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A CHARACTERIZATION OF NORMAL ANALYTIC
SPACES BY THE HOMOLOGICAL CODIMENSION

OF THE STRUCTURE SHEAF

ANDREW MARKOE

In 1951 K. Oka proved that if X is a hypersurface in Cn

whose singular set Σ(X) has codimension at least 2 in X,
then X is a normal analytic space. This result was subse-
quently generalized by S. Abhyankar and (independently) W.
Thimm to the case of a complete intersection.

The main result of the present work is the following
criterion for normality: If dim [Σ(X) Π {% e X: codhx έ?Σ g k +
2}] ^ k for all integers k ^ — 1, then X is a normal analytic
space. This is the best possible criterion following the lines
of Oka, Abhyankar, and Thimm, and is, in fact, a character-
ization; the converse is true. The criterion implies that
whenever (^x has Cohen-Macaulay stalks and Σ(X) has codi-
mension at least 2, then X is normal. Finally, the techniques
used in proving the criterion are used to obtain a vanishing
theorem for the first cohomology group of the complement
of a subvariety A of suitably high codimension in a Stein
manifold, with coefficients in the ideal sheaf of a normal sub-
variety containing A.

It is appropriate to sketch Oka's proof. Oka looked at the
exact cohomology sequence (where ^ = ideal sheaf of X in Cn)

Γ(C" - Σ(X), n<?) -£-» Γ(X - Σ{X)t <?x) — H'iC* - Σ(X), J**) —
Hι(Cn - Σ(X), n&). Since X is a hypersurface, J^ ^ ^ and Cartan's
three annuli theorem implies that H\Cn — Σ{X)y <Jr) vanishes (since
Σ(X) is of codimension at least 3 in Cn). Thus p is surjective and
the Riemann 2nd removable singularity theorem in Cn shows that
holomorphic functions on X — Σ(X) extend holomorphically to X.
Therefore, X is normal.

Since / is not generally free for an arbitrary complete inter-
section, Abhyankar and Thimm do not use Cartan's three annuli
theorem. In this paper however, the spirit of Oka's proof is followed
by reintroducing Cartan's three annuli theorem in a very general
version due to G. Trautmann. This result is Theorem T in §2.

An inspection of the above exact sequence shows that the best
possible result using Oka's technique occurs when a is injective. It
is surprising therefore that a is injective only when (and, of course,
when) H\Cn — Σ(X), ^) = 0. This is an immediate consequence of
the vanishing theorem (Theorem 4) presented in the following section.

The few results needed about normal analytic spaces may be
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found in R. Narasimhan [4]. In particular:
(1) Riemann's 2nd removable singularity theorem. If X is a

normal analytic space and if A is a closed subvariety with codim
A Ξ> 2, the restriction Γ(X, ^x) —> Γ(X — A, #Σ) is isomorphic.

(2) If X is normal then codim Σ(X) :> 2.
In the sequel 2* = 2XX) will denote the singular subvariety of X

and dimension or codimension statements will be taken pointwise
(i.e., codim A ^ 2 means codim,. A ^ 2 for all xeX).

We require the notions of homological codimension, codh, mth
singularity subvariety of the analytic sheaf ^ Sm{^) and profondeur
{depth), prof. The definition and basic properties of these concepts
may be found in [6]. For the present it suffices to recall that
Sm(^~) = {xeX: c o d h s ^ <̂  m} and that Sm(^~) is a subvariety of X,
if ^ ~ is coherent.

1* Characterization of normal analytic spaces* The following
theorem is a modification of a result due to G. Trautmann [8]. It
follows easily from Theorem 1.14 [6] and will not be proved here.

THEOREM T. Let (X, έ?x) be an analytic space, A a closed sub-
variety of X, ^~ a coherent analytic sheaf and q an integer ^ 0.
Then the following conditions are logically equivalent:

(1) For every Stein open set UaX the restriction

Γ(U,JO

is isomorphic and

H\U -

for 1 ^ i ^ q — 1.

( 2 ) dim [A Π Sk+q+1(^")] ^ k for all integers k ^ — 1.

( 3 ) prof^ j r ^ q + 1.

An implication of the form (2) ==> (1) can be considered as a
combination of Riemann's 2nd removable singularity theorem with
a generalization of Cartan's three annuli theorem (or as a general
version of Frenkel's lemma).

The following theorem, which characterizes normal analytic spaces,
is the most general version of the results of Oka, Abhyankar, and
Thimm, [5], [1], and [7], on the normality of subvarieties of manifolds.

THEOREM 1. A reduced analytic space X is normal if and only if

dim [Σ(X) n Sk+2(^χ)] ^ k
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for all integers k ^ — 1.

Proof. If the dimension estimate holds, then (2) of Theorem T
is fulfilled for q = 1. Hence the 2nd Riemann removable singularity
theorem holds and, as in the introduction, X is normal.

Conversely, if X is normal, the second Riemann removable sin-
gularity theorem holds, so that (1) of Theorem T is verified for q =
1. Hence (2) of Theorem T holds, giving the dimension estimate.

There is a characterization of normal Noetherian rings due to
J. P. Serre [cf. 3, page 125]: A Noetherian ring & is normal if
and only if &* e Spec (^) implies that prof (<^) ^ 2 when ht & ^ 2
and that && is regular when ht&> < 2. An application of (3) in
Theorem T and Theorem 1 gives the following analytic version of
Serre's characterization.

COROLLARY. An analytic space X is normal if and only if
profΣ^x :> 2.

Another immediate consequence of Theorem 1 is the classical
result that the nonnormal points of an analytic space form an
analytic sub variety.

THEOREM 2. If X is a reduced analytic space then {xe X: X is
not normal at x) is an analytic subvariety X.

Proof. This follows immediately from Theorem 1 and the fact
that for a subvariety V of X {xe X: dim,,V ^ k] is a subvariety of
X, too.

A local ring έ? is said to be a Cohen-Macaulay ring if codhm & =
Krull dim έ7 (where m = maximal ideal of ^ ) . The next result is
a stronger generalization of the Oka-Abhyankar-Thimm theorems
than Theorem 1.

T H E O R E M 3. If X is a reduced analytic space and xeXis such

that έ7XtX is a Cohen-Macaulay ring and codim* Σ(X) ^ 2, then X

is normal at x.

Proof. If έ?x>x is Cohen-Macaulay, then this is true at nearby
points also, therefore, codhy έ?x — dim^ X for y near x. Since y i—•
coάh.yέ?x is lower semi-continuous and y i-> dim^X is upper semi-con-
tinuous, it follows that codh^x is constant in a neighborhood of x.
Let n = dim,, X.

Then Σ n Sk+2(έ?x) is empty if k < n - 2 and is Σ if k = n - 2.
But we observe that by hypothesis, dim Σ ^ n — 2, so the dimension
estimate of Theorem 1 holds.
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COROLLARY (theorems of Oka-Abhyankar-Thirnm). If X is a
complete intersection such that codim Σ ^ 2, then X is normal.

Proof. A complete intersection is Cohen-Macaulay ([2], Proposi-
tion 3, page 200).

Oka [5] proved Theorem 3 in the case that X is a hypersurface.
The key idea in the proof is to show that H\Cn - Σ(X), ^) = 0,
where / is the ideal sheaf of X in Cn. We now establish a general
vanishing theorem for normal analytic spaces embedded in Stein
manifolds.

THEOREM 4. If Z is a Stein manifold and X a proper normal
analytic subvariety of Z with ideal sheaf ^ then for any subvariety
A of X with

dim A ^ dim X - 2

we have

H\Z - A, ̂ ) = 0 .

Proof. We have ^x = &Z\I and hence we have the following
exact sequence

Γ(Z - A, &z) JU Γ(X - A, <?z) -i-> H\Z - A,

Therefore, it suffices to prove that p is surjective and that
H\Z - A, <?Σ) - 0.

To show p surjective, consider the commutative diagram

Γ(Z - A, &z) -£-> Γ(X - A, &x)

where r, r', and r" are restrictions.
Since X and Z are normal, the 2nd Riemann removable singularity

theorem implies that r and r' are isomorphic. Also Cartan's Theorem
B implies that r" is surjective. Hence p is surjective.

Next, H\Z — A, έ?z) = 0. To see this we observe that since the
stalks of &z are regular rings, codhx {έ?z) = dim,. Z for all x. Hence
A Π Sk+^z) is empty if k < dim Z — 3 and is A if k = dim Z — 3.
Since A is of codimension ^ 2 in X and since X is a proper subvariety
of Z, dim A ^ dim iΓ — 3. Therefore, the dimension estimate in (2)
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of Theorem T holds for q = 2. Hence (1) of Theorem T implies that
Hι{Z - A, ^z) = 0, completing the proof.

The next result gives a characterization of embedded normal
analytic spaces. The proof is similar to the proof of Theorem 1, so
we omit the derivation.

THEOREM 5. If Z is a Stein manifold and X is a proper analytic
subvariety with <J^ the ideal sheaf of X in Z, then X is normal
if and only if

dim [Σ(X) n Sk+Z(^)\ £ k

for all k ^ — 1.
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