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THE CENTER OF A POSET

S. GϋDDER AND L. HASKINS

The definition of neutral element is extended in a natural
way from lattices to posets. The centers of posets of varying
degrees of generality are then characterized.

The center of a poset* In [1], G. Birkhoff states that the
factorization of a poset with universal bounds is best analyzed by
considering its center. He characterizes the center of a lattice as its
set of complemented, neutral elements and asks (Problem 7, page 78)
if the concept of neutral element can be extended to posets. We
will generalize the definition of neutral element in such a way as to
be able to extend his theorem on the center of a lattice to posets.
For example we shall show that an element is in the center of a
poset if and only if it is complemented and satisfies a generalized
associative and distributive law and that an element is in the center
of a multilattice if and only if it is complemented and satisfies a
generalized distributive law. Other approaches to the factorization
of a poset are possible (cf. [2]). However, our approach gives a direct
generalization of Birkhoff s result.

Let P be a poset with universal bounds 0 and 1. If A fi P define

U(A) — {xe P: x ^ y for some ye A) ,

L{A) — {x e P: x <̂  y for some y e A} ,

M(A) = {xe A: y > x for no ye A} ,

m{A) — {x e A: y < x for no y e A) .

Notice it follows from these definitions that U(φ) = L(φ) = M(φ) =
m(φ) = φ. Let S(P) be the power set on P. Then u, I: S(P) x S(P) ->
S(P) are defined by A I B = M[L(A) n L(B)] and A u B = m[U(A) n
U(B)]. For convenience we write x for the singleton set {x}. Thus
if P is a lattice xly — x A y and xuy = x V y. An element ee P is
central or (in the center) if P — X Y where X, Y are posets with 0
and 1 and e - (0, 1) or (1, 0). We denote the center of P by Z(P).
An element e e P is complemented if there is an er e P such that
euer = 1 and ele' = 0.

To extend the concept of neutrality to posets, in a natural way,
we must define the distributive laws for posets. Consider the follow-
ing equations:

(Dl) eu(xly) ~ (eux)l(euy) ,

(D2) xu(ely) = (xue)l(xuy) ,
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and dually

(D3) el(xuy) = (e I x) u (e I y) ,

(D4) x I (e u y) — (xle)u(xly) .

We say that an element e e P is weakly distributive if (Dl), (D4) hold
whenever, xly Φ φ and (D2), (D3) hold whenever xuy Φ φ. We say
that e is distributive if e is weakly distributive and (D2) holds when-
ever xle = yle and xue = yue. An element e is strongly distributive
if (D1)-(D4) hold for all x, ye P. In lattices these three types of
distributive elements coalesce to the concept of neutral element.

An element e e P is associative if x ^ e, y I e = 0 imply su(xuy) =
(sux)uy for all s e P and dually x ^ e, yue =1 imply si (xly) =
(slx)ly for all s6 P. Of course, if P is a lattice all elements are
associative. This need not be the case for posets.

Notice if e is complemented and distributive then the complement
is unique. Indeed, if e', e" are complements of e then since e'le —
e"Ie and efue — effue we can apply (D2) to obtain

e' = e'u(ele") = (efue)l(efuen) =erue" .

Thus e' ̂  e" and by symmetry β' ̂  e".

THEOREM. An element e is in Z(P) if and only if e is associative,
complemented and distributive.

Proof. For necessity, suppose e e Z(P) and e = (1, 0) with respect
to some factorization P = X Y. For x, y e P let x = (xlf x2), y = (ylf y2)
where xu yxe X, x2, y2eY. lί ze xly, then zγ ^ xί9 yx and z2 ̂  x29 y2.
If there exists a wι such that zt < wt ^ xl9 yx then (zlf z2) < (wl9 z2) S
(xl9 x2), (yl7 y2) a contradiction. Thus z1exιlyι and z2ex2ly2. The
a r g u m e n t r e v e r s e s so ze xly if a n d o n l y if zγexγlyγ a n d z2e x21y2.

W e n o w s h o w t h a t e i s w e a k l y d i s t r i b u t i v e . I f xly Φ φ t h e n

eu(xly) = m[Z7(l, 0) Π U{(zu z2): z,extlyt}\

= m{(l, v): v ^ ^ e ^ ί y 2 }

- {(1, «2): ^ 2 G x2ly2} = M{(1, v): v ^ α?2, i/2}

= ikf[L(l, x2) n L(l, i/8)] = M[L(eux) n L(β^^/)]

= (eux)l(euy) .

If xuy Φ φ then

xu(ely) = m[J7(a?) Π ί7{fe, z2) Zieetly%)\

) Π ί7(i/i, 0)] = {(^, α;2): v.ex.uy,}

: ί ϋ ^ ^ e xγuyγ, w2 ̂  α;2}

Π £{(tfi, v2): ViGXtU yj]

Π ί/(^ M 2/)] = (xue) I (xuy) .
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The dual statements follow in a similar manner so e is weakly-
distributive. To show e is distributive suppose xle=yle and
xue = yue. It follows that x = y so clearly xuyΦφ and (D2)
holds. If x ^ e and yle = 0 then a? = (a?!, 0) and # = (0, y2) so

(sux)uy = {(r, s2): res^aj jw(0, ?/2)

= ί(r> *) : ̂ e s ^ ^ ί e ^ u y2}

= (βi, s2) w (»i, 1/B) = su(xuy) .

The dual is similar so β is associative. It is clear that (0,1) is a
complement for e.

We divide the proof of sufficiency into seven steps. Suppose e
is associative, complemented and distributive.

(1) We first show that e V x and e A x exist for all xe P.
N o w eux Φ φ s i n c e o t h e r w i s e e = eu(x10) = (eux)I(eu0) = φle = φ,
contradiction. If e V x does not exist there are distinct elements
z, we P with z, we eux since otherwise eua; is a singleton set and if
s ^ β, x we have (eux)ls = (els)u(xls) — eux so ewa ^ s which
would imply e u x = e V x. Now

z — zI(eux) — (zle)u(zlx) = eux a {z, w}

which is impossible. Thus e V x exists and the existence of e A x
follows dually.

(2) We now show that elA=M{eAa:aeA}. By definition
el A = M[L(e) f] L(A)]. If xe el A then x <̂  e and x ^ a for some
αeA. If there exists y ^ e, a and « < 3/ this would contradict the
maximality of x in L(β) Π £(̂ 4.), so x eel a and a? = β Λ a. If z = e A at

for some a^e A then 3e L(β) n L(A) so 3 > x. Hence xe M{eΛ α: α6 A}.
Conversely, if a? € M{eA a: a e A) then x e L(e) Π L(A). Suppose y e L(e) Π
L(A) and y > x. Then y ^ e, a for some α e i so y ^ e A a which
implies x < β Λ α, a contradiction. Hence a? 6 M[L(e) Π Ĵ (-A)] = β i A.
That euA = m{eVα:αGA} follows dually.

Let φe: P —>L{e) U{e) be defined by φe(x) = (x A e, x V e).
(3) To show 0β is injective, suppose φe(x) = 0β(i/). Then xΛe =

yAe, xVe=yVe. It follows from (D2) that

2/ = (y A e)uy = (x A e)uy = (xuy)l(e V 1/)

= (a? w y) I (e V #) = (y A e) u x — (a; Λ e) u x = a? .

(4) It x ^ y then x Λ ^ I / Λ e and x V e ^ y V e so & is
order preserving.

(5) We now show that d A ef exists if d ^ e. By associativity,
ol{dlef) = {old)lef = 0 so die' Φ φ. Suppose s,tedle'. By (2)
m{e V w: we die'} = eu(dle') — eud = d. Since d ^ e, x, t we have
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d ^ e V 8, e V t. H e n c e d=eVs = e\/t. S i n c e s, t <* ef w e h a v e

e Λ s, e Λ t ^ e Λ e ' = O s o eAs=eAt = 0. H e n c e φe(s) = φe{t) s o

by (3) 8 = t. Thus die' is a singleton set. If s <L d, e' then by
associativity zl(dle') = (zld)lef = z so z ^ die' and dZe' = d A e\

( 6 ) We now show t h a t 0e is bijective. Let (c, d)eL(e) U(e).

We shall prove t h a t x = cu(d A e') = c V (d A e') and t h a t e A a? = c,

e V a? = cL Since c < ^ e and ( d Λ e ' ) ί β = 0, applying associativity

1 u [c u (d I e')\ = (luc)u(dle') = lso cu(dle')^ φ. lΐ s,tecu(d Λ ef)

t h e n s,t^c and since e ^ c we have e A s, e A t ^zc. Applying (2)

we conclude t h a t eAs = eAt=c. Now s, t ^ d A e' and hence

sV e,tV e^(d A e') V e = (d V e) Λ (e' V e) = d V e = d. Now

c w (d Λ e') = (c Λ β) u (d Λ e') = [c u (d A e')\ I [e u (d A e')\

= [c u (d A e')] I d ,

and hence s,t^d. Since e <£ d i t follows t h a t s V e , t V e ^ d

and hence § V 6 = ί V 6 = cί. Applying (3), s — ί = x and α? Λ e = c,

a; V β = (Z so ^ e is bijective. If z ^c,d A e', then by associativity

z u [e u (d A e')] — (z u c) u (d A er) = z so z ^ c u (d A er) and c u (d A ef) =
c V (d Λ e').

( 7) To show Φ71 is order preserving suppose (α, 6), (c, d) 6 L(e) ί/(e)
and (α, 6) ^ (c, d). Then by (6) φj\a, b) = a V (b A ef) and ^Γ1^, d) =
c V (eZ Λ e') But clearly α V (6 Λ O ^ c V (eZ Λ β')

It follows that P is isomorphic to L(e) Ϊ7(e) and the proof is
complete.

COROLLARY. If e is associative, complemented and strongly dis-
tributive, then eeZ(P).

The converse of the corollary does not hold. Specifically, if
e e Z(P) then although e must be associative, complemented and dis-
tributive, e need not be strongly distributive. For example, let
X = {0, 1} and let Y be a poset with 0, 1 and two elements x9 y
satisfying xly = φ. If P = Y X then e = (1, 0)eZ(P). However,

eu [(x, 0)l(yf0)] = euφ = φ ^ e = ele = [eu(x, 0)]l[eu(y, 0)]

so e is not strongly distributive. This difficulty can not be elimi-
nated by making the convention U(φ) = L(φ) — P. Indeed, in this
case if we let P = X-Y then e = (1, 0) e Z(P), but

eu[(0,x)l(0,y)] =euφ = eΦφ = (l,x)l(l, y) = [eu(0,x)]l[eu(0,y)]

so again e is not strongly distributive.
For the posets in the next corollary the three types of distribu-

tivity are the same.
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COROLLARY. Let P satisfy xuy, xly Φ <ρ for all x, ye P. Then
e e Z(P) if and only if e is associative, complemented and strongly
distributive.

A multilattice is a poset for which s ^ x, y implies there exist
zexly such that s ^ z and t^x,y implies there is a w e x u y such
that t ^ w. Multilattices are still vast generalizations of lattices;
in particular, any poset with no infinite chains is a multilattice. In
a multilattice the associative laws always hold so every element is
associative. Indeed, if ze su(xuy) then z ^> s, z^zxexuy and z is
minimal. Then z >̂ s, x, y so z ^ z2e sux. Suppose there is z3 ^ y,
z3^z z4e sux, with z > z3. Then z3 ^ s, z3 ^ zδe xuy which contradicts
the minimality of z. Thus ze (sux)uy. By symmetry su(xuy) =
(sux)uy and the other associative law holds similarly. Our next
result gives the most direct generalization of Birkhoff's theorem
[1, page 69].

COROLLARY. If P is a multilattice with 0, 1 then e e Z(P) if and
only if e is complemented and strongly distributive.

Of course, in this case the three types of distributivity are the
same.
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