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CONTINUOUS CONVERGENCE IN C(X)

D. KenT, K. MCKENNON, G. RICHARDSON, AND M. SCHRODER

Let X be a convergence space and C(X) the R-algebra of
all continuous real-valued functions on X, equipped with the
continuous convergence structure. If the natural map from
X into C(C(X)) is an embedding, then X is said to be a c-space.
With each space X there is associated the c-modification c¢X
which is a c-space with the property C(X)= C(cX). This
leads to the following theorems which are valid for any con-
vergence space X: (1) C(X) is a topological space iff cX is
locally compact; (2) C(X) is locally compact iff ¢cX is finite.

1. Preliminaries. The continuous convergence structure on the
function algebra C(X) of continuous real-valued functions on a space
X has been studied extensively by Binz and others during the past
decade; see, for instance, [3], [4], [6], and [8]. This function space
is typically called C,(X), but we will use instead the notation C(X),
assuming this space to be equipped with continuous convergence
unless otherwise indicated. The term “space” will always mean
“convergence space”.

Let Hom C(X) be the subspace of C(C(X)) consisting of all non-
zero continuous homomorphisms on C(X). X is c-embedded if the
function 7y: X — Hom C(X) (defined by ir(x)(f) = f(x) for all f in
C(X)) is a homeomorphism. We will use the term c¢-space in place
of “c-embedded space”; this terminology is not only more concise,
but avoids conflict with the different usage of the term “c-embedded”
which is common in the literature.

Starting with a space X, let A.X denote the topological modifica-
tion and X the pretopological modification of X. The symbol wX
will denote the completely regular modification of X, that is, the
finest completely regular topological space on the same underlying
set which is coarser than X. X will be called w-Hausdorff if wX
is Hausdorff, and w-regular if ¢l y # — x whenever & —x. (Here,
“Z# — g in X” means “the filter .# converges to x in the space X”;
cl, designates the closure operator for X.) The following proposi-
tion will be useful later in the paper.

ProrosITION 1.1. A Hausdorff w-regular space X is w-Hausdorf.

Proof. Let & converge to # and y in wX. Since y = cl,x .,
y— o in X, and so £ =cl,yy. But y—y in X, and, since X is
w-regular, £ —y in X. Therefore, x = y.
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A space is said to be pseudo-topological if & — x whenever
each ultrafilter finer than & converges to x. X is locally compact
if every convergent filter contains a compact set, and first countable
if every convergent filter contains a filter converging to the same
point which has a countable filter base. The notation “X < Y” for
spaces X and Y will mean that X and Y have the same underlying
set, and & — 2 in Y implies &% — 2 in X.

A collection .o~ of subsets of a space X is called a covering
system if each convergent filter contains a member of & If &
and .7 are covering systems such that each member of .o is a
subset of a member of .97 then &7 is said to be a refinement of

PROPOSITION 1.2. A subset A of a space X is compact iff, for
each covering system . of A, there is a refinement 7 of 7 such
that a finite subcollection of 7 covers A.

A covering system <& for X will be called a basic covering
system if, whenever & — 2, there is a filter & — z such that £ <
& and & has a filter base consisting of members of <& Thus, if
X is w-regular, the set of all wX-closed subsets of X forms a basic
covering system for X.

The abbreviation “u.f.” will be used for ‘“ultrafilter”. The
symbol R will denote the real number system with its usual topology.
The complement of a set A is written “Co A”, and the symbol &
represents the fixed ultrafilter generated by {x}.

2. c-spaces. It is shown in [8] that X is a c-space iff X is
Hausdorft, w-regular, and solid (see [8] for the definition of a solid
space). We will begin by showing that X is a c-space iff X is
Hausdorff, w-regular, and pseudo-topological.

ProposITION 2.1. A c-space 18 Hausdorff, w-regular, and pseudo-
topological.

Proof. A c-space must be Hausdorff in order for the natural
function from X into Hom C(X) to be injective. That a c-space is
w-regular is established in [6].

To show that X must be pseudo-topological, it is sufficient to
show that C(X) is pseudo-topological, since this property is heredi-
tary. Let 4 be a filter on C(X), and assume 2 —f for all u.f.’s
2=4. Let & —2 in X. To show 4—f, it is enough to show
that A(F#) = N{2(5): 2 an u.f.,, 2 = 4}. We will do this by show-
ing that if %7 is an u.f. on R and % = A (&), then &7 = (&)
for some u.f. 2 = 4.
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Let 2 ={Y:2% a filter on C(X), ¥ = 4, and & = 3(F)}. A
standard Zorn’s lemma argument establishes that 2  contains a
maximal element; call it Q.

To show that @ is an u.f., assume that AU Be Q. If neither
A nor B is in 2, then the filter 2, generated by {AN M: Me 2},
and 2, generated by {B N M: Mec 2} must both be proper filters on
C(X) which are strictly finer than 2. Thus 2, and 2, must both
fail to be in 2, and so there are sets M,, M, in 2 and F, and F},
in & such that (M, N A)F)e .»7 and (M, N A)(F,)¢ &% Let M =
M,NM,and F=F,NF,. But AUBeQ, and so (M N (AUB))(F)e ¥
However, (M N (A U B))(F) = (M, N A)(F,) U (M, N B)(F},), and this con-
tradicts the fact that .o is an ultrafilter. Thus either A or B
must be in Q.

For any w-Hausdorff space X, define X to be the space on the
same underlying set with convergence defined as follows: & —v
in X iff, whenever 4 — f in C(X), A(& ) — f(x) in R.

PRrROPOSITION 2.2. The following statements are wvalid for any
w-Hausdorff space X: (@) o X< X< X; (b) C(X) = C(X); (¢) X s
the finest c-space coarser than X.

Proof. Assertions (a) and (b) are obvious. It is also clear from
the definition that X is c-embedded. If X, is c-embedded and X, <
X, then the identity map from X — X, is continuous. Thus the
induced map C(X,) — C(X) = C(X) is continuous, and so is the in-
duced map from Hom C(X) — Hom C(X,). But X is homeomorphic to
Hom C(X) and Hom C(X,) is homeomorphic to X,, which establishes
X =X

LEeMMA 2.3. Let <& be a basic covering system for X, and let
t be the topology on C(X) with subbase {(B, W): Be <z, W open in
R}, where (B, W) ={ge C(X): 9(B) = W}. Then C(X) = C,(X).

Proof. Let @ —h in C(X) and & —y in X; let W Dbe an open
neighborhood of A(y) in R. Let £ —y in X such that & = 27
and 27 has a filter base in <z Let Be .z be a basic set in 57
such that #(B) £ W. Then (B, W) is t-open, and hence (B, W)e ®.
But (B, W)(B) & W, and it follows that @(5#)— h(y) in R. Thus
O(Z)—h(y) in R, and so ® — h in C(X).

THEOREM 2.4. X is a c-space iff X is Hausdorff, w-regular, and
pseudo-topological.
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Proof. Assume the three conditions. By Proposition 1.1, X is
w-Hausdorff. Thus X exists, and it is sufficient to show that X = X,
Since X and X are both pseudo-topological, and X < X, we can com-
plete the proof by showing that each u.f. which X-converges to
also X-converges to «.

Suppose & is an uf., ¥ —2 in X,and & »2 in X. If 5~ is
an X-convergent filter, then ¥ # cl,, 57, and so there is an wX-
closed set H in &7 such that Co He &. The set of all such H’'s
forms a covering system .o for X, and the set .<Z of all wX-closed
subsets of members of .o is a basic covering system for X con-
sisting entirely of sets whose complements are in &. Let C,(X) be
the topological space derived from .<Z as in Lemma 2.3. Then, by
the same lemma and Proposition 2.2, C(X) = C(X) = C(X).

Let f in C(X) be defined by f(z) =0, all z in X. Let 4 be the
t-neighborhood filter at f. Then 4 — f in Cy(X), which implies 4 —
fin C(X), and so 4(¥)— 0 in R. Let W be a neighborhood of 0
not containing 1. Then there are sets G in & and L in A such
that L(G) & W. L contains a set of the form (4, V)N -+ N (4,, V.),
where each A, is in <& and each V, is an open neighborhood of 0
in B. Since CoAd,e < for ¢ =1, ---, n, we can choose G, = G such
that G, is in & and G, N (Y A4, is the empty set. Let z be any
element of G,, and let ¢ in C(X) be constructed such that g(z) =1
and g(UA4,) =0. Then ¢ is in (4,, V;) for all ¢, but g(G) is not a
subset of W. This contradiction establishes that € — 2« in X, and
the proof is complete.

For any space X, let ¢X = Hom C(X). Then ¢X is a c-space,
and we will refer to it as the c-modification of X. The next result
can be easily verified.

PropogsiTioN 2.5. (a) C(X) and_ C(cX) are homeomorphic.
(b) If X is w-Hausdorff, then X and ¢X are homeomorphic.

When X is w-Hausdorfl, it is convenient to think of ¢X as coin-
ciding with X. In general, the underlying set for ¢X can be thought
of as consisting of equivalence classes relative to the following
equivalence relation on X:x ~ y iff f(z) = f(y), for all f in C(X).

For the purpose of studying C(X), X can be replaced by the c-
space ¢X. If one wishes to determine what properties of C(X) are
induced by given properties of X, it would naturally be of interest
to know when a given property of X extends to ¢X. Two such
properties are “Lindelof” and “second countable”; for definitions of
these concepts in a convergence space setting, the reader is referred
to [6].
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ProrosiTION 2.6. If X is Lindelof (second countable), then cX
18 Lindelof (second countable).

Proof. In Theorem 1, [6], Feldman shows that C(X) is first
countable whenever X is Lindelof, and that X is Lindelof whenever
X is a c-space and C(X) is first countable. The assertion for
“Lindelof” follows immediately from these results. The assertion
for “second countable” can be proved similarly with the help of
Theorem 2 of [6].

In the next section, we will show that ¢X is locally compact
whenever X is locally compact. We conclude this section with a
simple example which shows that X can be first countable when ¢X
is not first countable.

ExampPLE 2.7. Let Y be the interval [0, 1] with the usual topo-
logy. Let X Dbe the space with the same underlying set whose
convergence to nonzero points is discrete, and with convergence to
0 defined as follows: & — 0 in X iff there is a free filter £ and
a point ¥ in Y such that: (1) & is finer than the Y-neighborhood
filter at y; (2) &# = £ n 0. In other words, % —0 in X means
that & is finer than the Y-neighborhood filter at 0, or else .& is
finer than ./ (y) for some y in X, where .7/ (y) is generated by
sets of the form (V — {y}) U {0} and V is a Y-neighborhood of y.

The space X is clearly compact and first countable. But cX
(which turns out to be finest pseudo-topological space coarser than
X) is homeomorphic to the one-point compactification of the interval
(0, 1] with the discrete topology, and so is not first countable.

3. Local compactness. In this section, we examine the con-
sequences of assuming that either X or C(X) is locally compact.
Arens, [1], proved for a completely regular topological space X that
C(X) is a topological space iff X is locally compact. In Theorem 3.6,
we show that Arens’ theorem is valid in the larger class of w-regular
convergence spaces. We also show that when C(X) is a topology,
then C(X) has the compact-open topology relative to c¢X, but not,
in general, relative to X.

LEmMA 3.1. Let X be a space, & —ax in X, and D—f in
C(X). Let W be an open meighborhood of f(x) in R.

(@) If F is a compact set in & such that f(F) S W, then there
18 a set A in @ such that AF)< W.

(b) If A is a compact set in @ and A(x) & W, then there is a
set F' in F such that A(F)< W.
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Proof. The proofs of (a) and (b) are essentially the same, so
we will prove only (b).

Let {4,:7e I} be the collection of all filters on C(X) which con-
verge in C(X) to a point in A. Let 4,— ¢ in A; then there are
sets L, in 4, and F; in & such that L(F,) < W. Theset {L;: i€ I}
is a covering system for A which, by Proposition 1.2, reduces to a
finite subcover L,, ---, L, of A. Let F, --., F, be the correspond-
ing members of &, and let F = F,. Then (U L)F)<S W, and
so A(F)c W.

THEOREM 3.2. If X 1is a locally compact space, then C(X) is a
topological space.

Proof. C(X) is known to be a convergence group, and it is also
known (see [7], Theorem 5, §3) that a pretopological convergence
group is topological. Thus we can complete the proof by showing
that, whenever fis in C(X), & —2 in X, and W is an open neigh-
borhood of f(x) in R, there is a neighborhood V of f in C(X) and
F in & such that V(F) < W. Assume that W, is a closed neigh-
borhood of f(x) contained in W and F, a compact set in &#. Let
F, =F,n f(W). Then F, is compact, F, is in &, and f(F) < W,
so that Lemma 3.1(a) can be applied to obtain, for each filter 4 — f
in C(X), a set L,e /4 such that L(F,) & W,. If V is the union of
these L,’s, over all A’s converging to f in C(X), then V is a neigh-
borhood of f, and V(F) & W.

The preceding proof made use of Lemma 3.1(a) to show that
C(X) = nC(X) when X is locally compact. An analogous argument,
based on Lemma 3.1(b), establishes the following result.

LemMMA 38.3. Let X be any space such that C(X) s locally com-
pact. Then C(X) = C(zX).

PROPOSITION 3.4. If C(X) is a locally compact space, then C(X)=
C(xX) = C(\X).

Proof. In view of Lemma 3.3, it is sufficient to assume that X
is pretopological and show that C(X) = C(AX). Let & —f in C(X)
and <€ X. Let W be an open neighborhood of f(x) in R. Select a
compact set A in @ and a neighborhood B of x such that A(B) & W.
Given z in B, we can use Lemma 3.1 to find a neighborhood B, of
z such that A(B,) < W. Let B, =J{B.:z in B}; then A(B) < W.
Next, given zin B,, use Lemma 3.1 again to find a neighborhood C,
of z such that A(C,) € W. Let B, =J{C.:zin B}; then A(B,) & W.
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Continue in this way to obtain B, such that A(B,) < W for all
natural numbers n. Let U = | {B,: n a natural number}. Then U
is a A X-neighborhood of x and A(U) & W. It follows that @ — fin
C(\X), and the proof is complete.

COROLLARY 38.5. (a) If X is locally compact, then C(X) = MC(X).
(b) If C(X) s locally compact, then C(X) = C(AX).

THEOREM 8.6. If X 1is an w-regular space, then C(X) is a
topological space vff X 1s locally compact.

Proof. Assume that C(X) is a topological space, and let f in
C(X) be the constant map f(x) = 0, all # in X. Let W be any open
neighborhood of 0 in R not containing 1. Let &% —u« in X; since
X is w-regular, there is an wX-closed set F, in &% such that, for
some neighborhood U, of f in C(X), U(F,) & W. We will complete
the proof by showing that F, is compact.

Let & be a covering system for F,. Let % = . U{CoF} U
{BUCo F,: Be .&«7'}; then .21 is a covering system for X. By Lemma
2, [6], we can replace .97 by a refinement .27 composed of wX-closed
sets. Let <Z be the basic covering system for X obtained by adding
to the collection .27 all wX-closed subsets of members of 4. If ¢
is the topology on C(X) defined from <Z as in Lemma 2.3, then
C(X) £ C(X) follows from the same lemma. Thus there is a ¢t-neigh-
borhood U, of f, with U, =N{(F,, W,: k=1, ---, n}, such that
U, < U, where the sets F,, ---, F, are wX-closed members of <Z.
To show that F, & U F}, assume the contrary, and let ze F, — (U F).
Then there is A in C(X) such that A(z) =1 and A(U F}) = 0. This
yields a contradiction, since % is in U,, a subset of U, but k(z) =1
implies U(F,) & W.

To conclude that F, is compact, let G, =F,NF, i =1, ---, n,
and let &v* = {BN F,: Be .%4}. Then .v* is an wX-closed refinement
of %7, and each G, is a subset of some member of .&*. Since F, <
U G., the compactness of F, follows from Proposition 1.2, and the
proof is complete.

Even in the class of topological spaces, there are w-regular
spaces which are not completely regular; an example of such a space
can be found in [5], page 85, Ex. 4.

COROLLARY 38.7. If X 1is locally compact, then c¢X 1is locally
compact.

Proof. This follows because C(X) is a topology (Theorem 3.2),
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cX is w-regular (Proposition 2.1), and C(¢X) is homeomorphic to C(X)
(Proposition 2.5).
An immediate consequence of Theorem 2.3 and Corollary 3.7 is

COROLLARY 8.8. For any space X, C(X) is a topological space
iff ¢X 1s locally compact.

C(X) is said to have the compact-open topology relative to X if
C(X) = C(X), where C,(X) is the topological space derived, as in
Lemma 2.3, from the collection <Z of all compact subsets of X.
When X is a completely regular topological space, then it is known
that C(X) has the compact-open topology relative to X whenever
C(X) is a topology. The situation for convergence spaces can be
summarized as follows.

THEOREM 3.9. Let C(X) be a topological space.

(a) If X is w-regular, then C(X) has the compact-open topology
relative to X.

(b) C(X) always has the compact-open topology relative to cX.

Proof. Both assertions follow from the fact that C(X) has the
compact-open topology relative to X whenever X is locally compact.
Assume that X is locally compact, and let <& be the collection of
all compact subsets of X; let ¢ be the compact-open topology on
C(X). C(X)<=CyX) follows from Lemma 2.3. If @ — fin C(X) and
fe(K, W), where Ke.<Z and W is open in R, then the argument
used in proving Lemma 3.1 can be applied to obtain a set 4 in @
such that A(K) = W. Thus A = (K, W), and C(X) = C,(X) is estab-
lished.

It is not generally true that C(X) has the compact-open topology
relative to X whenever C(X) is topological. One can obtain a coun-
ter-example by taking X to be the space of Theorem 6.21, [2].

THEOREM 3.10. C(X) s locally compact iff ¢X 1s finite.

Proof. If ¢X is finite, then C(X) = C(cX) is a finite dimensional
topological linear space, and hence locally compact.

Conversely, assume that C(X) is locally compact; for convenience,
let Y =¢X. Then Y is a completely regular topological space, since
Y is a subspace of C(C(X)), which has the compact-open topology
by Theorem 3.9.

Let A={feCX):|f()|=1, for all x in X}. A is evidently
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closed in C(X). Note that the filter on C(X) generated by
{A/n)A:n =1,2, ---} converges to the zero function; since C(X) is
locally compact, some set of the form (1/n)A is compact, and it fol-
lows that A is compact in C(X). We can also regard A as a subset
of the product RY; A will then be compact relative to the product
topology on RF.

Assume that Y is infinite. If Y were discrete, then C(Y) = R7,
and C(Y) would not be locally compact. Thus some element ¥ in
Y has a neighborhood filter distinet from y. For each open set V
in the neighborhood filter at ¥, choose vy, in V — {y} and f, in A
such that f,(y) =1 and f,(Y — V) = 0. Since A is compact in E”,
the net (f,) has a pointwise-convergent subnet (fy ).cs. Let f be
the pointwise-convergent limit of this subnet. Then (f; (¥))acs—
f(y) =1, and (fr.(Yr)acs— f(yr,) =0 for each ge 4. But the net
(Ys)ecs— Y, and so f is not in C(Y). But fe A< C(Y), since A is
compact, a contradiction. It follows that Y = ¢X is finite.

The preceding theorem and Corollary 3.8 imply that C(X) is
topological whenever C(X) is locally compact. Combining this result
with Proposition 3.4, we obtain the following.

COROLLARY 38.11. If C(X) s locally compact, then C(X) =
AMO(X) = C(AX).

We would like to thank W. A. Feldman for some helpful cor-
respondence.
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