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THE CENTER OF A POSET

S. GUDDER AND L. HASKINS

The definition of neutral element is extended in a natural
way from lattices to posets. The centers of posets of varying
degrees of generality are then characterized.

The center of a poset. In [1], G. Birkhoff states that the
factorization of a poset with universal bounds is best analyzed by
considering its center. He characterizes the center of a lattice as its
set of complemented, neutral elements and asks (Problem 7, page 78)
if the concept of neutral element can be extended to posets. We
will generalize the definition of neutral element in such a way as to
be able to extend his theorem on the center of a lattice to posets.
For example we shall show that an element is in the center of a
poset if and only if it is complemented and satisfies a generalized
associative and distributive law and that an element is in the center
of a multilattice if and only if it is complemented and satisfies a
generalized distributive law. Other approaches to the factorization
of a poset are possible (cf. [2]). However, our approach gives a direct
generalization of Birkhoff’s result.

Let P be a poset with universal bounds 0 and 1. If A & P define

U(A) = {&#eP:x =y for some ye A},
L(A) ={ze P:x <y for some ye A},
M(A) ={xec A:y > x for no ye 4},
m(A) = {x€ Aty < x for no ye A} .

Notice it follows from these definitions that U(g) = L(¢) = M(g) =
m(p) = 6. Let S(P) be the power set on P. Then u, {: S(P) x S(P)—
S(P) are defined by Al B = M[L(A) N L(B)] and A« B = m[U(4) N
U(B)]. For convenience we write x for the singleton set {x}. Thus
if Pis a lattice 2ly =2 Ay and zuy =2 Vy. AnelementeecPis
centrel or (in the center) if P = X-Y where X, Y are posets with 0
and 1 and ¢ = {0, 1) or (1,0). We denote the center of P by Z(P).
An element ec P is complemented if there is an ¢ e P such that
euwe =1 and ele’ =0.

To extend the concept of neutrality to posets, in a natural way,
we must define the distributive laws for posets. Consider the follow-
ing equations:

(D1) eu@ly) =(ux)lcuy),
(D2) culely) =(zue)l(zuy),
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and dually
(D3) el(xuy) = (lx)ulely),
(D4) xleuy) = @le)u(xly).

We say that an element ec P is weakly distributive if (D1), (D4) hold
whenever, xly + ¢ and (D2), (D3) hold whenever zuy = ¢. We say
that ¢ is distributive if e is weakly distributive and (D2) holds when-
ever xle =yleand xue = yue. An element e is strongly distributive
if (D1)-(D4) hold for all z, ye P. In lattices these three types of
distributive elements coalesce to the concept of neutral element.

An element e P is assoctative if x < e, yle = 0 imply su (xuy) =
(sux)uy for all se P and dually 2 = ¢, yue =1 imply sl(zly) =
(stx)ly for all se P. Of course, if P is a lattice all elements are
associative. This need not be the case for posets.

Notice if ¢ is complemented and distributive then the complement
is unique. Indeed, if ¢, ¢’ are complements of ¢ then since e¢'le =
¢’le and ¢ ue = ¢’ ue we can apply (D2) to obtain

e =cduele) =("ue)l(@ue) =cue'.
Thus ¢’ = ¢” and by symmetry e < ¢”.

THEOREM. An element e is in Z(P) if and only if e is associative,
complemented and distributive.

Proof. For necessity, suppose ec Z(P) and e = (1, 0) with respect
to some factorization P = X.Y. Forz, ye Plet x = (2, %), ¥ = (¥, ¥»)
where 2z, y,€ X, 2,, ¥9,€ Y. If zexly, then 2z <=, ¥, and 2z, < x,, ¥,.

If there exists a w, such that 2, < w, <z, ¥, then (2, z,) < (w, 2,) <
(%, @), (¥, ¥.) a contradiction. Thus z,ex,ly, and z€x,ly,. The
argument reverses so z€ xly if and only if z,ex,ly, and z,€,ly,.
We now show that e is weakly distributive. If zly # ¢ then
eu(zly) = m[UQ, 0) N U{(z, 2.): z;:€ ;1 y,}]
=m{{, v): v = 2, € 2,1l Y,}
= {(1, z.): 2, € T Ly} = M{(Q, v): v < X, Yo}
= M[L(1, z;) N L(1, ¥,)] = M[L(ewu) N L(euy)]
=(ux)l(euy) .
If xuy + ¢ then
xu(ely) = m[U(x) N U{(z, 2,):2:€ e ly.}]
= m[U(x, x,) N Uy, 0)] = {(v, ©.): v, € 2, %Y.}
= M{(w,, w,): W, = V€ X, UY,, Wy, = Ty}
= M[LQ, x,) N L{(v,, v): v: € 2; u y,}]
=M[L@ue) N Lxuy)] = @ue)l(zuy) .



THE CENTER OF A POSET 87

The dual statements follow in a similar manner so ¢ is weakly
distributive. To show e is distributive suppose 2le =yle and
sue =yue. It follows that =y so clearly 2uy # ¢ and (D2)
holds. If v <e¢ and yle =0 then z = (x,, 0) and y = (0, ¥,) so

(sum)uy ={(r, s): res,uz}u(0, y)
={(r,t):res,ux, t€s, Uy,

= (s, ) U@, ¥) =su(@uy).

The dual is similar so e is associative. It is clear that (0,1) is a
complement for e.

We divide the proof of sufficiency into seven steps. Suppose e
is associative, complemented and distributive.

(1) We first show that ¢V« and e A x exist for all ze P.
Now eux == ¢ since otherwise e=eu(x10)=(eux)l(eul) =gle =g,
contradiction. If e \V # does not exist there are distinct elements
2, we P with z, we ewux since otherwise eux is a singleton set and if
s=e¢ 2 we have (eux)ls = (els)u(xls) =eux so eux <s which
would imply euz =e V 2. Now

z=zlleux) = @le)uRlr) =eux 2 {2, w}

which is impossible. Thus e VV o exists and the existence of e A «
follows dually.

(2) We now show that el A = M{e A a:ac A}. By definition
elA = M[Le)N L(A)]. If vcelA then 2 <e and x < a for some
ac A. If there exists ¥y < e, a and x <y this would contradict the
maximality of  in L(e) N L(A),so zcelaandz =e A a. Ifz=¢A a,
for some a, € A then ze L(e) N L(A) so z 3> x. Hence x€ M{e A a:ac A}.
Conversely, if € M{eAa: ac A} then x e L(e) N L(A). Suppose y € L(e) N
L(A) and y > 2. Then y <¢,a for some ac A so ¥y < e A ¢ which
implies © < ¢ A @, a contradiction. Hence xe M[L(e) N L(A)] =el A.
That eu A = m{e V a: a€ A} follows dually.

Let ¢.: P— L(e)- U(e) be defined by ¢.(x) = (x A e, x V e).

(3) To show g, is injective, suppose ¢,(x) = ¢,(y). Then z A e =
yANe xVe=yVe It follows from (D2) that

y=WAeuy=@@Ne)uy =@uy)le Vy)
=@uy)ilEeVa)=WNur=EAe)uzs ==x.

(4) If 2 <y then xt ANe<yAe and 2Ve=<yVe s0 ¢ is
order preserving.

(5) We now show that d A ¢ exists if d = e. By associativity,
ol(dle) =(old)le’ =0 so dle + ¢. Suppose s, tedle. By (2)
mie Vw:wedle'} =eu(dle) =eud =d. Since d = e, z,t we have
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d=eVs eVt Hence d=e¢eVs=¢Vt Since s,t<e we have
eNs,eNt<eANe =0s0eNs=eANt=0. Hence 4,(s) = g,(t) so
by (8) s =t. Thus dlé¢ is a singleton set. If z<d, e then by
associativity 2zl(dle’) = (zld)le =z s0 2 <dle and dle' =d A €.
(6) We now show that ¢, is bijective. Let (c, d) € L(e)- U(e).
We shall prove that s = cu(d A ¢) =c V (d A ¢)and that e Az =g,
eVa=d Since ¢c<e and (d A ¢€)le =0, applying associativity
lufcu(dle)] = Quc)u(dle)=1socu(dle)=g¢. Ifs tecu(dAe)
then s, ¢t = ¢ and since ¢ = ¢ we have ¢ A s, ¢ At =c. Applying (2)
we conclude that e As=e¢At=c¢c. Now s,t=dA¢ and hence
sVetVex(dANe)Ve=dVe)N(E Ve =dVe=d. Now

cu(@ANe)y=(Ne)u(dAe)=[cu(dAe)lleu(d N €)]
=leu(d A €)]ld,

and hence s,t <d. Since e <d it follows that sVetVe=d
and hence sVe=tVe=d. Applying 8), s=t=xand x Ae=c¢,
xVe=d so ¢ is bijective. If z =¢,d A ¢, then by associativity
zufcu(d N e)=@uc)u(d ANe)=zs0z=cu({dANe)andcu(dNe) =
eV (dAeé).

(7) Toshow ¢, is order preserving suppose (a, b), (¢, d) € L(e)- U(e)
and (a, b) < (¢, d). Then by (6) 4. %(a, b)) =a V (b A €)and ¢;'(c, d) =
cV(@dAE€) Butclearly a V(OAE)=cV(dAE€).

It follows that P is isomorphic to L(e)- U(e) and the proof is
complete.

COROLLARY. If e is associative, complemented and strongly dis-
tributive, then ec Z(P).

The converse of the corollary does not hold. Specifically, if
ec Z(P) then although ¢ must be associative, complemented and dis-
tributive, ¢ need not be strongly distributive. For example, let
X =1{0,1} and let Y be a poset with 0,1 and two elements =z, y
satisfying zly =¢. If P= Y.X then e = (1, 0)e Z(P). However,

eul( 0y, 0)] =eug =¢+e¢=cle=][eu(x, 0]l[eu(y, 0)]

80 ¢ is not strongly distributive. This difficulty can not be elimi-
nated by making the convention U(g) = L(p) = P. Indeed, in this
case if we let P = X.Y then e = (1, 0) € Z(P), but

eul(0, 2)L(0, ] =eug =e>9=(1, 2)1(1, y) = [ew (0, »)]l[eu0, y)]

so again ¢ is not strongly distributive.
For the posets in the next corollary the three types of distribu-
tivity are the same.
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COROLLARY. Let P satisfy xuy, xly # ¢ for all z, ye P. Then
ec Z(P) if and only if e is associative, complemented and strongly
distributive.

A multilattice is a poset for which s < #, ¥ implies there exist
zexly such that s <2 and t = «, y implies there is a wexuy such
that ¢ = w. Multilattices are still vast generalizations of lattices;
in particular, any poset with no infinite chains is a multilattice. In
a multilattice the associative laws always hold so every element is
associative. Indeed, if zesu(xuy) then 2 >s,2 =2 cxuy and z is
minimal. Then z2=>s, 2,y s0 2 = z,€sux. Suppose there is 2z = y,
23 = 7,€su®, with 2 > 2, Then z, = s, 2, = 2,€ v« y which contradicts
the minimality of 2. Thus ze(su2)uy. By symmetry su(zuy) =
(suwx)uy and the other associative law holds similarly. Our next
result gives the most direct generalization of Birkhoff’s theorem
[1, page 69].

CoROLLARY. If P is a multilattice with 0, 1 then ec Z(P) if and
only if e is complemented and strongly distributive.

Of course, in this case the three types of distributivity are the
same.
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