y,
(2 ) /φ, α?, ί) = x for all 0 ^ ί ^ 1,
( 3 ) A(α?, y,t)Φx for all x Φ y and 0 < t ^ 1.

Proo/. This is Lemma 1 of [1, p. 124],

A simplex σ of K is called maximal if it is not a (proper) face
of any other simplex. The polyhedron \K\ is of type W if every
maximal simplex of K is of dimension at least two, and if for every
two maximal simplexes a, σf of K there exist maximal simplexes
σι, σ* ', σr such that σ = σu σr = σr, and | σt | Π I σi+1 \ is of dimen-
sion at least one for i = 1, 2, •••, r — 1. The Euler characteristic
of I if [ is denoted by χ(|jBΓ|).

LEMMA 2.2. Let \K\ be a polyhedron of type W. Then there
exists a proximity map f:\K\—+\K\ which is fixed point free if
χ(|JK"|) — 0, and which has exactly one fixed point a, contained in
a maximal simplex, if χ{\K\) Φ 0.

Proof. The map / ' constructed in the proof of Theorem 1 in
[1, p. 143] has the desired properties.

LEMMA 2.3. Let \σx\y \σ2\ be two maximal simplexes of a poly-
hedron \K\ of type W. If f: \K\~-+\K\ is a proximity map with
a point axe\σx\ as its only fixed point, then there exists a proximity
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map f2: \K\—*\K\ with some point a2e\σ2\ as its only fixed point.

Proof. As f is a proximity map and hence a deformation, we
see that the index i(\K\,f, αj of aγ under f satisfies

where L(f) denotes the Lefschetz number of f. Hence the existence
of /2 follows from a repeated application of Lemma 3 of [1, p. 128].
(Note that the map / ' constructed in this lemma satisfies f'{x) = f(x)
if x$U([a, b], ε).)

LEMMA 2.4. Let \K\ be a polyhedron of type W and χ(\K\)Φθ.
If a is an arbitrary point of \K\, then there exists a proximity
map f: \K\—>\K\ with a as its only fixed point.

Proof. Choose a maximal simplex σ for which ae \σ\. Then it
follows from Lemmas 2.2 and 2.3 that there exists a proximity map
f: \K\ —• I If I with exactly one fixed point 6, where be\σ\. Let
[a, b] c I σ | be the line segment from a to 6, and U{[a, b], rj) the
^-neighborhood of [α, 6] in |JBΓ| with closure U{[a, b], η). Select
η > 0 so that U([a, b], rj) c | st κ(a) |. For every point x of the boundary
U{[a, 6], ηl2) of U{[a, 6], τj/2) there exists a t* = t*(x) for which
0 < t* ^ 1 and

h(x, f{x\ t) c [ st φ) I if 0 ̂  t ^ ί*(a?) .

As I st tc(a) I is open, the continuity of h implies the existence of an
ε = ε(x) > 0 such that

h(x', f{x')y t) c I st tc(a) I

f o r a l l x' e ύ([a, b], τj/2) Π U(x,e(v)) a n d O g ί ^ ί * ( α ? ) . A s ϋ([a, 6 ] ,
is compact, it follows that its cover

{u(x,e(x))\xeU([a,b],y/2)}

has a finite subcover

\u{xiy ε{x%)) I a?» e ϋ([a, b], η/2) and i = 1, 2, , r } .

Let

ί 0 = m i n { ί * ( » , ) , t * (»2>, •••, ί * ( » r ) } ,

then 0 < ί0 ^ 1. Hence /φ, /^aj), ί0) c | st φ) \ if x e U([a, b], rj/2).
Now define a function/: \K\-+\K\ as follows: Uxe \K\\U([afb]9η),

let /(ΛJ) =f1(x). Uxe U([a, 6], ̂ )\{α}, denote by α;(̂ /2) resp. a?(̂ ) the
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two unique points in which the ray ax from a to x intersects
U([a, b], φ) resp. ϋ([a, b], η). Let

f(x) = h(x, Mx), ( l - t o ) λ + ίo)

if x = (1 - X)x(ηJ2) + λ&φ) and 0 ̂  λ ^ 1,

/(a?) - (1 - λ)α + \Hx(v/2)ffMv/2)\ t0)

if a? = (1 - λ)α + Xx(η/2) and 0 < λ ^ 1,

/(α) = a .

Then / is well-defined and continuous, and hence the desired
proximity map with fixed point α.

3* The complete invariatice property of polyhedra* We now
proceed to construct self-maps with arbitrarily given fixed point sets
for polyhedra of type W as well as for one-dimensional connected
polyhedra.

THEOREM 3.1. Let \K\ be a polyhedron of type W, and A be
a closed subset of \K\ which is nonempty if χ(\K\) Φ 0. Then \K\
admits a self-map with A as its fixed point set.

Proof. We first assume that χ(| 1Γ|) Φ 0. Then A Φ 0 , and we
can select a point a e l Let /: | K | —• | K\ be a proximity map with
a as its only fixed point, which exists according to Lemma 2.4. For
every xe\K\, put t(x) = d(x, A)/δ, where 8 is the diameter of \K\
and d(x, A) the distance of x from A. Then 0 <̂  t(x) ^ 1, and t(x) = 0
if and only if xe A. Hence the map g: | K \ —> | K \ defined by

g(x)=h(x,f(x),t(x))

is a self-map of \K\ with fixed point set A.
In the case χ(\K\) = 0, we know from Lemma 2.2 that there

exists a fixed point free proximity map f:\K\—>\K\. If A = 0,
this is the desired self-map; if A Φ 0 , then a self-map g with fixed
point set A can again be defined by g(x) = h(x, f(x), t(x)).

THEOREM 3.2. Let \K\ be a one-dimensional connected polyhedron,
and A be a closed subset of \K\ which is nonempty if χ(\K\) Φ 1.
Then \K\ admits a self-map with A as its fixed point set.

Proof. ( i ) If χ(| K |) = 1, then | K \ is acyclic and hence a metric
tree. In this case Theorem 3.2 follows from [4, Theorem 3.1].
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(ii) Now assume χ(\K\)Φl and A = 0 . Select a maximal
subtree | Γ | of \K\, so that

\ K \ = | T | u k i | U | ^ | U ••• \ i \ σ r \ ,

where \at\ are one-simplexes and r ;>1. Take a point #0 in the
interior of ] σγ | = [v, w], and construct a closed and oriented arc based
at x0 which starts with the segment [x0, w] in [ σ11, then connects
the points w and v in | T|, and ends with the segment [v, a?0] in | σ j .
P u t / ( i f l/l^i I) = a?0, and map [ffj onto the chosen arc in a suitable
manner to obtain a fixed point free self-map of \K\.

(iii) Finally assume χ(| if |) ^ 1 and A ^ 0 . This time, select
a maximal subtree | Γ | of \K\ such that \T\ΠA=£ 0 . Again it
follows from [4, Theorem 3.1] that there exists a map f:\T\-*\T\
with fixed point set | T | Π A. It remains to extend / over each | σt \ of

\κ\ = |Γ| u K l u K l u ••• u |cτr|

with fixed point set | σt | Π A.
If I σt\ Π A = 0, choose any arc in | T\ from /(vt) to /(w<), where

v< and ^ϊ are the end-points of | σt |, and map | ^̂  | onto it. If | σt \ Π
A ^ 0, let α̂  resp. δ̂  be the points of | ̂  | Π A closest to vt resp.
Wi. (The points at and 6̂  need not be distinct.) Select an arc in
I T\ U \σt I from f(vt) via ^ to α, and define / on the segment [vif at]
as a homeomorphism onto this arc which is fixed point free on (vt, a{).
In the same way, map [bίf wt] onto an arc in [ T \ U | σt \ from bt via wt

to f(Wi). Lastly map the segment [al7 bt] onto itself with fixed point
set [aif bi] ίΊ Ay which is obviously possible (see e.g. [3, Theorem 7]).

In this way we can extend / over each 10\ |, and therefore over
\K\, to a self-map of \K\ with fixed point set A.

A connected polyhedron \K\ is a compact and triangulable
manifold of dimension n if every point xe\K\ has a neighborhood
U(x) such that U(x) is homeomorphic to either Euclidean w-space Rn

or to Hn = {(α?!, #2, , a?Λ) e i2w | xn ^ 0}. If the set of points with
a neighborhood homeomorphic to Hn is nonempty, then \K\ is a
manifold with boundary, otherwise a manifold without boundary.
It follows from [6, Theorem 4] that a manifold without boundary
has the complete invariance property. We can use Theorems 3.1
and 3.2 to extend this result to manifolds with boundary.

COROLLARY 3.3. A triangulable manifold with or without bounda-
ry has the complete invariance property.

Proof. If the dimension of the manifold \K\ is at least two,
then \K I is a polyhedron of type W (compare [1, p. 145]), and hence
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Corollary 3.3 follows from Theorem 3.1. If | K | is of dimension one,
then the result is a consequence of Theorem 3.2.

The result proved in [6, Theorem 4] for manifolds without
boundary is actually stronger: It shows that any closed subset can
be the fixed point set of a surjective self-map. This is certainly
not true for one-dimensional manifolds with boundary, as an end-point
of an interval cannot be the fixed point set of a surjection. It is
not yet known which conditions a closed subset of a manifold with
boundary of dimension greater than one, let alone of a connected
polyhedron, has to satisfy so that it can be the fixed point set of
a surjective self-map. It might be of interest to note in this context
that necessary and sufficient conditions for fixed point sets of surjec-
tions of dendrites have been determined by L. E. Ward, Jr. [7,
Theorem 10]. We further know some properties of fixed point sets
of homeomorphisms for the special cases of w-balls [3], compact sur-
faces [6], spheres [6], and dendrites [4, 5], but not for more general
spaces.

It seems possible that the condition in Theorem 3.1 that \K\
must be of type W can be relaxed, and that Corollary 3.3 can be
proved for manifolds with boundary which are not necessarily tri-
angulable, as was done in [6, Theorem 4] for manifolds without
boundary.
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