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MAXIMAL IDEALS IN THE NEAR RING OF
POLYNOMIALS MODULO 2

J. L. BRENNER

A near ring (or semiring) is a structure with addition and
composition. Under addition, the structure is a commutative
group. Composition is associative and distributive on one
side: (p~\-q)°r = p<>r-\-q°r. An example is the set of poly-
nomials with coefficients from the ring of integers [or indeed
from any ring]; composition is ordinary composition of poly-
nomials. Another example is the set of endomorphisms of
an abelian group.

An ideal in a near ring is, as usual the kernel of a homomorphism.
(This definition first appeared in G. Birkhoff's 1934 paper, "On the
combination of subalgebras," in Proceedings of the Cambridge Philo-
sophical Society.) For N = Z2[x, o], the near ring of polynomials with
coefficients from the field Z2 of two elements, the ideal structure is
more intricate than it is for Zp[x, o] (p > 2). In this article, all
maximal ideals in N are found. Unexpectedly, there are just two
of them. There are several other proper ideals. A device due to
the referee shows how to construct many of them. Application of
his idea is given in the following article.

2* Introduction and summary. The definition of "ideal" shows
that, if I is an ideal, then

2.1. / i s additively closed:

2.2. N admits I, in short IoNczN. Explicitly,

{teI,neN} => {tone 1} .

2.3. Composition contracts on the right, i.e.,

{t e 7, nl9 n2 e N} ==> {nx © (n2 + t) — n, o n2 e 1} .

THEOREM 2.4. Conversely, a subset I is an ideal if it satisfies
1, 2, 3. (This is a known fact.)

The identity for "o" is the polynomial x.

Among the results of this article are the following. The set of
all polynomials p in N such that p(0) = p(l) is a maximal ideal V,
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but there is another one T (Theorem 3.3). Both maximal ideals are
principal, i.e., generated by a single element, together with repeated
applications of 2.1-2.3. The smallest (the principal) ideal /containing
1 is determined (Theorem 3.9).

3* The maximal ideals* The near ring N = Z2[x, o] has just two
maximal ideals, T and V. T is the additive closure of

{1, X + X2, X*, X + X\ X + Xh, XQ, X + X7, X + Xs, X9, *} >

and V is the additive closure of {1, x + xa (a> 1)}.

THEOREM 3.1. V is a maximal ideal.

Proof. V is an ideal, since V contains every polynomial p(x) such
that p(0) = p(l). With this characterization, V was discovered by D.
Doi Watkins, as a student. If an ideal K contains V properly, then
K contains xh, hence x; hence N.

LEMMA 3.2. Every maximal ideal contains 1.

Proof. Either a maximal ideal is V, or else it contains a polynomial
p{x) such that p(0) Φ p(ΐ). Apply 2.2.

THEOREM 3.3. The set T is a maximal ideal.

This theorem is conveniently proved by characterizing T as in
3.5. It is interesting first to note Lemma 3.4 which shows that, if
T is an ideal, T is a maximal ideal.

LEMMA 3.4. Let p{x) be any polynomial not in T. Then p(x) =

T.

Proof. Use induction. By successive subtraction of x*a±1 + x or
of x3a, p(x) can be reduced to x.

The following characterization of T is due to the referee.

LEMMA 3.5. Let θ be an imaginary over Z2, such that θ2 + θ +
1 = 0 . Then θz + 1 = 0, and T consists of all polynomials p(x) in Z2[x]
such that p(θ)2 + p(θ) = 0.

Proof. If p(x) = xda±1 + x, then p(θ) = 0,1. If p(x) = x*% then
p(θ) = 1. The lemma follows, since T is nothing but the additive
closure of the polynomials xSa±1 + x, #3α, 1.

I proved that T is an ideal originally in Spring 1969. (That proof
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did not involve imaginaries.) But Lemma 3.5 permits a shorter proof.

LEMMA 3.6. If [x2 + x]op(θ), [x2 + x)°q(θ) = 0, then

LEMMA 3.7. // g(x) is any polynomial in Z2[x], then for every
p(x) in T, [p(x)2 + p(x)]og(θ) = 0.

Proof. If g(θ) = 0, 1, θ this is clear. The only other possibility-
is g{θ) = 1 + 0; but 1 + θ is the imaginary conjugate to θ: (1 + θ)2 +
(1 + 0) + 1 = 0.

LEMMA 3.8. If f(x), g(x) are any polynomials in Z2[x], then for
every p(x) in T, h(θ) = f o (g(θ) + p(θ)) + f o g{θ) has the value 0 or 1,
so that h{θ)2 + h(θ) = 0.

Proof. If p(0) = 0, this is clear. If p(θ) = 1, then h(θ) = f{g{θ) +1) +
f(g{θ)). There are only four possibilities: g(θ) = 0, 1, θ, 1 + θ. In
the last two cases, h{θ) = /(0) + /(0.+ 1); thus Λ(0) = 0 or 1 in all
cases.

The proof of Theorem 3.3 is complete.

THEOREM 3.9. Let J be the intersection of T, V. As an additive
group, J has index 4 in the additive group N. J is the smallest ideal
in N containing 1.

Proof. The fact that, as an additive group, the index N: J is 4
is clear: J contains a binomial xh + x or xb + xB for every degree
b > 3. The cosets of N mod / are thus represented by 1, xf x*,
x + x*. Since J is the intersection of two ideals, J must be an ideal.
The main difficulty is to show that, if an ideal contains 1, it must
contain J. This is a consequence of the following series of lemmata.

LEMMA 3.10. If an ideal contains 1, it must contain x + x2.

Proof. (1 + xf - xz = 1 + x + x2; see 2.3.

LEMMA 3.11. If an ideal contains x + x2, it contains xa + x2a.

Proof. Use 2.2 with n = xa.

LEMMA 3.12. If an ideal contains t, it contains ta.
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Proof. Use 2.3 with n, = xa, n2 = 0.

LEMMA 3.13. If an ideal contains x + x2, it contains x + x\ x5 +
x25, x7 + x35.

Proof, x + x5 = (x + a;2)3 - (a? + £2) - (x2 + x*) + (a;3 + af); x* +
# 2 5 = (x + χ 5) o χ 5; χ 7 + £ 3 5 = (x + x5) o # 7 .

LEMMA 3.14. If an ideal I contains x + x2, it contains x + x7.

Proof. There are several steps in the proof.
First, I contains x + x\ Next / contains x* + x17 — (x + a;4)5 —

(xδ + £20) - (x4 + x8). Then I contains x + x19 = (^4 + £17)3 ~ (α;12 + x51) -
(V + x25) - (a? + x% Finally, I contains both x + x17 = (α? + α;2) + (α;2 +
x4) + (#4 + α;17), and x* + α;51; and hence /contains x7 + x19 — (x + ίc17)3 —
(x* + α;51) - (α;7 + £35).

LEMMA 3.15. The ideal I containing x + x2 must contain x + xa

for every a prime to 3.

Proof. It has already been shown that / contains x + xa for a —
2, 4, 5, 7, 8, 10. The process of forming successively (x + xaf (which
are in I for these values of a) can be used to construct an inductive
proof. For example,

(x + x5f - (x* + £15) - (x + x7) = x + x11

(x4 + x 5) 3 - ( ^ 2 + x15) - O 2 + x14) = £ 2 + x13 = x + xn ,

(x2 + a;7)3 = x + χlQ

(x + x»y = x + x17 .

In each of the last three formulas, the first parenthesis has the
form xb + x9~b. Using (xb + xl2~hf for b = 5, 4, 2, 1, one finds that
a? + xι\ x + x2\ x + x22

9 x + x23 are in I. In that part of the argument,
the only thing needed is the assertion of the lemma for a = 11, 13,
14, 16, 17. The inductive proof may be completed by successive appli-
cations of this idea.

LEMMA 3.16. The ideal I containing x + x2 contains also xz + x3a

for every a.

Proof, /contains xs + x9 = (x2 + xδf - (x6 + x15) - (#3 + x12). The
proof may be completed by induction. Suppose b = cd, where c is a
power of 3 and d is prime to 3.

By Lemma 3.15, x + xd is in /, so xe + xcd = (x + xd)°xc is in /
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also. If c > 9, then (xd + x9) o χci9 = χci* + χc is in 7. By induction,
then, x3 + a;27, and in general x* + x% is in I. But xB + α;cd = (α?c + xcd) +
(x3 + xc).

This completes the proof of Theorem 3.9.

THEOREM 3.17. The only maximal ideals in N are T, V.

Proof. This follows from Theorems 3.2, 3.9.

THEOREM 3.18. Both ideals T, V are principal.

Proof. The generators are respectively x*, x3 + x + 1.

Each of T, V can be used to define other ideals.

4* Other ideals in Z2[x, °]*

THEOREM 4.1. Let K be an ideal in N. The set of polynomials
p(x) in K such that p(ΐ) — p(0) is an ideal in N.

Proof. Use 2.1-2.3.

LEMMA 4.2. The intersection of ideals in N is an ideal in N.

4.1-4.2 yield the following.

THEOREM 4.4. The principal ideal I generated by x + x2 is the
additive closure of

{x + xa (a prime to 3); x3 + xzb) .

Proof. Apply Theorem 4.1 to J.

N

v:

o
FIG. 1. Inclusion relations for some ideals in Z2[x, o].
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The subset of V consisting of polynomials with no constant term
is also an ideal, Vo. See Fig. 1.

5* Conclusion* The succeeding paper shows that there are
other ideals in N. I am looking forward to the opportunity of
reading it.

In Zp[x, o] (p > 2) the ideal structure seems not to be intricate.
For example, the only ideal containing 1 is the entire near ring.
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